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Abstract

In cluster analysis it is assumed that all units in a group of individuals
can be classi�ed into a certain category. However, in real life, there are
often some subjects who are not easy to classify since they resemble no one
else. These outlier subjects have nothing in common with any other subject
in the data set. In this paper we classify most individuals into ordinary
clusters but the deviant subjects are represented by a special cluster with
a much larger deviation than the others. Here, we apply this approach to
twelve year old students from a midswedish municipality. One cluster with
deviating children is successfully distinguished in the data set. In contrast
to the deterministic clustering approach often used in social and behavioral
sciences, an alternative model-based probabilistic approach is used. It has
advantages in the sense of �exibility in size and structure between clusters and
the ability to handle overlapping groups. Cluster parameters are estimated
using Bayesian statistics and MCMC techniques.

Keywords: Clustering, Mixture distribution, Bayesian, MCMC, Gibbs
sampler, BIC.
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1 Introduction

There are two approaches to clustering or classi�cation of data, the determinis-
tic and the model-based approach. Most clustering methods use a deterministic
approach where the aim is to create non-overlapping subsets where the subjects
in each subset ful�ll certain homogeneity criteria. The de�nition on homogeneity
varies from analysis to analysis although always directly depending on data. Many
common deterministic methods are based on hierarchical clustering which forms
clusters by starting out with as many clusters as there are subjects, and then suc-
cessively, merge one cluster with another. The two most similar clusters, according
to some criterion, are merged at each step. In a hierarchical fashion the number
of clusters decrease by one for each step. The merging can for example be based
on complete- or single-linkage methods. For an overview of common methods, see,
for instance, Everitt et al. (2001). Nonhierarchical clustering techniques �rst di-
vide data into a predetermined number of groups and then use a chosen algorithm
to reassign subjects between the clusters as long as a criterion function (like ex-
plained variance) decreases. These two deterministic approaches have in common
that they use di¤erent measures between subjects, and between subjects and cen-
troids to create well separated and homogenous clusters. The method is descriptive
in the sense that it does not assume that units are formed by any model. The me-
chanical classi�cation in deterministic clustering (such as Ward�s method, see for
instance Sharma, 1996), seldom leaves room for structural di¤erences between clus-
ters. From our experience, these methods often fail to identify overlapping groups,
or groups with di¤erent shapes and sizes.

In the model-based probabilistic approach, data y1; :::;yn, where n is the number
of observations, are viewed as coming from J di¤erent categories, each with its own
distribution fj. Mathematically this is described as

f(yi) =
JX
j=1

pjfj(yi) i = 1; :::; n

were pj is the proportion of units from cluster j.

This approach allows each cluster to have its own speci�c shape, size, and orienta-
tion described by its distribution fj(yi). We use this to investigate the seldom
mentioned possibility with non-classifyable subjects in a more standard cluster
structure. By this it is meant that some subjects are united by the fact that
they have nothing in common with other well de�ned groups, or each other. This is
a situation that is common in behavioral researches (Bergman 1988). When many
such subjects are present, i.e. when there is a cluster of deviant subjects, ordinary
cluster analysis can give misleading results. It will not only incorrectly �t a deviant
subject into the closest cluster of �normal� subjects, but will most likely also distort
the classi�cation structure.
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In Figure 1 we visualize the di¤erence between the deterministic and the model-
based probabilistic approach. The top graph show the true model with three over-
lapping groups with di¤erent distributions. The middle graph shows what we ob-
serve from data and also the outcome of a nonhierarchical, deterministic clustering
based on Euclidean distance. The dividing line between two clusters lies with equal
distances from the two cluster means. Subjects in the group tails will then be
incorrectly classi�ed into the nearest cluster, and as a consequence, the variance
within each overlapping cluster become lower value than it should. The total vari-
ance in data consists of unexplained variance (the variance within clusters), and
explained variance (the variance between clusters). The decreased unexplained vari-
ance results in an exaggerated explained variance in deterministic clustering since
many subjects are classi�ed to the nearest cluster and not to its true group. This
is important to remember when using the concept explained variance in ordinary
cluster analysis and also in a comparison between a deterministic and model-based
clustering.

The bottom graph in Figure 1 shows the features of a model-based clustering. This
approach has the ability to handle classi�cation probabilities in overlapping areas.
One subject at the intersection point between two densities, as the one marked
with an X, has an equal probability to come from either cluster. In this speci�c
case there is, in addition, a slight chance that it is an extreme observation from the
third distribution. At Y , the probability to belong to the middle cluster is about
25 percent and to belong to the right cluster is about 75 percent. An observation
at Z is almost surely an observation from the left cluster.

A natural way to study the typical patterning of individuals�characteristics in the
social and behavioral sciences is to make an individual�s pro�le of a set of values
relevant for the analysis. Studies focusing on group patterns based on these values
are relatively frequent. Bergman (1988) argued that it is seldom reasonable to be-
lieve that all individuals will �t into a small number of homogeneous groups. A few
number of groups can not manage to describe all complex interactions between the
variables describing a person. Most subjects are easily classi�ed, but often a num-
ber of unique subjects remain. This calls for an introduction of a group consisting
of such subjects, each one not showing resemblance with any other subject.

Most clustering techniques are very sensitive to deviant observations or outliers.
Several methods simply remove them from the data set prior to, or during the
classi�cation. Raftery and Dean (2004) use an algorithm to compare models with
di¤erent variable contents in which observations to remove are decided by pair-
wise model comparisons using an approximation of Bayes factor. Bayes factor is a
Bayesian manner of comparing models further explained in Section 2.2. Bergman
et al. (2003) suggest the RESIDAN methodology which uses similarity measures to
identify observations who are similar to at most k other observations (most often
k = 0). These observations are denoted as the residue and are removed from the
rest of the data set before the cluster analysis. In this paper deviant observations
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Figure 1: Comparison of deterministic versus model-based clustering. Top graph
- three overlaping clusters. Middle graph - data as it appears in reality and the
result of a deterministic clustering. Bottom graph - model-based clustering and its
ability to handle cluster membership probabilities for overlaping areas.
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are not removed because of their aberrance. Instead we view them as a group with
its own underlying distribution with a large dispersion over part of, or over the
whole sample space.

The data set used to exemplify our method consists of 935 students� attitudes
towards three school subjects, their grades in the same subjects, and their par-
ents�educational level. The data are described in Section 3. Bayesian inference
and Markov Chain Monte Carlo (MCMC) simulations are used to discern deviant
clusters and approximate cluster means, variances, covariances, and proportions
between clusters.

In recent years the interest for using Bayesian methods in the social sciences has
increased. Gill (2002) gives a comprehensive description of Bayesian methods in the
social and behavioral sciences free from most complicated mathematical computa-
tions. Model-based cluster analysis is also successfully used in biology for classifying
species, see for instance Raftery and Dean (2004) and Bensmail et al. (1997). Sev-
eral studies have also been made in medicine and genetics. Oh and Raftery (2003),
Fraley and Raftery (2002), Ban�eld and Raftery (1993), and Yeung et al. (2001)
are a few examples among others. Other areas of application are geophysics for
detecting seismic faults, described in Dasgupta and Raftery (1998) and settings in
social networks, see Schweinberger and Snijders (2003). However, there seems to
be no use of model-based cluster analysis in the behavioral sciences, with the aim
of handling deviant subjects.

It will be shown that by an approximation of Bayes factor we are able to choose
between models consisting of di¤erent number of clusters. The existence of a deviant
cluster in the cluster structure can also be tested.

Our methods are described in Section 2 including Bayesian inference and MCMC
simulation. The data set and its origin is presented in Section 3. An explanation of
the simulation steps, which distributions are used and their parameters are further
discussed in Section 4. In Section 5 the result is presented and compared with the
result of using a conventional cluster analysis (Ward�s method). Finally, in Section
6, a summary and conclusion is given.

2 Methods

2.1 Bayesian Inference

While classical statistics deals with point estimators, their variances and con�dence
intervals, Bayesian statistics is concerned with estimating whole posterior distrib-
utions of the unknown quantities �, given both data y and the prior opinions for
those parameters. In classical hypothesis testing a hypothesis is either rejected or
not. Bayesian statistics on the other hand estimates the probability that the hy-
pothesis is true by a number between 0 and 1. Bayesian statistics therefore gives a
more complete picture of the uncertainty.
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In probability theory Bayes theorem is well known

p(� jy ) = p(�)p(y j� )
p(y)

/ p(�)p(y j� ) (1)

where p(y) =
P

�p(�)p(y j� ) when � is discrete i.e. the sum over all possible values
of � and p(y) =

R
p(�)p(y j� )d� when � is continuous.

Formula (1) can be expressed in words as the posterior distribution of the parameter
� given the data y being proportional to the prior information on the parameter
p(�) times the information from data i.e. the likelihood function p(y j� ).

Posterior / Prior � Likelihood

p(�) is the prior distribution of the unknown � value. It describes the uncertainty
of � before data is observed. The prior belief is subjective and varies according to
the knowledge and experience about the unknown parameter. A strong belief of the
parameter is expressed by a more compact prior distribution around its believed
mean value. The likelihood function p(y j� ) expresses the probabilities for the data
given the parameter. When the prior distribution is updated with data in the form
of the likelihood function one gets the updated prior, i.e. the posterior distribution
p(� jy ).

In the classical approach the unknown parameter � is thought of as a �xed quan-
tity and the known data as random. In the Bayesian approach � is viewed as an
unknown quantity whose variation is described by its prior and posterior distrib-
ution while the data are observed and after that considered �xed in the analysis.
Therefore, in Bayesian inference, one can for example make statements about the
probability of the parameter to be in a certain interval, which is not possible in
classical inference. This causes many misunderstandings. It is not uncommon that
scientists using the classical approach falsely believe that the probability that a
parameter lies inside a 95 percent con�dence interval is 95 percent. They are then
treating con�dence intervals as Bayesian posterior intervals.

In Figure 2 the e¤ect of two di¤erent priors for the parameter � is illustrated. In this
example � is one univariate parameter. Suppose that two persons with di¤erent
prior knowledge (A and B) are faced with the same data. Prior A represents
a person with little prior knowledge modeled by �A � N(27; 72) while prior B
represents a specialist with better prior knowledge, �B � N(40; 12). The broken
line is the likelihood function created from one observation Y = 32 where data
is normally distributed with known variance, Y j� � N(�; 32). A normal prior
distribution and a normal likelihood yield a normal posterior distribution with
new parameters. In this case the posterior distributions are �A jY � N(31:2; 2:82)
and �B jY � N(39:2; 0:62). From Figure 2 it appears that the vague prior A does
not have much e¤ect on the posterior distribution. Instead the likelihood and data
stand for a large part of the information. In the case of a more precise prior B the
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Figure 2: Two di¤erent prior distributions (dotted lines) and their e¤ect on the
posterior distributions (solid lines). The likelihood function (broken line) is the
same for both examples.

posterior is greatly e¤ected by it. Since person B knows much about the parameter
in advance, the prior belief is very precise. For him the new data only stands for a
minor part of the information.

In Figure 2 the experiment is based on one observation. A person with no prior
opinion learned a lot but the specialist�s knowledge was based on more substantial
experience. If the experiment grows larger both persons will eventually reach the
same conclusion. The mean and variance for the posterior distributions approach
the same values as the number of observations increase.

2.2 Deciding the Model and the Number of Clusters

When there is little or no prior information on how data is structured a method
is called for to compare models consisting of di¤erent number of clusters and the
presence or absence of a deviant cluster. Bayes factors can be used to theoretically
decide the number of groups and what structure data has. Kass and Raftery (1995)
and Lavine and Schervish (1999) give a comprehensive description and Bensmail et
al. (1997) use Bayes factors for this speci�c approach. Bayes factors select the best
model among several by pairwise comparisons. If we want to compare two models
M1 and M2, the ratio of their posterior probabilities given data D is then,

p(M1 jD )
p(M2 jD )

= Bayes factor(M1;M2)�
p(M1)

p(M2)

6



where

Bayes factor(M1;M2) = B12 =
p(D jM1 )

p(D jM2 )
=

R
p(D j�1;M1 )p(�1 jM1 )d�1R
p(D j�2;M2 )p(�2 jM2 )d�2

The integrated likelihood I =
R
p(D j�k;Mk )p(�k jMk )d�k, k = 1; 2, can not be

calculated exactly due to its complexity.

Bayesian Information Criterion or BIC is an approximation suggested by Schwarz
(1978), further studied by Kass andWasserman (1995) and Kass and Raftery (1995)
among others. It is a rough approximation to twice the logarithm of Bayes factor,

2 log

�
p(D jM1 )

p(D jM2 )

�
= 2 log p(D jM1 )� 2 log p(D jM2 )

The BIC value is then de�ned as,

BIC = 2 log p(D jMk ) � 2 log p(D
���b�kMk )� vk log(n)

where vk is the number of parameters to be simulated in modelMk, n is the number
of observations and

p(D
���b�kMk ) =

nQ
i=1

JP
j=1

epjf(yi ���e�j; e�j )
The absolute value of BIC is not informative. The information lays in the di¤erences
between the values for two competing models. A standard convention for BIC
di¤erences states that a di¤erence less than 2 corresponds to weak evidence for a
model over another, between 2 and 6 to positive evidence, between 6 and 10 to
strong evidence and a di¤erence greater than 10 to very strong evidence (Kass and
Raftery 1995). The model with the highest BIC value is chosen.

2.3 Parameter Estimates Through MCMC Simulation

Despite the theoretical advantages Bayesian analysis provide, it often comes with
intractable mathematical problems. Model speci�cation of prior- and likelihood
functions often lead to a posterior speci�cation which is di¢ cult, or even impossible,
to handle analytically. Integrals over high dimensional probability distributions call
for approximation, often through statistical simulation techniques.

The principle behind Monte Carlo simulation is to evaluate an expected value E [�]
by drawing many observations f�i; i = 1; :::; ng from their distribution f (�), and
then estimate the expected value by the arithmetic mean in the sample

7



E [�]� 1
n

nP
i=1

�i

That way the population mean of � is estimated by the sample mean and we avoid
the integral calculation

E [�] =
R
�f (�) d�

When �i are independent and n large enough, the law of large numbers assures
the accuracy of the approximation. It is not always possible to draw independent
samples but as long as the sample is generated from the posterior distribution in
correct proportions and the law of large numbers holds, the principle works.

Markov Chain Monte Carlo (MCMC) methods produce chains of samples in the
right proportions from a speci�c distribution. The law of large number holds if
the chain is ergodic, which it can be shown to be in our case. Ergodicity involves
some technical requirements such that all states can be reached from any other
state (irreducibility) and that all sets will be reached in�nitely often (recurrence).
Gilks et al.(1996) give a comprehensive description on convergence requirements
and ergodicity. A simulated value in the Markov chain is mildly dependent on the
proceeding value only. The chain will correct itself to better values and when it
is run long enough after a number of "burn in" simulations, it will settle into the
target distribution. After the chain is run for some time, mean values, variances
and other summary statistics can be collected.

In this paper Gibbs sampler, also called alternating conditional sampling, is used
which is the most commonMCMC technique. It has been found useful in many mul-
tidimensional problems. It works by in each iteration step generate more than one
parameter. Each parameter is generated conditionally on the others. In this paper
the means, variance/covariance parameters and proportions between clusters are to
be estimated. The posterior distributions for these parameters are expressed condi-
tionally on the other parameters. By cycling through these conditional statements
each parameter is updated and a Markov chain for each parameter is generated.

When the Markov chains are used for di¤erent calculations it is important to �rst
discard a suitably number of burn-in simulations to get correct estimates. The
number of iterations to discard is easily decided by studying a burn-in graph as
the one in Figure 3. The graph shows the �rst 1000 iterations for three di¤erent
parameters. After less than 200 iterations all chains seem to have reached their
stationary conditions. Figure 4 shows a histogram of the normal posterior distri-
bution of one of the parameters in Figure 3, generated from 4800 iterations. As
discussed in Section 2 the �nal result gives us, not only a point estimate, but the
whole distribution.
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Figure 3: Burn-in graph for three mean parameters.
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Figure 4: Example of a histogram for a parameter with a posterior normal distrib-
ution after 4800 iterations (the �rst 200 iterations are discarded).

It is possible to estimate the probability for a speci�c individual to belong to dif-
ferent clusters. In each iteration step, each subject is assigned to a cluster. By
looking at how many times during the simulations the individual ended up in a
speci�c cluster, the probability is estimated. In the same way we are able to cal-
culate the probability for two (or more) individuals being derived from the same
underlying distribution.
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2.4 Covariance Decomposition

In this paper we allow for each cluster to have its own shape, orientation, and
volume. Each cluster is multivariate normal distributed, but with its own covariance
matrix. It is the most generous choice concerning covariance structure. Several
constraints can be placed on the covariance matrices. Ban�eld and Raftery (1993)
suggest eight di¤erent models based on the standard spectral decomposition of the
covariance matrix �j for cluster j.

�j = �jDjAjD
t
j

�j is a scalar controlling the volume. Dj is an orthogonal matrix of eigenvectors in
charge of orientation. Aj controls the shape and is a diagonal matrix with elements
proportional to the eigenvalues of �j.

The eight models representing di¤erent covariance structures are shown in Table
1. Di¤erent models are obtained by placing constraints on the covariance matrix
such as Aj = A, which means that the shape is the same for all clusters. The
model �j = �jDjAD

t
j for example, has the same shape but di¤erent orientation

and volume among the clusters. In Figure 5, a graphical illustration for an example
with three clusters in two dimensions is given for the eight models. Model 1, with
spherical shaped clusters and the same volume corresponds to the structure from a
deterministic clustering based on Euclidean distance. Model-based clustering can
handle all eight models with their di¤erent covariance structures. Model 8 is used in
this paper and allows for di¤erent shapes, orientations and volumes in all clusters.
This model puts no restrictions on the covariance matrices but it requires longer
simulation sequences than the restricted models. If knowledge about the covariance
structure is available, one should restrict the model as much as possible to shorten
the burn-in period and improve the estimates.

Model �j Shape Orientation Volume
1 �I Spherical None Same
2 �jI Spherical None Di¤erent
3 � Same Same Same
4 �j� Same Same Di¤erent
5 �DjAD

t
j Same Di¤erent Same

6 �jDjAD
t
j Same Di¤erent Di¤erent

7 �jDAjD
t Di¤erent Same Di¤erent

8 �j Di¤erent Di¤erent Di¤erent

Table 1: Cluster models indicating whether the shape, orientation, and volume are
the same for each group, or not. (From Ban�eld and Raftery (1993)).
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Figure 5: Covariance decomposition. Shape, orientation, and volume are di¤erent
or the same for the three clusters. Eight models, each with its speci�c combination.
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3 Data

The longitudinal research project "Individual Development and Adaption" (IDA)
at the Department of Psychology at Stockholm University was created with the
purpose of explaining and understanding the individual development process. The
database contains information on individuals who attended school in the Swedish
town of Örebro. The individuals have been investigated from third grade in 1965
up to adult age. The database covers a broad range of topics such as behavior,
social relations, family climate, psychological, mental, and socioeconomic factors.
The database has resulted in several hundred scienti�c publications. Further infor-
mation about the project can be found in Bergman and Magnusson (1997) and in
Magnusson (1988).

In this paper we use cross-sectional data from all 935 students in sixth grade in 1968,
without partial nonresponse (85% of the whole school grade cohort). Seven variables
are chosen from questionnaires completed by the students in class and their parents
at home. The variables are the students�attitudes towards three school subjects,
their grades in these subjects and their parents�educational level. The attitudes
towards the subjects Swedish, Mathematics and Religion are measured on a �ve
grade scale where 1 corresponds to �like it very much� and 5 to �strongly dislike�.
The grades for the same three subjects are given on a �ve grade scale but now
reversed in the sense that a higher value corresponds to a better grade. Parents�
educational level is classi�ed on a seven grade scale going from university degree
(1), to only compulsory school or less (7).

We present the mean values and covariance matrix for the whole data set in Table
2. In general, there is a more positive attitude towards Mathematics compared
to the other two subjects. The three grade variables are similar with values just
above 3. The variance of parents� educational level is higher than for all other
variables. This is partly because of its seven grade scale. The rest of the variables
have variances close to 1.

Variables Mean Covariance
Attitude Swedish
Attitude Math
Attitude Religion
Grade Swedish
Grade Math
Grade Religion
Parents Edu: Level

2:87
2:28
3:22
3:17
3:23
3:15
5:04

266666664

1:08 0:16 0:34 �0:17 �0:06 �0:14 0:04
1:32 0:17 �0:06 �0:35 �0:07 0:12

1:30 �0:12 �0:16 �0:28 0:18
0:89 0:66 0:64 �0:48

1:07 0:63 �0:52
0:92 �0:52

2:97

377777775

Table 2: Mean values and covariance matrix for the IDA data set.

We expect to �nd a number of logical clusters on di¤erent levels. Generally going
from groups with positive attitudes, good grades and favorable conditions at home
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(in the sense of highly educated parents), to groups with negative attitudes, low
grades and low education among parents. It is also likely that we will detect one or
more clusters with another structure, such as positive attitudes, good grades but
characterized by parents with low education. Besides the homogenous groups, the
existence of a deviant group is expected based on experience from previous studies,
see Bergman (1988) and Bergman et al. (2003). Considering the variables used, at
least a few individuals should fall outside the typical patterns.

Standardization of data is not necessary when using Model 8, presented in Section
2.4. A change in scale will not change the clustering outcome, since we allow for
di¤erent sizes and shapes among clusters. The same goes for Models 3, 4, and 7.
When using Models 1, 2, 5, or 6 a standardization of the data is often to prefer
before the analysis. A change in scale could violate the limitations on similar or
di¤erent shapes and directions.

4 Details of the MCMC Technique

We begin by �rst describing the �normal� clusters. The last cluster with deviant
observations is described in Section 4.3.1. For each non-deviant cluster the mean
and variance/covariance parameters are to be estimated together with the propor-
tions between clusters. We consider the observations y1; :::;yn to come from one
of J clusters. Data are assumed to follow a multivariate normal distribution in K
dimensions in each cluster. This is an approximation. In reality data are discrete
with 5 or 7 possible values in each direction. The mean for cluster j, �j is a vector
of length K. �j is a K � K covariance matrix and P = (p1; :::; pJ) are the pro-

portions for the di¤erent clusters where 0 < pj < 1 and
JP
j=1

pj = 1. A classi�cation

vector V = (v1;:::; vn) is introduced where vi = j implies that observation yi is
classi�ed into cluster j. The last cluster is described below in 4.3.1.

4.1 Choice of Prior Distributions

Since our knowledge concerning cluster structure in this case is very limited, we
choose to put vague prior information on all parameters. We want the data to have
the major in�uence on the posterior distributions, not the prior belief.

The prior distribution for each �j is the inverse wishart distribution, �j �
W�1 �mj; j

�
, with mj degrees of freedom and scale matrix  j. This is the mul-

tivariate generalization of the inverse-�2 and an obvious choice for multivariate
variances. All �j are assumed to be independent. The higher variance of one clus-
ter is modelled by a larger  j = mj�j. The variance for the seven dimensional
cluster means are � = Diag [0:5 0:5 0:5 0:5 0:5 0:5 1]. Variances are believed to be
0:5 for the mean values in the �rst 6 dimensions and 1 for the last dimension. All
covariances are put to 0. The reason for a higher variance in the last dimension
is the sample space range between 1 � 7 as opposed to the �rst six, with a range
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between 1 � 5. A variance of 0:5 results in a spread in each cluster of about 3
around its cluster mean and a variance of 1 corresponds to an approximate spread
of 4. The degrees of freedom mj is a measure on how strong our prior belief for �j

is and are set equal to 10 for all j.

The conjugate prior distribution for �j given �j is multivariate normal, �j j�j �
NM

�
�j;�j=� j

�
for some precision parameters � j. The prior means �j for all clusters

are put at 3 for the �rst six dimensions in the mean vector and 4 for the last
dimension, i.e. the �rst six parameters of the mean vector have the same value -
the mean of its �ve grade sample space and the last parameter, the mean of its
seven grade sample space. The precision parameter � j = 1 for all j.

The prior distribution for the parameters de�ning the proportions between clus-
ters p1; :::; pJ , is a multivariate generalization of the Beta distribution, namely the
dirichlet distribution (p1; :::; pJ) � Dirichlet (�1; ::::; �J). The relative sizes of the
parameters �j describe the mean of the prior distribution for P = (p1; ::; pJ) and
the sum of the �j�s is a measure of the strength of the prior distribution. All clus-
ters are assigned an �-value equal to 10 except the deviant cluster which we believe
to be smaller and we therefore give the �-value 5. This corresponds to a belief of
an approximate 95-percent interval for p1; :::; pJ�1 between 0:08� 0:30 and for the
deviant cluster between 0� 0:15: The intervals vary a little according to how many
clusters there are in the model.

4.2 Derivation of Conditional Posterior Distributions

The likelihood function for data given �j, �j; and the number of observations from
cluster j is multivariate normal, yi

���j;�j � NM
�
�j;�j

�
. The inverse wishart

prior distribution for �j together with the multivariate normal likelihood result in
an inverse wishart posterior distribution conditional on y and V.

�j jy;V � W�1
�
nj +mj; j +Qj +

nj� j
nj + � j

(yj � �j)(yj � �j)t
�

where nj is the number of observations from cluster j, yj is the by data estimated
mean in cluster j, and

Qj =
P
i2j
(yi � yj)(yi � yj)t

The same likelihood function together with the multivariate normal prior distrib-
ution for �j generates a multivariate normal posterior distribution conditional on
y, �j and V.

�j jy;�j;V � NM
�
�j;�j=(� j + nj)

�
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where �j =
� j�j + njyj
(nj + � j)

The multinomial distribution is used to describe data conditional on p1; ::; pJ , where
each observation yi is one of J possible outcomes. The indicator function I (vi = j)
returns the value 1 if vi = j, i.e. observation i is classi�ed into cluster j; and 0
otherwise.

f (y jP) /
JY
j=1

p

nP
i=1

I(vi=j)

j

The multinomial likelihood times a dirichlet prior generates a dirichlet posterior
distribution for p1; :::; pJ conditional on V.

p1; :::; pJ j V � Dirichlet
��
�1 +

nP
i=1

I (vi = 1)

�
; :::;

�
�J +

nP
i=1

I (vi = J)

��

The posterior probabilities tij for observation i to belong to a certain cluster j is
calculated according to Bayes theorem,

tij j�;�;P =
pjf

�
yi
���j�j

�
JP
j=1

pjf
�
yi
���j�j

� i = 1; :::; n (2)

4.3 Simulation Steps

Start values for all parameters are necessary for the simulation. The start values
can be generated by a previous clustering of some kind or by a quali�ed guess.
The Markov chains will eventually converge, but with reasonable start values the
convergence will be faster. We use an hierarchical clustering based on Euclidean
distance to generate our start values. These values are used as conditional values
in the �rst iteration.

The Gibbs sampler algorithm is used in these simulations. In each iteration a new
value is generated for all parameters conditional on the old values from the previous
iteration. All parameter distributions, including V are updated in each iteration.
One iteration consists of the following four steps.

1. �j;new for each cluster j is simulated from its old posterior distribution con-
ditional on y and Vold.

2. �j;new for each cluster j is simulated from its posterior distribution conditional
on y, �j;new, and Vold.

15



3. p1; :::; pJ are simulated from their posterior distribution conditional on Vold.

4. The classi�cation vector Vnew = (v1;:::; vn) is simulated from its posterior
probabilities in (2) conditional on y, �j;new, and �j;new (2). The element
vi = j with probability tij independent of all other observations.

In Franzén (2006), an example with simulated data is to be found to show the
e¢ ciency of the method. The computations were performed using a program con-
structed by the author in Matlab, version 7. The simulations are run for several
possible cluster structures, with and without a deviant cluster. To �nd the most
appropriate structure the BIC-values are calculated.

4.3.1 The Deviant Cluster

To put extra emphasize on the belief that some individuals do not �t into the
standard patterns, a deviant cluster was constructed. A modi�cation of the sim-
ulation step 4 in Section 4.3 was done. The basic idea is that the observations yi
are normally distributed in all clusters i.e. in (2) (yi

���j;�j) � NM(�j;�j). How-
ever, a normality assumption for the deviant cluster puts unnecessary boundaries
on that cluster. We would like to leave room for the cases in the deviant cluster
to be spread over the whole sample space without concentration around a notional
mean. The observations of the deviant cluster are therefor assumed to come from
a uniform distribution on the 56 � 7 = 109375 possible combinations. This allows
for the largest possible spread within the sample space and a distributional shape
more coincidental with what we expect to �nd in reality.

5 Results

5.1 Cluster Structure and Parameter Estimates

In Table 3 the BIC-values for possible cluster structures are presented. Pairwise
comparison of BIC-values for structures with the same number of clusters - with and
without a deviant cluster - all show preference for a deviant cluster. The solution
with one deviant cluster among �ve more or less well de�ned clusters is the best
according to the BIC values. The next best is the solution with eight clusters
including one deviant. Going from the next best to the best solution results in a
merge of two clusters and a bigger deviant cluster.

Convergence was almost immediately for all 181 parameters - 35 mean parameters,
140 variance/covariance parameters and 6 p-parameters. 5000 iterations were used
and 200 iterations were discarded for all chains. As an example, the burn-in for
four out of six p-parameters is illustrated in Figure 6.

In Table 4 a summary is given of centroid estimates of the posterior means, vari-
ances and proportions. Covariances are left out, but are presented in Appendix.
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Cluster Structure BIC
5 Clusters -19275
6 Clusters -18682
7 Clusters -19367
8 Clusters -18546
9 Clusters -18972
5 Clusters incl. 1 deviant -18801
6 Clusters incl. 1 deviant -18286
7 Clusters incl. 1 deviant -18705
8 Clusters incl. 1 deviant -18398
9 Clusters incl. 1 deviant -18746

Table 3: BIC-values for di¤erent cluster structures. The solution with six clusters,
of which one is deviant, is prefered.
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Figure 6: Burn-in for four out of the six proportion parameters. There are almost
immediately convergence for all four parameters. From top to bottom are cluster
3, 2, 4, and 5.
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Cluster 1 2 3
Mean Variance Mean Variance Mean Variance

Attitude Swedish 2.69 1.31 2.76 1.02 2.84 1.26
Attitude Math 2.07 1.31 2.13 1.10 2.20 1.35
Attitude Religion 2.67 0.90 2.98 1.03 3.25 1.13
Grade Swedish 3.97 0.79 3.92 0.55 3.05 0.54
Grade Math 4.31 0.43 3.92 0.41 3.10 0.44
Grade Religion. 4.17 0.38 4.16 0.16 3.00 0.01
Parents edu. level 1.46 0.55 5.11 1.41 5.40 1.94
Proportion parameter 0.08 0.26 0.35

Cluster 4 5 6
Mean Variance Mean Variance Mean Variance

Attitude Swedish 2.97 1.19 3.42 1.33 - -
Attitude Math 2.50 1.54 2.36 1.23 - -
Attitude Religion 3.55 1.23 3.99 0.85 - -
Grade Swedish 2.32 0.56 2.00 0.74 - -
Grade Math 2.36 0.39 2.07 0.44 - -
Grade Religion. 2.01 0.04 1.58 0.48 - -
Parents edu. level 6.10 0.68 4.80 1.23 - -
Proportion parameter 0.18 0.06 0.07

Table 4: Estimated posterior means, variances and proportions between clusters.

In addition to the deviant group, �ve groups appear, each with its own speci�c
structure. Cluster 1 and 2 seem to consist of the �elite� students with high grades
and a positive attitude towards the three subjects. The main di¤erence between
cluster 1 and 2 is parents�educational level which is very high in cluster 1, but low
in cluster 2. Cluster 3 is more or less average in all senses and is also the largest
group. Cluster 4 and 5 both show a pattern with low grades and a more negative
attitude. Worth to notice is the strong preference for math over the other subjects
in all clusters. Within each cluster the three grade variables are well collected. At-
titudes di¤er more between subjects and their variances are constant higher than
those in the grade category.

A graphical comparison of the means for each cluster is given in Figure 7. In general
all clusters follow a general pattern where a positive attitude come hand in hand
with good grades and highly educated parents and vice versa. The mean of all
variables order the clusters in the same way with one exception. Cluster 5 deviates
from the relative order between clusters for two variables - attitude in Mathematics
and parents�educational level. Cluster 1 and 2 are very similar except for parents�
educational level and a small di¤erence in math grade. The three big groups are 2,
3, and 4 which are nicely ordered in the same way in all variables. There are two
small groups where the parents education is high, but all other variables generally
lie either higher or lower than the variables of the larger clusters.
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Figure 7: Mean estimates for the �ve non deviant clusters. In this �gure a higher
value corresponds to better attitude, better grade, and higher education.
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Figure 8: Histogram for 3 variance parameters in the �rst cluster. Variance for
Attitude towards Swedish, Grade in Swedish, and Parents�Educational Level. The
whole covariance matrix has an inverse wishart distribution. The variance parame-
ters from the matrix have an inverse chi-square distribution, shown in this �gure.
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Histograms for each parameter give a visual perception of the posterior distribu-
tions. In Figure 8, a selection of the variance parameters from cluster 1 is shown.
We allowed for each cluster to have its own variance structure according to Model
8 in Section 2.4. By looking at the estimated covariance matrices in Appendix, the
result seems to consist of two types of structures. Cluster 1 and 5 have more or less
the same spherical structure with similar variances for all seven dimensions. Cluster
3, 4, and to a large extent cluster 2, show a low variance in dimension 6 (Grade
Religion). These clusters are very �at in this dimension and bear a resemblance
to a discus in shape. The cluster solution include di¤erent shapes, and most likely
di¤erent orientations and volumes by looking at Figures 9 and 10 below. Therefore,
Model 8 seems to be the most suitable model for our data set.

It is di¢ cult to give a graphical illustration of the results due to seven dimensional
data. We therefore choose two parameters out of the seven to give a visible pre-
sentation and understanding of the cluster structure. A two dimensional graph
representing grade in religious knowledge and parents� educational level, is pre-
sented on top in Figure 9. In the second graph educational level is exchanged for
Grade in Mathematics. Other combinations give similar graphs although these spe-
ci�c combinations give a somewhat clearer view. Clusters are created more after
grades and parents�educational level than attitudes. As Figure 9 shows, �ve more
or less well collected clusters is de�ned as well as a last deviant cluster which is
spread over the whole sample space.

Another way to give a two dimensional visual presentation of the cluster structure is
through principal components. As in the previous �gure each observation in Figure
10 is allocated to one of six clusters by looking at which cluster the observation
ended up in most of the times during the last 4800 simulations. Data in the new
coordinate system is de�ned by the �rst two principal components, which stand for
58:4 percent of the total variance. In this dimension cluster 3 is spread almost as
much as the deviant cluster. This particular cluster is almost exclusively grouped
based on grades, and especially the grade in religion. A single dimension does not
have a large impact on the �rst two principal components.

It might sometimes be interesting to investigate observations with predominant
probabilities for the deviant cluster. In Appendix, all 39 observations with a prob-
ability for the deviant cluster of 50 percent or higher, are listed. No obvious sim-
ilarities occur between individuals and, as expected, none of them have a cluster
structure coincident with the �ve clusters in Table 4. In Appendix we �nd for exam-
ple individuals with positive attitude towards the three subjects despite low grades
in them, or vice versa. The �ve non-deviant clusters have well collected variables
in the grade category. In Appendix there are several individuals who di¤er from
the pattern by a large spread in both the attitude and grade category.

For each observation we are able to calculate the probabilities for that individual
to belong to di¤erent clusters. This is simply done by observing how many times
during the 4800 simulations the observation was classi�ed into each cluster. The
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Figure 9: Cluster structure for the six clusters, shown in two dimensions. The de-
viant cluster (stars) is spread over the whole sample space. The number of possible
values for the seven parameters are limited and therefore several observations will
end up with the exact same values for two or more variables. For perspicacious
graphs we separate the observations by adding a random number between -0.4 and
0.4 to each observation. It scatters the observations and prevent them to end up on
top of each other. For example are observations with grade 3 uniformly spread in
the interval 2.6-3.4. Each observation is allocated to one of six clusters by looking
at which cluster the observation ended up in most of the times during the last 4800
simulations.
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Figure 10: Data projected onto the �rst two principal components. Each observa-
tion is allocated to one of six clusters, by looking at which cluster the observation
ended up in most of the times during the last 4800 simulations. The deviant cluster
is not circled.

results for two selected individuals are shown in Table 5. In the same way we
can calculate the probability for two speci�c individuals to come from the same
distribution. The probability for Individual 30 and 485 to come from the same
cluster is 0:58. The probability for both individuals to come from cluster 1 is 0:35
and from cluster 4, 0:23.

Cluster
1 2 3 4 5 6

Individual 30 51.3 0 0 45.2 0 3.5
Individual 485 59.5 0 0 40.5 0 0

Table 5: Two individuals and their probabilities to belong to each underlying dis-
tribution.
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5.2 Comparison with Ward�s Method

Ward�s method is a deterministic hierarchical clustering technique with the aim of
minimizing the total within sum of squares for all groups. The method starts with
as many clusters as there are observations. At each step the number of clusters
is decreased by one. It is done by merging the two clusters generating the lowest
increase in the within clusters sum of squares. The merging continues until there is
only one cluster containing all observations. Ward�s method produces �spherical�
groups which are of approximately the same size, since the clustering is based
on Euclidean distances. The unexplained variance, i.e. the variance within each
cluster, is a help when choosing the number of groups. The unexplained variance
will of course increase for each merging as the clusters become larger, but a greater
jump than normal between values for a speci�c merging could be a hint of a good
solution.

Before Ward�s method is applied, the data set are standardized to avoid that the
variables get di¤erent weights depending on their standard deviation. For our
data set, no obvious number of clusters appears as the best solution using Ward�s
method. To compare with the model-based solution we choose to look at the �ve
cluster solution. The sixth cluster in the model-based solution is deviant and does
not have a homogeneous structure. It would therefore be useless to compare it
with a non deviant group. The cluster means, variances, and proportions between
clusters are shown in Table 6 and could be compared with the values from the
model-based clustering in Table 4. The clustering result di¤ers between the two
methods. Figure 11 shows that the relative order between the clusters for the seven
variables is not preserved to the same extent using Ward�s method, as it is in model-
based clustering, previously shown in Figure 7. As discussed before, a deterministic
clustering makes a division between overlapping groups at a point between the two
cluster means. In the case of overlapping groups, some subjects are allocated to the
wrong cluster and within cluster variances become smaller than they should. This
is the case for our data set. The cluster variances generated by Ward�s method
are smaller than those generated by the model-based clustering, except for parents�
educational level. The groups also become more similar in shapes and sizes, a
consequence of Euclidean distances used in Ward�s method. In Figure 12, a plot
over the �rst two principal components is given for a graphical comparison with
model-based clustering in Figure 10.

Since the data set do not have a strong homogeneous group structure, both methods
generate results with relatively low explained variance. Explained variance for the
�ve-cluster solution with Ward�s method is 36:5 percent. The explained variance
in percent is calculated as the di¤erence between the total variance and the unex-
plained variance (the within variance), divided by the total variance. We calculated
the within variance for the model-based method in two di¤erent ways. The �rst
one takes into consideration the membership probabilities for overlapping areas in
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Cluster 1 2 3
Mean Variance Mean Variance Mean Variance

Attitude Swedish 2.59 0.79 3.07 0.94 2.06 0.74
Attitude Math 1.95 0.89 2.48 1.17 2.49 1.71
Attitude Religion 3.03 1.00 3.39 1.16 1.92 0.53
Grade Swedish 4.11 0.22 3.65 0.70 3.10 0.35
Grade Math 4.14 0.40 3.67 1.09 2.95 0.48
Grade Religion. 4.01 0.41 3.63 0.72 3.34 0.48
Parents edu. level 5.28 1.37 2.42 2.04 5.03 3.47
Proportion parameter 0.25 0.16 0.13

Cluster 4 5
Mean Variance Mean Variance

Attitude Swedish 3.19 1.04 3.09 1.13
Attitude Math 1.85 0.60 4.04 0.62
Attitude Religion 3.55 1.14 3.85 0.79
Grade Swedish 2.47 0.49 2.71 0.38
Grade Math 2.75 0.73 2.31 0.51
Grade Religion. 2.48 0.42 2.41 0.48
Parents edu. level 5.75 1.15 5.97 0.90
Proportion parameter 0.36 0.10

Table 6: Means, variances, and proportions between clusters using Ward�s method.
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Figure 11: Mean estimates for the �ve clusters generated by Ward�s method. In
this �gure a higher value corresponds to better attitude, better grade, and higher
education.
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Figure 12: Clustering structure according to Ward�s method.

the following way;

Within V ariance =
JP
j=1

KP
k=1

bpjb�2kj (3)

where b�2kj is the estimated variance for dimension k in cluster j, and bpj is the
estimated proportion for cluster j.

The other way to calculate the within variance is to simply assign a subject to the
cluster which it is the most likely to come from. The variance for each cluster is
then calculated in an ordinary fashion. This is more comparable with the explained
variance generated from a deterministic clustering, since it makes clear cuts between
clusters.

In addition to the two ways of calculating the variance there are two ways to handle
the variance of the deviant cluster. The question arises if it should be viewed as
unexplained or explained variance. To include the large within variance for the
deviant cluster into the unexplained variance would not be correct. The deviant
cluster is generated on the basis of dissimilarities between subjects and the variance
should therefore not be classi�ed as unexplained. On the other hand, labeling it as
explained variance, i.e. as the variance between groups, is not completely correct.
The labelling is subjective, and we therefore present results from both perspectives
and for both ways to calculate the variance. Layout 1 calculates the within variance
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according to (3), and Layout 2, described above, assigns each subject to a cluster
before calculating the variance.

Not surprisingly, Layout 1 generates lower variances than Layout 2. If we view
the variance in the deviant cluster as explained variance, both Layout 1 and 2 give
better result than Ward�s method, which has an explained variance of 36:5 percent.
When the variance of the deviant cluster is viewed as unexplained we do not reach
up to the percent level of Ward�s method. However, this is not alarming since the
deviant group contributes with a large variance and decrease the explained variance
considerably.

Explained Variance (%)
Variance in deviant cluster Variance in deviant cluster
classi�ed as explained classi�ed as unexplained

Layout 1 40.6 29.6
Layout 2 40.9 33.3

Table 7: Explained variance for model-based clustering.

It is important to remember that clustering methods based on Euclidean distance,
as Ward�s method, have a tendency to overestimate the explained variance not
only when clusters are overlapping. Assume for instance that the true situation is
two spherical clusters with di¤erent sizes next to each other as in Figure 13. In a
clustering based on Euclidean distance, the break line between the clusters will be
on equal distance from the two cluster means. Observations as the one marked with
a star are in fact coming from cluster 2, but will be misclassi�ed into cluster 1. As
a consequence, the within variance is incorrectly decreased, since the distance from
the observation to the center of cluster 1 is shorter than to the center of cluster 2.
Our goal with the model-based approach is to maximize the likelihood times prior,
and not minimize the remaining variance using Euclidean distance. This makes
the explained variance misleading in clustering based on Euclidean distance. The
conclusion must be that the model-based approach very well measures up to the
levels of Ward�s method, when it comes to explained variance.

6 Discussion

We have described the model-based probabilistic clustering approach, which is
based on multivariate normal mixture models. Data are viewed as coming from
a mixture of multivariate normal probability distributions where each distribution
represents a cluster. This approach is well suited for handling overlapping groups
with di¤erent structures and the special topic of this paper; a deviant group con-
sisting of subjects di¤erent from any other subject, widely spread over the sample
space. Model-based clustering has the ability to handle cluster membership prob-
abilities for overlapping areas, something not possible in a deterministic approach.
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Figure 13: Illustation on how the explained variance can be overestimated in clus-
tering methods based on Euclidean distance.

The seven-dimensional data set used is complex in its nature. It does not show
an obvious group structure which makes a clustering of data challenging. Clus-
ter means, variance/covariance matrices, and proportion between clusters are esti-
mated. Bayesian inference with MCMC simulation is used. A prior opinion together
with a likelihood function, give us a posterior distribution for each variable. The
estimates are based on simulations from these posterior distributions. Vague priors
are used, since we have no previous knowledge about the cluster structure. We
apply Bayesian model selection by BIC values to determine the number of clusters
and whether or not there should be a deviant cluster. The method separates data
into �ve overlapping clusters with logical group patterns. In addition, the method
successfully discerns deviant observations into a separate cluster.

The model-based clustering gives group structures with di¤erent shapes, volumes,
and directions. Deterministic clustering with Ward�s method, which is based on
Euclidean distance, gives a somewhat di¤erent result. The method generates a
cluster structure where all clusters have approximately the same size and shape,
presumably because of limitations in the method.

The model-based probabilistic approach has many advantages.

1. With Bayesian model selection we are able to compare models. This informs
about how many clusters there should be, and if a deviant group is to prefer
in the model.

2. The method not only generates point estimates for all variables, but also asso-
ciated uncertainty in the form of the whole estimated posterior distribution.

3. The method allows for di¤erent shapes, volumes, and directions among clus-
ters, but is equally well suited for situations where one or several of them are
equal, or the structures are predetermined.

4. The method handles overlapping groups by taking into account cluster mem-
bership probabilities in these areas.
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5. Statements can be made on probabilities for single subjects to belong to
di¤erent clusters. We can also calculate the probabilities for two or more
subjects to come from the same underlying distribution.

6. The method allows for the existence of a deviant cluster within the model. In
a deterministic clustering, outlier subjects have to be removed from the data
set prior to a clustering.

A drawback with the method is that the complex model requires a lot of data
capacity and long iteration chains to get reliable estimates. The computational
capacity and iterations needed increase drastically with the number of variables to
be estimated.

Suggestions for further research within the area include adjustment of the model
to �t longitudinal data. It should be possible to cluster data at di¤erent times to
study movements of individuals between clusters. Another longitudinal aspect is to
study cluster movements by dividing individuals into clusters depending on their
pattern of change over time. The data used in this paper are cross-sectional but
taken from a longitudinal data base and would therefore be suited for such studies.

Another improvement of the model for this speci�c data set concerns the distribu-
tions used. We assume the data to be multivariate normal distributed. In reality
the data are discrete multivariate with 56 � 7 = 109375 possible outcomes. The
integral over the normal distribution is therefore not equal to 1. A normalization
of the multivariate normal distribution is a possible improvement.

For the data set in this paper the method sometimes has a tendency to base the
clustering on one variable with the grade in religion having strong in�uence on the
clustering result. In a few clusters all individuals have the same grade in religion.
The prior distribution pulls apart the posterior, but it is still very narrow in its
shape. Since the data are discrete the posterior distribution does not cover, or even
come close to, the adjacent grades. This may incorrectly exclude subjects from a
cluster and calls for further development of the method.
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Appendix
Cluster 1 Cluster 2

266666664

1:31 0:18 0:26 �0:05 0:01 �0:02 �0:05
1:31 0:00 0:21 �0:03 0:11 0:02

0:90 0:09 0:05 �0:02 0:03
0:79 0:23 0:21 �0:10

0:43 0:03 �0:11
0:38 �0:13

0:55

377777775

266666664

1:02 0:22 0:34 �0:01 0:02 0:00 0:12
1:10 0:14 �0:09 �0:18 0:00 0:10

1:03 0:07 0:00 �0:02 �0:06
0:55 0:20 0:05 �0:11

0:41 0:02 �0:06
0:16 �0:03

1:41

377777775
Cluster 3 Cluster 4

266666664

1:26 0:24 0:37 �0:04 0:01 0:00 �0:11
1:35 0:05 �0:14 �0:20 0:00 0:21

1:13 0:07 0:03 0:00 �0:15
0:54 0:22 0:00 �0:22

0:44 0:00 �0:02
0:01 0:00

1:94

377777775

266666664

1:19 0:11 0:12 �0:04 0:03 0:00 0:03
1:54 0:08 �0:04 �0:10 �0:01 0:07

1:23 0:12 0:07 0:00 �0:04
0:56 0:22 0:01 �0:07

0:39 0:01 �0:12
0:03 �0:05

0:68

377777775
Cluster 5

266666664

1:33 �0:12 0:40 �0:35 �0:07 �0:21 0:34
1:23 �0:10 0:08 �0:07 0:08 �0:14

0:85 �0:16 �0:08 �0:03 0:02
0:74 0:15 0:28 �0:40

0:44 0:01 �0:04
0:48 �0:40

1:23

377777775

Table 8: Estimated covariance matrices.

Individual
719 481 28 324 720 886 42 24 155 323 322 578 179

Attitude Swedish 1 1 4 5 3 2 3 5 4 3 2 3 3
Attitude Math. 1 2 3 3 5 5 3 3 4 1 1 3 4
Attitude Religion. 2 2 3 5 5 4 3 2 5 2 5 3 4
Grade Swedish 3 2 2 3 4 4 2 1 3 3 3 3 3
Grade Math 5 2 1 5 2 5 2 3 2 5 5 3 2
Grade Religion 2 2 2 2 2 5 2 4 2 2 2 2 4
Parents�Educ. Lev. 7 1 1 7 1 6 1 6 1 6 5 1 1
Prob. Cluster 6 1.00 0.99 0.98 0.98 0.98 0.96 0.95 0.94 0.94 0.94 0.93 0.92 0.90

Individual
154 523 444 451 99 889 471 534 743 334 25 35 284

Attitude Swedish 4 5 4 2 3 2 3 2 1 1 4 1 5
Attitude Math. 2 2 2 5 5 1 4 4 5 5 3 2 1
Attitude Religion. 1 1 5 5 3 5 4 1 2 3 2 5 1
Grade Swedish 3 2 5 5 2 4 2 3 4 4 2 2 3
Grade Math 1 3 3 4 3 5 1 1 3 3 1 1 4
Grade Religion. 3 3 4 5 1 5 1 2 4 2 1 3 3
Parents�Educ. Lev. 6 1 1 5 7 7 7 4 1 3 4 7 1
Prob. Cluster 6 0.89 0.88 0.87 0.87 0.84 0.84 0.83 0.83 0.81 0.81 0.76 0.74 0.74

Individual
152 516 143 333 935 165 27 533 747 769 721 524 277

Attitude Swedish 5 4 5 3 2 1 3 2 1 4 4 1 1
Attitude Math. 4 1 1 1 4 2 3 4 5 5 4 5 4
Attitude Religion. 3 4 5 4 2 1 5 3 3 2 2 4 1
Grade Swedish 3 2 2 4 5 3 2 2 4 4 4 2 3
Grade Math 1 3 4 3 5 2 1 3 3 4 2 3 3
Grade Religion. 2 2 2 1 5 3 1 5 4 3 2 3 5
Parents�Educ. Lev. 4 2 7 5 7 1 7 5 3 2 5 4 5
Prob. Cluster 6 0.71 0.70 0.70 0.70 0.70 0.69 0.65 0.60 0.57 0.56 0.53 0.53 0.52

Table 9: Actual values for all individuals with a probability of more than 50 percent
for the deviant cluster. The bottom row presents classi�cation probabilities for the
deviant cluster and the individuals are presented in order of decreasing probability.

29



References

[1] Ban�eld, J. D. and Raftery, A. E. (1993). �Model-Based Gaussian and Non-
Gaussian Clustering�, Biometrics, 49, 3, 803-821.

[2] Bensmail, H., Celeux, G., Raftery, A. E. and Robert, C. P. (1997). �Inference
in Model-Based Cluster Analysis�. Statistics and Computing, 7, 1-10.

[3] Bergman, L. R. (1988). �You Can�t Classify All of the People All of the Time�.
Multivariate Behavioral Research, 23, 425-441.

[4] Bergman, L. R. and Magnusson, D. (1997). �A person-oriented approach in
research on developmental psychopathology�. Development and Psychopathol-
ogy, 9, 291-319.

[5] Bergman, L. R., Magnusson, D. and El-Khouri, B. M. (2003). Studying Individ-
ual Development in an Interindividual Context - A Person-Oriented Approach.
Mahwah, USA: Lawrence Erlbaum Associates, Inc..

[6] Dasgupta, A. and Raftery, A. E. (1998). �Detecting Features in Spatial Point
Processes with Clutter via Model-Based Clustering�. Journal of the American
Statistical Association, 93, 441, 294-302.

[7] Everitt, B. S., Landau, S and Leese, M. (2001). Cluster Analysis. London:
Oxford University Press Inc..

[8] Fraley, C. and Raftery, A. E. (2002). �Model-Based Clustering, Discriminant
Analysis, and Density Estimation�. Journal of the American Statistical Asso-
ciation, Vol. 97, 458, 611-631.

[9] Franzén, J. (2006). �Bayesian Inference for a Mixture Model using Gibbs Sam-
pler�. Research Report 2006:1, Department of Statistics, Stockholm University.

[10] Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996). Markov Chain
Monte Carlo in Practice. London: Chapman & Hall.

[11] Gill, J., (2002). Bayesian Methods - A Social and Behavioral Sciences Ap-
proach. Boka Raton: Chapman & Hall/CRC.

[12] Kass, R. E. and Raftery, A. E. (1995). �Bayes Factors�. Journal of the Amer-
ican Statistical Association, 90, 430, 773-795.

[13] Kass, R. E. and Wasserman, L. (1995). �A Reference Bayesian Test for Nested
Hypotheses and It�s Relationship to the Schwartz Criterion�, Journal of Amer-
ican Statistical Association, 90, 928-934.

[14] Lavine, M. and Schervish, M. J. (1999). �Bayes Factors: What They Are and
What They Are Not�. American Statistician, 53, 2, 119-122.

30



[15] Magnusson, D. (1988). Individual Development from an Interactional Perspec-
tive - A Longitudinal Study, Hillsdale, NJ: Lawrence Erlbaum.

[16] Oh, M.-S. and Raftery, A. E. (2003). �Model-Based Clustering with Dissim-
ilarities: A Bayesian Approach�, Technical Report no. 441, Department of
Statistics, University of Washington.

[17] Raftery, A. E. and Dean, D. (2004). �Variable Selection for Model-Based
Clustering�. Technical Report no. 452, Department of Statistics, University
of Washington.

[18] Schwarz, G. (1978). �Estimating the Dimension of a Model�, The Annals of
Statistics. 6, 461-464.

[19] Schweinberger, M. and Snijders, T. A. (2003). �Settings in Social Networks: A
Measurement Model�, Sociological Methodology, 33, 307-341.

[20] Sharma, S. (1996). Applied Multivariate Techniques. New York: Johan Wiley
and Sons, Inc..

[21] Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E. and Ruzzo, W. L. (2001).
�Model-Based Clustering and data transformations for gene expression data�,
Bioinformatics, 17, 102001, 977-987.

31




