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Abstract

We describe a flexible geo-additive Bayesian survival model that controls, simul-

taneously, for spatial dependence and possible nonlinear or time-varying effects

of other variables. Inference is fully Bayesian and is based on recently developed

Markov Chain Monte Carlo techniques. In illustrating the model we introduce

a spatial dimension in modelling under-five mortality among Malawian chil-

dren using data from Malawi Demographic and Health Survey of 2000. The

results show that district-level socioeconomic characteristics are important de-

terminants of childhood mortality. More importantly, a separate spatial process

produces district clustering of childhood mortality indicating the importance of

spatial effects. The visual nature of the maps presented in this paper highlights

relationships that would, otherwise, be overlooked in standard methods.
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1 Introduction

Investigations on trends in, patterns of, and associations to childhood mortality

rates are worthwhile efforts because mortality in childhood is a sensitive indi-

cator of the quality of life in society (WHO, 1998). Since causes of childhood

mortality are multifaceted and may operate in many complex ways, appropri-

ate methodology that address these complexities are called for. In particular,

socioeconomic and demographic patterns of child mortality vary a great deal

from place to place and over time. Standard approaches such as correlation co-

efficients and regression analysis may produce summary statistics and measures

of association at one particular site. But it cannot be assumed that these re-

lationships hold everywhere within a country. As we expand our domain from

biological factors to exogenous factors that work at household or community

levels, there will be more and more variability in the phenomenon under inves-

tigation. This, in turn, prompts us to question the value of a single framework

describing the pathways of determinants of child mortality that is universal for

a given country.

Previous works on childhood mortality have been limited to examining socio-

economic, demographic and health-related determinants in specific contexts but

have generally failed to incorporate spatial aspects. Mosley and Chen (1984),

Boerma and Bicego (1992), Madise and Diamond (1995), Curtis and Steele

(1996), Guilkey and Riphahn (1997), Defo and Khassoum (2002), and Berger,

Fahmeir, and Klasen (2002), are few examples.

In these and other investigations that ignore the spatial dimension in the study

of childhood mortality, population-level socioeconomic variables and health re-

sources have explained very little of the variation in mortality rates. On the

other hand, it is well documented that aggregate levels of mortality in many de-

veloping countries mask spatial variations. For instance, results from the Malawi

Demographic and Health Survey show that the national level under-five mor-

tality for the period 1996-2000 was 204 deaths per 1000 live-births, while the
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corresponding figures for the Northern, Central, and Southern regions were 166,

204, and 212, respectively. A further stratification by districts, as shown in Table

1, reveals wide differences between districts within the same region.

Table 1 Under-five Mortality Rates by District during the period 1996-2000, that is 0 - 4 years prior

to the survey, MDHS 2000
a

Region District no. District name Mortality Rate (per 1000)

North All 166

1 Chitipa 160

2 Karonga 130

3 Nkhata Bay 251

4 Rumphi 196

5 Mzimba 185

Central All 204

10 Kasungu 181

11 Nkhota Kota 267

12 Ntchisi 222

13 Dowa 218

14 Salima 255

15 Lilongwe 186

16 Mchinji 227

17 Dedza 197

South All 212

18 Ntcheu 186

20 Mangochi 195

21 Machinga 195

22 Zomba 181

23 Chiradzulu 233

24 Blantyre 205

25 Mwanza 269

26 Thyolo 237

27 Mulanje 246

28 Chikwawa 188

29 Nsanje 368

31 Balaka 186

32 Phalombe 257

Malawi All districts 204

a
The figures for Nkhata Bay, Rumphi, and Nsanje refer to 1986-90 (10-14 years before the survey)

Thus, the present paper’s intended contribution to the literature is to account,

simultaneously, for spatial and time-varying effects on childhood mortality and,
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thereby, highlight relationships that would be overlooked in standard methods

that fail to take due account of such effects. We achieve this task by introducing

geo-additive Bayesian model, with dynamic and spatial effects, in discrete-time

survival data in assessing temporal and spatial variation in the determinants of

childhood mortality. The impact of some factors on child survival is allowed to

vary over time. Our model also allows for nonlinear effects of some covariates on

child survival. Appropriate smoothness priors for spatial and nonlinear effects

are introduced and recently developed Markov chain Monte Carlo simulation

techniques are utilized in the computation. The models are then used to examine

spatial variation in under-five mortality rates in Malawi and explore district-level

clustering of mortality rates across both space and time.
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Figure 1: Physical map of Malawi showing districts (left) and spatial distribution of

Under-five Mortality Rates by District during the period 1996-2000 as shown in Table

1 (right).

We present the Geo-additive Bayesian model for discrete-time - and highlight

its advantages over conventional models in the next Section. In Section 3, the
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model is illustrated using data obtained from the Malawi Demographic and

Health Survey of 2000. The contents of the paper are tied up together in the

last section by way of summary and concluding remarks, while some of our

empirical results are presented in an Appendix at the end of the paper.

2 Geo-additive Bayesian Discrete-time Survival

Model

2.1 The basic model

Let T denote a discrete survival time where t ∈ {1, . . . , q +1} represents the tth

month after birth and let x?
t = (x1, . . . , xt) denote the history of a covariate up

to month t.

The discrete-time conditional probability of death at month t is then given by:

λ(t, x?
t ) = pr(T = t|T ≥ t, x?

t ), t = 1, . . . , q. (2.1)

Survival information is recorded by (ti, δi), i ∈ {1, . . . , N}, where ti ∈ {1, . . . , 60}
denotes the child’s observed survival time in months, and δi is a censoring in-

dicator with value 1 if child i died, and 0 if it is still alive. In other words, ti

represents either the age (in months) of the child at time of death (when δi = 1),

or (when δi = 0) the current age of the child (in months) at date of interview.

We assume noninformative censoring in the sense of Lagakos (1979), so that the

risk set Rt includes all individuals who are censored in interval ending in t.

Let us now defines a binary event indicator yit {i ∈ Rt, t = 1, . . . , ti}:

yit =





1 if t = ti and δi = 1

0 otherwise,
(2.2)

The death process of individual i can, then, be considered as a sequence of

binary ’outcomes’ - dying at age t (yit = 1) or surviving beyond age t (yit = 0).

Such formulation yields a sequence of 0s and 1s indicating survival histories of

each child at the various time points.
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2.2 Incorporating Fixed-, Time-varying and Spacial-Effects

Parallel with the sequence of 0s and 1s, we can also have records on values of

relevant explanatory variables x?
it = (xi1, . . . , xit), i = 1, 2, .... These variables

may be fixed over time such as sex, place of residence; or may vary over time,

such as breast-feeding of a child at time t.

The indicator yit can be linked to the covariates x?
it by an appropriate link

function for binary response model such as probit, logit or multinomial link

function, and a predictor ηit(xit). Assuming that yit has a binomial distribution

and using a probit link function for i ∈ Rt, the probability of death for a child

i is given by

φ(ηit) = pr(yit = 1|x?
it). (2.3)

The usual form of the predictor is

ηit = f0(t) + X∗
itβ (2.4)

where the baseline effect f0(t), t = 1, 2, . . . is an unknown, usually non-linear,

function of t to be estimated from data and β is the vector of fixed covariate

effects. In parametric framework, the baseline hazard is often modelled by a

few dummy variables dividing the time-axis into a number of relatively small

segments or by some low-order polynomial. In practice, however, it is difficult

to correctly specify such parametric functional forms for the baseline effects

in advance. Nonparametric modelling based on some qualitative smoothness

restrictions offers a more flexible framework to explore unknown patterns of the

baseline.

Restriction to fixed effects alone might not be adequate because, in most cases,

we have covariates whose value may vary over time. The predictor in (2.4) is,

therefore, extended to a more flexible semiparametric model that can accommo-

date time-varying effects. If we further include another term representing spatial

effects, this semiparametric predictor is given by

ηit = f0(t) + f1(X) + f(t)Xit + fspat(si) + X∗
itβ. (2.5)
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Here, f0(t) is the baseline function of time and f1 is a nonlinear effect of metrical

covariate X. The effects, f(t), of the covariates in Xit are time-varying; while X∗
it

comprises fixed covariates whose effect is represented by the parameter vector

β; and fspat is the nonlinear spatial component of, say, district s (s = 1, . . . , S),

where the child lives. The spatial effects fspat(si) may be split-up further into

spatially correlated (structured) and uncorrelated (unstructured) effects of the

form fstr(si) + funstr(si). A rational behind this is that a spatial effect is a

surrogate of many unobserved influential factors, some of which may obey a

strong spatial structure while others may only be present locally.

Equations (2.4) and (2.5) are the basis of our analysis and will be referred,

henceforth, as constant fixed effects model and geo-additive model, respectively.

2.3 The Estimation Process

Second-order random walk priors are used to smooth the functions f0, f1,

and f using the MCMC techniques implemented in BayesX (see, for instance,

Fahrmeir and Lang, 2001a; b; and Brezger, Kneib and Lang, 2002).

Let f = {f(1), . . . , f(m),m ≤ n} be a vector of corresponding function evalu-

ations at the observed values of x. Then, the general form of the prior for f

is

f | τ2 ∝ exp

(
− 1

2τ2
f ′Kf

)
, (2.6)

where K is a penalty matrix that penalizes too abrupt jumps between neigh-

boring parameters. In most cases, K is rank deficient and, hence, the prior for

f is improper.

In traditional approaches the smoothing parameter is equivalent to the variance

parameter τ2 which controls the trade off between flexibility and smoothness. A

highly dispersed but proper hyperprior is assigned to τ2 in order to estimate the

smoothness parameter simultaneously with f . A proper prior for τ2 is required in

order to obtain a proper posterior for f (Hobert and Casella, 1996). If we choose
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an Inverse Gamma distribution with hyperparameters a and b, (τ2 ∼ IG(a, b)),

then, a first- and second-order random walk priors for f are defined by

f(t) = f(t− 1) + u(t), and f(t) = 2f(t− 1)− f(t− 2) + u(t), (2.7)

respectively, with Gaussian errors u(t) ∼ N(0; τ2) and diffuse priors f(1) ∝
const, or f(1) and f(2) ∝ const, as initial values.

A first order random walk penalizes abrupt jumps f(t) − f(t − 1) between

successive states and a second order random walk penalizes deviations from the

linear trend 2f(t− 1)− f(t− 2).

The trade off between flexibility and smoothness of f is controlled by the vari-

ance parameter τ2. The goal in our approach is to estimate the variance parame-

ter and the smoothing function simultaneously. This is achieved by introducing

an additional hyperprior for τ2 at a further stage of the hierarchy. We choose a

highly dispersed but proper Inverse Gamma prior, p(τ2) ∼ IG(a; b), with a = 1

and b = 0.005. In analogy, we also define for the overall variance σ2 a highly

dispersed Inverse Gamma prior.

For the spatially correlated or structured effect, fstr(s), s = 1, . . . , S, we choose

Markov random field priors common in spatial statistics (Besag, et al. 1991) of

the form

fstr(s) | fstr(r), r 6= s, τ2
str ∼ N

( ∑

r∈∂s

fstr(r)/Ns, τ
2
str/Ns

)
, (2.8)

where Ns is the number of adjacent regions, and r ∈ ∂s indicates that region r

is a neighbor of region s. Thus, the conditional mean of fstr(s) is an unweighted

average of function evaluations for neighboring regions. Again the variance pa-

rameter τ2
str controls the degree of smoothness.

For a spatially uncorrelated (unstructured) effect, funstr, s = 1, . . . , S, common

assumptions are that the parameters funstr(s), are i. i. d. Gaussian:

funstr(s) | τ2
unstr ∼ N(0, τ2

unstr). (2.9)

In a fully Bayesian analysis, variance or smoothness parameters τ2
j , j = str,

unstr, are also considered as unknown and estimated simultaneously with the
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corresponding unknown functions fj . Therefore, hyperpriors are assigned to

them in a second stage of the hierarchy by highly dispersed Inverse Gamma

distributions p(τ2
j ) ∼ IG(aj , bj) with known hyperparameters aj and bj .

Standard choices for the hyperparameters are a = 1 and b = 0.005 or a = b =

0.001. In our illustration, however, the results are not sensitive to the choice of

a and b, and the later choice is close to Jeffrey’s noninformative prior.

Fully Bayesian inference is based on the posterior distribution of model parame-

ters whose form is not known. Therefore, MCMC sampling from full conditionals

for nonlinear effects, spatial effects, fixed effects and smoothing parameters is

used for posterior analysis. For the nonlinear and spatial effects, we apply the

sampling scheme of Iterative Weighted Least Squares (IWLS) implemented in

BayesX (see Brezger, Kneib and Lang, 2002). This is an alternative to the gen-

eral Metropolis-Hastings algorithms based on conditional prior proposals that

was first suggested by Knorr-Held (1999) in the context of state space models

as an extension to Gamerman (1997). A more detailed related work is also given

in Knorr-Held and Rue (2002).

An essential task in the model-building process is the comparison of a set of

plausible models, for example rating the impact of covariates and assessing if

their effects are time-varying or not; or comparing geo-additive models with

simpler parametric alternatives. We adopt the measure of complexity and fit

suggested by Spiegelhalter et. al. (2002) for comparison and select the model

that takes all relevant structure into account while remaining parsimonious.

The Deviance Information Criteria (DIC) which may be used for model com-

parison is defined as

DIC(M) = D(M) + pD. (2.10)

Thus, the posterior mean of the deviance D(M) is penalized by the effective

number of model parameters pD. Models can be validated by analyzing the

DIC, which is smaller in models with covariates of high explanatory value.
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2.4 Advantages of the Geo-additive Model

There are many potential advantages of the approach described above over

more conventional approaches like discrete-time Cox models with time-varying

covariates and fixed or random districts effects; or standard 2-level multilevel

modelling with unstructured spatial effects (Goldstein, 1999). In the conven-

tional models, it is assumed that the random components at the contextual level

(district in our case) are mutually independent. In practice, these approaches

specify correlated random residuals (see, for instance, Langford et et al., 1999)

which is contrary to the assumption. Further, Borgoni and Billari (2003) point

out that the independence assumption has an inherent problem of inconsistency.

They argue that if the location of the event matters, it makes sense to assume

that areas close to each other are more similar than areas that are far apart.

Moreover, treating groups (in our case districts) as independent is unrealistic

and lead to poor estimates of the standard errors. As Rabe-Heskesth and Everitt

(2000) pointed out, standard errors for between-district factors are likely to be

underestimated because we are treating observations from the same districts as

independent, and thus increasing the apparent sample size. On the contrary,

standard errors for within district factors are likely to be overestimated (see

also Bolstad and Monda, 2001). On the other hand, Demographic and Health

Survey data is based on a random sample of districts which, in turn, introduces

a structured component. Such component allows us to borrow strength from

neighbors in order to cope with the posterior uncertainty of the district effect

and obtain estimates for areas that may have inadequate sample sizes or are not

represented in the sample.

In an attempt to highlight the advantages of our approach in a spatial context

and examine the potential bias incurred when ignoring the dependence between

aggregated spatial areas, we shall fit several models with and without the struc-

tured and random components in our illustration below.
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3 Illustration: Spatial Modelling of Under-five

Mortality in Malawi

3.1 Data Set and choice of variables

The data on which our illustration is based comes from the 2000 Malawi De-

mographic and Health Survey (MDHS 2000). For details on the data collection,

sampling procedure and summary report, see National Statistics Office (2001).

Each record represents a child born within five years before the interview date

and consists of survival information and a list of covariates. Individual data

records were available for 10367 children who survived their first month of life.

Of these, 1559 children had died before their fifth birthday.

Our indicator variable is

yit =





1 : if child i dies in month t

0 : if child i survives beyond time t,
(3.1)

On the basis of previous work, we have selected the following array of theoreti-

cally relevant variables as covariates of childhood mortality.

• mab mother’s age at birth of the child (in years), nonlinear

• dobt duration of breast-feeding, time-dependent

• dist district in Malawi, spatial covariate

• X vector of categorical covariates including:

child’s gender (male or female)

asset index (low, middle or higher income household),

residence (urban or rural),

mother’s educational attainment (up to primary or secondary and higher),

place of delivery (hospital or other),
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preceding birth interval (long birth interval, ≥ 24 months, or short inter-

val, < 24 months),

antenatal visit during pregnancy (at least one visit, or none),

marital status of mother (single or married),

district level mortality rate per 1000 (at least 20, or less than 20),

district level total fertility rates (at least 6 children or less than 6 children

per woman).

The last levels of each covariate were selected as baseline (reference) levels.

Summary statistics of these covariates is shown in Table 2.

Most of these are variables that have been found to be associated with childhood

mortality in previous studies of childhood mortality in developing countries. The

studies include Millard (1994), Curtis and Steele (1996), Desai and Alva (1998),

Macassa et al. (2003), Da Vanzo et al. (1983), Woldemicael (1999), Brocker-

hoff (1990; 1993), Brockerhoff and Derose (1996), Madise and Diamond (1995),

Kandala (2002), Cleland and Sathar (1984), Koenig et al. (1990), Whitworth

and Stephenson (2002), Geronimus and Kerenman (1993), Bicego and Ahmad

(1996), Manda (1998), Sastry (1997), Timaeus et al. (1998), and Claeson et al.

(2000 ).

Census results from Malawi also indicate geographic variation in the rates of in-

fant and under-five mortality with highest mortality rates in the Southern region

and the lowest in the Northern region. The present study’s main aim is to shed

light on such regional- and district- variations and advance our knowledge of

district-level socio-economic and demographic determinants of under-five mor-

tality in the context of Malawi. We have, therefore, included an indicator of

geographic location (district) among our covariates.
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Table 2 Descriptive statistics of covariates used in the analysis

Variable Frequency (%) Coding

Place of residence

Urban 2084(17.5) 1

Rural 9842(82.5) -1 reference category

Sex of child

Male 5951(49.9) 1

Female 5975(50.1) -1 reference category

Preceding birth interval

Greater than 24 months 10412(87.3) 1

Less than 24 months 1514( 12.7) -1 reference category

Mother’s age at child birth

Less than 20 years 2617(21.9) category 1

20-35 years 7866 (66.0) category2

Greater than 35 years 1443(12.1) -1 reference category

Antenatal visit

At least one antenatal visit 11629(97.5) 1

No antenatal visit 297(2.5) -1 reference category

Place of delivery

Hospital 6738( 56.5) 1

Other 5148(43.2) -1 reference category

Asset index:economic status of household

low income household 4560(38.2) category1

Middle income household 4724(39.6) category2

Higher income household 2262(19.0) -1 reference category

Mother’s educational attainment

up to primary 11060(92.7) 1

secondary and higher 866 (7.3) -1 reference category

Marital status of mother

Single mother 1366(11.5) 1

Married 10560 (88.5) -1 reference category

District level crude mortality rates

Greater than 20 deaths per 1000 5313(44.55) 1

Less than 20 deaths per 1000 6613 (55.45) -1 reference category

District level total fertility rates (TFR)

6 or more children per women 2410(20.21) 1

Less than 6 children per women 9516 (79.99) -1 reference category

3.2 Statistical Method

We analyzed and compared simpler parametric probit models and probit models

with dynamic effects, pr(yit = 1|x?
it) = φ(ηit), for the probability of dying in
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month t. In other words, we model the conditional probability of a child dying,

given child’s age in months, the district where the child lived before she or he

died, and covariates in x above, with the following predictors:

M1: ηit = f0(t) + X∗
itβ

M2: ηit = f0(t) + f1(mab) + f(t)Xit + funstr(dist) + fstr(dist) + X∗
itβ

The fixed effects in model M1 include all covariates described above with con-

stant fixed effects. Thus, mother’s age at birth was split into three categories as

indicated in Table 2, and duration of breast-feeding was included as dichotomous

(0, 1) variable. Model M2 will be superior to model M1 not only in terms of the

DIC (as will be seen Table 4) but because it also accounts for the unobserved

heterogeneity that might exist in the data, all of which cannot be captured by

the covariates (see, Madise et al., 1999).

The effects of f0(t), f1 and f(t) are estimated using second-order random walk

prior, and Marked random field priors for fstr(s). The analysis was carried

out using BayesX-version 0.9 (Brezger, Kneib and Lang, 2002), a software for

Bayesian inference based on Markov Chain Monte Carlo simulation techniques.

We investigated the sensitivity of the effects to choice of different priors for the

nonlinear effects (P-splines) and the choice of the hyperparameter values a and

b.

As in Kandala (2002), we introduced a time-varying effect for breast-feeding.

Duration of breast-feeding is an internal covariate that is observed only so long

as the child survives and is uncensored. It carries survival information of the

corresponding child as it can never exceed its survival time.

Instead of using duration of breast-feeding in months, we generated a binary

covariate process, which is equal to 1 during the months the child was breast-

fed and 0 otherwise. For instance, for a child that survived only 7 months and

was breast-fed in all 7 months, the duration of breast-feeding is equal to 7 while

the corresponding covariate-process is equal 1 for each of these seven months,

but undefined thereafter. If, on the other hand, the child survived more than 7

months but was not breast-fed after seven months for some other reasons like
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illness of the mother, then duration of breast-feeding is still equal to seven, but

the covariate-process is equal to 1 for each of the first seven months and equal

to 0 for every month thereafter until end of the observation.

Temporal and spatial variation in the determinants of child mortality are also

assessed.

Common choices for binary response models are grouped Cox model and probit

or logit models. We settled on a probit model because in this case the binary

response model (2.3) can be written equivalently in terms of latent Gaussian

utilities which lead to very efficient estimation algorithms. Further, because

survival time in the DHS data set is recorded in months and the longest obser-

vation time for this study is limited to 60 months, the data naturally contain a

high amount of tied events. Thus, a probit model for discrete survival data is a

reasonable choice. A constant hazard within each month is assumed.

At the exploratory stage, we fitted a probit model with constant covariate effects

(M1) for the effects of breast-feeding and mother’s age with a view to compare

them to the dynamic probit models (M2).

3.3 Results

3.3.1 Fixed effects

Table 3 contains estimates of posterior means of the fixed effects for categorical

covariates together with their standard errors and quantiles. The results suggest

that boys are at higher risk of dying than girls. This is indicated by the fact

that the corresponding posterior mean, 0.012, is positive and the 10% and 90%

quantiles are both positive - indicating that the effect is statistically significant.

Children of mothers with high education are at lower risk of dying than those

of less-educated mothers (posterior mean of ”up to primary education”, 0.032,

is positive and both quantiles are positive and, thus, significant).

Table 3 also indicates that survival chance is associated with economic wealth of

the household. Children from poor families have higher risk compared to those

15



from rich families (posterior mean 0.034). On the other hand, the difference in

mortality risks between children from rich- and the middle-income families is not

statistically significant - this being indicated by the opposite signs of the pos-

terior quantiles. This asset index variable captures the role of economic wealth

of the household and communication infrastructure. For example, ownership of

a radio facilitates acquisition of child care or nutrition information allowing a

more effective allocation of resources to produce child health care.

After controlling for child, household and districts characteristics, children from

urban areas seem to be better off compared to their counterparts in rural areas.

This may be captured by the districts effect since the boundaries of the maps

do not show urban and rural areas.

The results also show that children from single mothers are at higher risk of

dying than those from married mothers. Further, children born in hospitals,

and those from mothers seeking antenatal care are better off that their coun-

terparts BUT the effects are not statistically significant (10% and 90% credible

intervals are in opposite directions). We suspect that this is due to selection in

the propensity to make use of health inputs, and a more appropriate modelling

as in Ghilagaber (2004) may be needed before we can draw valid conclusion.

The results also show that a short birth interval significantly reduces a child’s

chance of survival. The district-levels factors (district’s crude mortality rate and

district’s total fertility rate taken from census data) do not show statistically

significant association with mortality at this stage of the analysis (in the fixed-

effects model).

3.3.2 Baseline effects

The estimated baseline effects were almost similar in models M1 and M2. The

most pronounced effects of the baseline time effects on child survival occur dur-

ing the first month of life (Figure 2), although the excess risk persists throughout

the first 6 months period.
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Figure 2 also shows that the baseline effects peak at months 24, 36, and 48.

These observed peaks are caused by the large number of deaths reported at

these time points. It is, therefore, plausible to suspect that this is a ”heaping”

effect due to incorrect reporting of large number of deaths at these ages, which

would appear to reflect digit preference in reporting deaths at 2, 3 and 4 years.

3.3.3 Time-varying effects

Figure 3 shows that there is a time-varying effect of breast-feeding in Malawi.

Breast-feeding is associated with lower risk of mortality in the first 7-8 months

using 80% credible region. At the mean value this could be the first 10 months

and months 42-60 but given the wide range of the 80% credible region at the

end of observation period (mainly, due to fewer number of cases), the results for

42-60 months should be interpreted cautiously.

3.3.4 Nonlinear effects

As shown in Figure 4, survival chance of children is associated with the mother’s

age at birth of the child. Children from younger mothers (less than 20 years)

and older mothers (more than 45 years) are at higher risk of dying compared to

children from middle age group (20-35 years). Figure 4 also shows that mortality

to children of mothers aged 35-40 and even 40-45 is lower than those of mothers

aged 20-25.

3.3.5 Spatial effects

Posterior means of the estimated residual spatial effects are shown in Figure

6. Both maps show a strong spatial pattern. This becomes even more clear in

Figure 7 which shows ”probabilities maps”. On a nominal level of 80% the dif-

ferent colors indicate to regions with high mortality-risk (dark), moderate-level

17



mortality-risks (grey)”, and low mortality-risk (white). Although the unstruc-

tured spatial effects are statistically insignificant in terms of posterior probabil-

ity maps (Figure 7 right), the maps show interesting spatial pattern and confirm

our initial thought of dependence between districts. The structured spatial ef-

fects (Figure 6 left) suggest that chances of survival are better in the North

(Chitipa, Rumphi and Karonga) compared to the South and Central regions of

the country. The unstructured spatial effects show that children from Karonga

districts in the North; and Lilongwe, Dowa, Kasungu, and Dedza districts in

the Central region; as well as Chikwawa, Machinga, Zombi, Ntcheu and Chi-

radzulu districts in the South have better chances of survival than those in other

districts of the country (Figure 6 right). What emerges from the unstructured

spatial effects is that the major centers are associated with lower risk of child-

hood mortality compared to the rural areas, probably because urban areas tend

to enjoy better access to health services. This is the case for the largest city

Lilongwe. Nsanje district has the highest under-five mortality risk. A compari-

son between the under-five mortality rates (Figure 1) and the estimated relative

risks (in the right hand of Figure 5) indicates that, after controlling for fixed

effects and other factors, a clear spatial pattern of under-five mortality risk has

emerged with the residual effects.

The results in the fixed parts of the model are very similar to those obtained

by including both spatial components, and are therefore not reported explicitly.

Instead, the posterior effects and the maps of posterior probabilities in mod-

els with both components as shown in figures 6 and 7 clearly reflect spatial

heterogeneity across the country and relative homogeneity among neighboring

districts.

Failure to take due account of the posterior uncertainty in the spatial location

(district) would, therefore, lead to an overestimation of the precision in predict-

ing childhood mortality risks in unsampled districts. The general interpretation

of the spatial effect is, therefore, that it represents the cumulative effect of

unidentified or unmeasured additional covariates that may reflect impacts of
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environmental, social and even cultural factors.

4 Summary and Concluding Remarks

4.1 Summary

After controlling for the spatial dependence in the data, most of the covariates

were found to have effects in the expected directions. The factors that were asso-

ciated with under-five mortality in the fixed part of the model include mother’s

age at child birth and her educational level and marital status; household eco-

nomic status; residence; length of the preceding birth interval; and sex of the

child.

An interesting, but not totally surprising, finding of the present study is that

children of married mothers are at lower risk of dying than those living with a

single mothers. Children living with two parents may benefit from extra care

of both parents. Alternatively couples may benefit from economies of scales for

child care and expenditure (Kandala, 2002).

We have also established that mortality, especially during the early months of

life, is sensitive to low economic status and low levels of maternal education.

The time-varying effects of breast-feeding point to the importance of breast milk

of the child after birth as recommended by WHO that a child should receive

exclusively breast milk after birth until 6 months of age. Results at the end of

the observation period do not, however, provide any reliable information on the

dynamic effects of breast-feeding (due to few cases) and should therefore, be

interpreted cautiously.

The most important finding of this paper is the sizeable district-specific geo-

graphical variation in the level of under-five mortality in Malawi which need to

be scrutinized in further work. Over and above the impact of the fixed effects,

there appear to be negative influences on child survival in the southern region
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that are spread over and affect most of the districts there. The southern dis-

tricts are at a lower altitude than other parts of the country. It is likely that

climatic factors and associated diseases are responsible for this pronounced dis-

trict patterns. Food insecurity associated with drought and flooding in the shire

valley, which is a result of hazardous effect of climate variation are among pos-

sible explanations for these negative effects. Furthermore the southern districts

are among high density population areas which can affect the child’s physical

environment and susceptibility to infections.

The structured effects on the left panel of Figure 6 show a sizeable difference

between significantly worse child survival in the central and southern districts,

and significantly better survival in the northern districts (in particular Chipita,

Rumphi and Karonga districts). These district patterns are similar, but not

identical to analysis of poverty and deprivation (World Bank, 2000). In terms

of deprivation (based on a mean score of various services), the World Bank

found the southern part of the country among the worst off. Considering the

neighboring relationship, the right panel of Figure 6, surprisingly include the

second largest city Blantyre among worse-off district because of the negative

effects of neighboring ”bad” districts. While we also found the south to be among

the worst off in the country, our analysis shows a clear geographic pattern with

the central-southern districts being worst off and the northern districts being

well-off.

The unstructured random effects (Figure 6 right) suggest a fair amount of vari-

ation over and above the structured effects. This is particularly obvious for

districts near the rift valley, but also visible for Nkhata-Bay in the north and

Nkhotakola in the centre of the country. This may be related to the impact of

drought that has affected the agriculture activities. The unstructured random

effects also separate the positive effects in the capital city (Lilongwe) despite

being surrounded by areas with negative effects. Living in the capital provides

access to nutrition and health care that is superior in ways that have not been

captured adequately with the fixed effects.
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While some of these effects have been identified in univariate analysis, this study

is the first of its kind to show that these subtle influences remain in a multivariate

context, controlling for a range of fixed effects and using a flexible approach to

modelling these influences. The spatial effects have no causal impact but careful

interpretation can identify latent and unobserved factors which directly influence

mortality rates. This gee-additive semi-parametric approach thus appears to be

able to discern subtle influences on under-five mortality and identifies district-

level clustering of under-five mortality. It could also be of value for a flexible

modelling of other determinants of survival in developing countries.

4.2 Concluding Remarks

In this study we have shown that variation in childhood survival probability

in Malawi is spatially structured. It implies that adjusted mortality risks are

similar among neighboring districts, which may partly be explained by general

health care practices and common childhood diseases prevalence. Another pos-

sible explanation is that of the residual spatial variation induced by variation in

unmeasured districts-specific characteristics. In the light of this, a simple stan-

dard 2-level model with unstructured spatial effects which assume independence

among districts is bound to yield estimates that lead to incorrect conclusions

with regard to the phenomena under investigation.

From a methodological point of view, different types of covariates, such as cat-

egorical covariates with fixed effects, metrical covariates with nonlinear effects

and spatial covariates are all treated within the same GLM framework by as-

signing an appropriate prior. For planning purposes, in constructing estimates

of child mortality that include small scale spatial information we suggest a

straightforward idea: maps could be used for targeting development efforts at

a glance, or for exploring relationships between welfare indicators and other

variables. For example, a mortality map could be overlaid with maps of other

types of data, say on undernutrition, poverty, agro-climatic or other environ-

mental characteristics. The visual nature of the maps may highlight unexpected
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relationships that would be overlooked in a standard analysis.
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Appendix

Table 3: Estimates of Posterior means of the fixed-effect parameters in model M2

Variable mean std. error 10% 90%

constant -3.41 0.13 -3.57 -3.22

Maternal education: secon. and higher (ref. category)

Up to primary 0.032 0.014 0.014 0.050

Sex of child: female (ref. category)

Boy 0.012 0.007 0.004 0.020

Marital status: married (ref. category)

Single mothers 0.025 0.011 0.011 0.039

Antenatal visit: no antenatal visit (ref. category)

At least one antenatal visit -0.032 0.028 -0.068 0.006

Asset index: rich (ref. category)

Poor 0.034 0.010 0.020 0.046

Middle -0.006 0.009 -0.018 0.006

Place of delivery: other (ref. category)

Hospital -0.002 0.007 -0.010 0.007

Birth interval: short birth (ref. category)

Long birth interval -0.052 0.010 -0.064 -0.038

Place of residence: rural (ref. category)

Urban -0.030 0.011 -0.045 -0.016

District level mortality rates: < 20 (ref. category)

> 20 deaths per 1000 -0.009 0.016 -0.031 0.013

District level total fertility rates: < 6 (ref. category)

6 or more children per women -0.008 0.019 -0.034 0.017

Table 4 Summary of DIC for models M1 and M2

Model Deviance pD DIC

M1 611.9 26.7436 6738.6

M2 6080.8 32.4146 6113.2
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Figure 2 Estimated nonparametric effect of baseline time. Shown is the posterior

mean within 80% credible regions.
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Figure 3 Estimated nonparametric effect of time-varying breastfeeding. Shown is the

posterior mean within 80% credible regions.
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Figure 4 Estimated nonparametric effect of mother’s age at child’s birth. Shown is

the posterior mean within 80% credible regions.

0-0.016 0.01 0-0.0644626 0.0534936

Figure 5 Regional fixed effects (left: Model M1) and total posterior mean of spatial

effects (right: Model M2).
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Figure 6 Posterior mean of structured (left) and unstructured (right) spatial effects

(Model M2).

Figure 7 Maps of 80% posterior probabilities for the structured (left) and

unstructured (right) spatial effects (Model M2).
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