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MODEL SELECTION FOR LONGITUDINAL SOCIAL

NETWORKS

JOHAN KOSKINEN

Abstract. This paper concerns model selection for a class of continuous-time
Markov chains for modeling longitudinal social networks. Many models of this
kind have been proposed in the literature (Holland and Leinhardt, 1977a,b;
Wasserman, 1977, 1980b,a; Snijders, 1996, 2001) but until recently likelihood-
based inference has only been explored under the assumption of dyad indepen-
dence. Using data augmentation it was shown in Koskinen (2004b) how the
class of continuous-time Markov chains open to likelihood-based inference can
be extended to entail more complex dependence structures. Arguably, the main
theoretical motivation behind models for longitudinal social networks is to infer
what components are important in the dynamics of social interaction. This calls
for statistical procedures for testing hypothesis, something which in the absence
of procedures for conducting model selection, is limited to inspection of posterior
credibility regions. The Bayesian paradigm is well suited for model selection but
the relative complexity of this class of models prevents the use of any standard
techniques for calculating the relevant quantities (the evaluated likelihood and
marginal likelihood respectively). Although an analytically tractable form for
the likelihood function is not strictly necessary for performing parameter infer-
ence (c.f. Koskinen, 2004b), most model selection techniques rely heavily on the
assumption that the likelihood can easily be evaluated. We identify a family
of models, with the property that they have the reciprocity model Wasserman
(1977) as special case, for which the scheme of Chib and Jeliazkov (2001) for
estimating the marginal likelihood can be adapted, thus providing the posterior
distribution over a set of models. If the analysis is restricted to comparisons
between nested models, the likelihood function does not have to be evaluated
and model selection need not be restricted to models with the reciprocity model
as a special case. The procedure is illustrated using van de Bunt’s (1999) fresh-
men students, a stochastic actor oriented model (Snijders, 1996, 2001, 2004)
and partial Bayes factors.

1. Introduction

A class of stochastic actor-oriented models was proposed by Snijders (1996,
2001), and later extended by Koskinen (2004b), that built upon the notion that
change in social networks is driven by sequences of incremental changes. Most
realistic models for change in social networks would incorporate an element of
structural evaluation of the network by the actors. To be more precise, it is rea-
sonable to assume that whenever an aspect of a social network changes it is likely
that the present structure of the network is a major influence on what direction

Key words and phrases. Longitudinal social networks; Bayesian model selection; Partial Bayes
factor.
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the change is taking. When the structure itself changes, the basic data for de-
cision making is in constant flux, each change redefining the environment. As a
consequence, although the order of changes in between two observation on a social
network is unknown it cannot be neglected. These changes are explicitly mod-
eled in the inference procedure proposed in Koskinen (2004b) turning parameter
estimation into a conventional Bayesian inference procedure. Comparisons across
models are however complicated by the implicit dependence on the latent evo-
lution and the typically high levels of posterior correlation between parameters.
Although it in Koskinen (2004b) was suggested that predictive odds (of various
types of transitions) can be used for interpreting the results, the nature of the
interdependencies of the statistics corresponding to the parameters complicates
matters.

2. Continuous-time Markov Chains for Networks

Here follows a brief characterization of the general class of models. We restrict
attention to binary social network data. Denote by V = {1, . . . , n} a fixed set
of actors with a relation

�
⊆ V × V . A (di-) graph on V with (arc) edge set

E ⊆
�

, can be described by a collection X = (Xe : e ∈
�

) of (arc) edge
indicators, Xe = 1{e ∈ E}. Observe that X is only defined for the non-redundant
pairs of actors and does not, as is standard practice in social network analysis for
un-directed networks, include structural zeros for reflexive ties or other un-defined
ties. Let � = {0, 1}N , N = |

�
|, be the space of all binary adjacency matrices.

We consider a continuous-time Markov chain {X(t)}t∈R, with outcome space
� . We have that for any element x ∈ � , and any pair of time points ta < tb,
(2.1)

Pr (X (tb) = x|X (t) = y (t) , for all t 6 ta) = Pr (X (tb) = x|X (ta) = y (ta)) .

The infinitesimal generator is a function q : � 2→R such that

q (x, y) = lim
dt↘0

Pr (X (t+ dt) = y|X (t) = x)

dt
, for x 6= y

q (x, x) = lim
dt↘0

1 − Pr (X (t+ dt) = x|X (t) = x)

dt
.

For s < t, and x, y ∈ � , denote the transition probability

P t−s
xy = Pr (X (t) = y|X (s) = x) .

The transition matrix P t = (P t
xy)x,y∈� , is completely determined by the intensity

matrix Q = (q (x, y))x,y∈� through the identity P t = etQ.
For the elements of � define the Hamming metric

|x− y| =
∑

e∈�
|xe − ye|,
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and define x(ẽ) as the matrix that differs from x in exactly the element e ∈
�

.
In the following we will only consider processes such that

q (x, y) =





qe(x) if y = x(ẽ)
0 if |x− y| > 1

−
∑

e∈� qe(x) if x = y.

This can be interpreted as a process on the vertices of the binary N -cube, i.e. a
graph � = (� , � ), � = {(x, y) ∈ � × � : |x − y| = 1}, that jumps between
adjacent vertices. If we set qe(x) = N−1, we obtain the random walk on � , and
we have (see e.g. Aldous, 1983) that

(2.2) P t
xy = 2−N(1 + e−2t/N )N−|x−y|(1 − e−2t/N )|x−y|,

for all x, y ∈ � . Consider now discriminating between changing an element of x
from zero to one and changing from one to zero, the first corresponding to adding
an edge and the second to removing an edge. To obtain the so called independent
arcs model (Wasserman, 1977), we set qe(x) equal to λ0 if xij = 0, and λ1 if xe = 1.
For x, y ∈ � , define

Nhk = Nhk(x, y) = ] {e| xe = h, ye = k} ,

and the transition probabilities are given by

P t
xy =

(
N00 +N01

N01

)(
N11 +N10

N11

)
ξ0(t)

N01(1 − ξ0(t))
N00ξ1(t)

N11(1 − ξ1(t))
N10 ,

where

ξa(t) =
λa

λa + λ1−a

+
(−1)1−a

λ1−a

exp {− (λa + λ1−a) t} ,

for a = 0, 1.
A third model with an explicit form for P t

xy is the reciprocity model (Wasserman,
1977, 1980b,a; Leenders, 1995b,a), defined for di-graphs by

(2.3) qij(x) = λ0 + µ0xji (xij = 0),

and

(2.4) qij(x) = λ1 + µ1xji (xij = 1),

subject to the constraint that qij is positive for all j 6= i. The formula for P t
xy

requires a little more space than is available here (we refer to Leenders 1995b
or Snijders 1999 for the exact expression). Note, in equations (2.3) and (2.4),
the distinction that is made between reciprocated ties, xij = xji = 1, and non-
reciprocated ties xij 6= xji.

3. Model Specification

We define the class of models considered in this paper from the point of view
of the embedded chain of a continuous-time process on � . The transition prob-
abilities in the embedded chain are

(3.1) π(θ, x, y),
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and the time spent in x ∈ � exponentially distributed with rate

(3.2) λ(θ, x).

It is assumed that π(θ, x, y) > 0 for x, y ∈ � such that |x−y| = 1 and 0 otherwise.
The p × 1 parameter vector θ ∈ Θ includes all unknown parameters. These two
functions determine the rate functions

q(θ, x, y) = λ(θ, x) π(θ, x, y)

which defines the generator of the continuous-time process on � .
Assume that we have observations on the network X(t) for fixed time points,

t0 < t1 < · · · < tM−1. The analysis is throughout made conditional on the first
observation at t0. Because of the Markov property we can drop the notational
dependency on the observation points, in order to make the notation more lucid.
In the sequel we refer by t0 and t1 to two generic consecutive observation points,
t0 < t1, and (t1 − t0) = T .

For t1 and t0, denote the distance between these two observations by

H = |X(t1) −X(t0)|.

From the construction of the mini-step, the number of mini-steps used to transform
X(t0) into X(t1) must equal m = H + 2k, for some k ∈ {0, 1, 2, . . .}.

For given m let �m(x, y) be the set of all sequences v0, v1, . . . , vm, such that
v0 = x and vm = y, and |vi−1 − vi| = 1, vi ∈ � for i = 1, . . . , m. Equivalently,
�m(x, y) is the set of all m-walks in the N -cube � = (� , � ), from x to y.
Unless otherwise stated �m = �m(x(t0), x(t1)). Define also �m = {(u1, . . . , um) ∈
(0, T )m : u1 + · · · + um < T}. For a fixed m, let the latent variable w = (y, u),
comprise y = (yh)

m
h=0 ∈ �m, and u = (uh)

m
h=1 ∈ �m, with the interpretation that

y constitutes a walk from the observation x(t0) to the observation x(t1), for which
the time in-between consecutive changes yh and yh+1 is uh, for h = 1, . . . , m. For
a given w ∈ �m = �m × �m, we define the augmented likelihood
(3.3)

L(θ;w, x(t0)) = exp
{
−

∑m+1

h=1
uhλ(θ, yh−1)

}∏m

h=1
π(θ, yh−1, yh)λ(θ, yh−1).

Given observations x(t0) and x(t1) the data likelihood is given by

LD(θ; x(t1), x(t0)) =

∫
� L(θ;w, x(t0))dw

where � = ∪∞
k=0�H+2k.

A set � of models for x is characterized by a parameter space ΘM and data
likelihoods LD,M . For the rest of this paper we limit our attention to a family � rec

of models ”containing” the reciprocity model, and a special subclass of models.
The former is defined by

Definition 1. A process with π(θ, x, y) and λ(θ, x) defined as above with
�

=

V (2), belongs to � rec if there exists a subspace Θ̃ ⊆ Θ, and a known transformation

f(θ) = (λ00, λ01, λ10, λ11) with the property that

λ(θ, x) π(θ, x, y) = λxij ,xji
,
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and

λk` > 0, for k = 0, 1, ` = 0, 1

for all x and y that differs from x only in the element (i, j), and θ ∈ Θ̃.

(To get the definition in the same notational form as Wasserman (1980a), set
λk0 = λk, and λk1 = λk + µk, for k = 0, 1.) The purpose of this limitation is to
assure that we can choose parameter values in a way so that there exists parameter
values for which we can evaluate the data likelihood. Since the data likelihood
is equivalent to the transition probability of going from one observed network to
another and the transition probabilities are uniquely determined by the intensity

matrix, we can for a model in � rec evaluate the data likelihood for θ ∈ Θ̃ using
the explicit formula for the transition probabilities in the reciprocity model. Note

that we do not require Θ̃ to contain a vector that is the maximizer of the data
likelihood for given data. The usefulness of this definition will become apparent in
Section 4. For social networks where xij is not defined for all ordered pairs (i, j),
for example un-directed networks or bi-partite networks, we may make a similar
definition but requiring instead that the models have to be expressable in terms
of an independent arcs model.

Another important property of a subset of models is

Definition 2. A subset � ′ ⊂ � of models is said to be a pairwise nested set

of models if it is possible to construct a sequence M1,M2, . . . ,Mr, containing all

models in � ′, with the property that

LD,Mi
(θ; x(t1), x(t0)) = ci(θ, ψ)LD,Mi+1

(ψ; x(t1), x(t0)),

for some θ ∈ ΘMi
, ψ ∈ ΘMi+1

, with πMi
(θ) , πMi+1

(ψ) > 0, and a known constant

ci > 0, for i = 1, . . . , r − 1.

This is a weaker condition than that implied by the first definition and we see
that � ′ ⊂ � rec is a sufficient condition for � ′ to be pairwise nested. By choosing
for each model in � ′, to evaluate the data likelihoods for parameter values ac-
cording to Definition 1, the constants (in Definition 2) for each compared pair are
simply the ratio of (evaluated) likelihood functions. Note that the random walk on
� as well as the independent arcs model are nested within the reciprocity model.
The latter is obtained by setting µ1 = µ0 = 0, and the former by additionally
setting λ1 = λ0 = N−1, in the reciprocity model.

4. Parameter inference

Under the assumption that the augmented likelihood L(θ;w, x(t0)) is cheap to
evaluate for all θ and w ∈ � , a sample from the joint posterior of w and θ can be
obtain using the adaption of the reversible jump MCMC (Green, 1995) proposed in
Koskinen (2004b). This sampling scheme rests on the fact that the full conditional
posteriors

π(w|θ, x(t1), x(t0)) ∝ L(θ;w, x(t0))

π(θ|w, x(t1), x(t0)) ∝ L(θ;w, x(t0))π(θ),

only depend on the data likelihood through multiplicative constants.
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To obtain a sample from the marginal posterior of θ given data, we sample
from the joint distribution of θ and w given data giving a sequence (θ(g), w(g))G

g=1,

where (θ(g))G
g=1 is a sample from the marginal distribution of θ given data. In each

iteration g we successively draw

w(g)
∼ w|θ(g−1), x(t1), x(t0), and

θ(g)
∼ θ|w(g), x(t1), x(t0).

How to make draws of the first type is more closely described in Koskinen (2004b).
To make draws from ·|w(g), x(t1), x(t0), we first propose a move to θ∗ sampled from
a distribution q(θ(g−1), θ∗), and then set θ(g) := θ∗, with probability

(4.1) α(θ(g−1), θ∗|w(g)) = min

{
1,

L(θ∗;w, x(t0))π(θ∗)

L(θ(g−1);w, x(t0))π(θ(g−1))

q(θ∗, θ(g−1))

q(θ(g−1), θ∗)

}
.

Note that the first fraction on the RHS is equal to the ratio of the full conditional
posterior of θ∗ to θ(g−1), conditional on everything else.

5. Prior Distributions

The interpretation in terms of the models of different prior specifications is
hard to asses because of the model complexity. The statistics corresponding to
the parameters are of different magnitudes which makes it difficult to determine
the a priori spread of the parameters. In addition, these statistics are highly
interdependent making the usually convenient choice of a priori independent pa-
rameters unsuitable. Here we suggest two procedures for finding reference priors.
We demand of these reference priors that they do not give undue support to any
particular effects, that they are to a degree ”non-informative”. The reason for
this is not so much because of their influence on parameter estimation. Rather,
we are concerned with the unintended consequences different scales in the prior
distributions might have on model selection. We also wish our priors to have a
closed analytical form or at least that they be cheap to evaluate. Here we briefly
sketch to possibilities.

Since all inference is made conditional on the first observation, the prior distri-
butions may well be set dependent on x(t0). For stochastic actor-oriented models
it was shown in (Koskinen, 2004b) how, when a probit link function rather than
a logit link function was used, the full conditional posterior of two blocks of pa-
rameters followed standard distributions (Gamma and Normal). Using this as an
approximation, and choosing two time points t′ and t′′, t0 < t′ < t′′ < t1, the
full conditional posteriors conditional on the first observation x(t0) and a latent
walk consisting of a single step to x(t′′), taken at time t′, could be averaged over
all one-step walks. For convenience, the resulting normal mixture could then be
approximated by a normal model.

When we have observations for time points t0, . . . , tM−1 for M − 1 > 2, an
initial analysis can be carried out on x(ti), for i = 0, . . . ,M ′ < M − 1, with
a vague prior to obtain a proper posterior. The posterior is then used as the
prior distribution when analysing the model for x(tk) for k > M ′, conditional on
the previous observations. In the second part of the procedure, model selection
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can be carried out in a standard fashion. Although standard result regarding
the asymptotic properties of Bayesian model selection are not (automatically)
altered by the use of training samples (O’Hagan, 1995), it not self-evident what
type of information these priors contribute with. This procedure will be treated
in greater detail in Section 9.1. after we have described model selection and its
implementation.

6. Model Selection

In this and the following section x is used to refer to data x(t1) and the implicit
conditioning on x(t0). For a set � of models for x characterized by parame-
ters θM ∈ ΘM , data likelihoods LD,M and prior distributions πM , the marginal
likelihood of model M is given by

mM(x) =

∫

ΘM

LD,M (θM ; x) πM (θM ) dθM ,

for M ∈ � . With prior probability π(M), the posterior probability of model M
is

π(M |x) =
mM(x)π(M)∑

M∈� mM (x)π(M)
.

Bayes rule for model selection is to choose the model which maximizes the posterior
probability over � . Model selection can be carried out by pairwise comparison
of the models in � , through their posterior odds ratio

π(Mi|x)

π(Mj |x)
=
π(Mi)

π(Mj)

mMi
(x)

mMj
(x)

,

for Mi,Mj ∈ � . The ratio of prior probabilities is known as the prior odds and
the ration of marginal likelihoods as the Bayes factor.

Since the only quantity involved in model selection to cause any trouble is
the marginal likelihood, considerable attention has been devoted to estimation
procedures for this (see Raftery, 1996b, for a review). Another issues arising in
connection with model selection is the need for proper prior distributions. As
mentioned above, minor difference for two sets of priors might have little impact
on the posterior distribution of the parameters but a large impact on the posterior
distribution over the class of models (Raftery, 1996a). It is important to point
out that this problem is in no way eliminated by using say information criteria or
goodness of fit methods (rather the opposite since model complexity typically is
reduced to some function of the dimensions of the parameters).

7. Implementation

This section presents the main result of this paper, which in principle deals
with the two major problems involved in model selection. The first problem is
of a general nature whereas the second is specific to the family of models treated
here.

Firstly, the marginal likelihood is an expectation with respect to the prior distri-
butions which rarely lends itself to direct calculation. Calculations of the marginal
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likelihood based upon importance sampling, such as the harmonic mean estimator
(see e.g. Raftery, 1996b), typically suffer from stability problems. The solution
adapted here, suggested by Chib and Jeliazkov (2001), takes full advantage of
the information about the parameters contained in the MCMC algorithm. Their
method does however require that we evaluate the data likelihood, which brings
us to problem number two: the data likelihood is not analytically tractable. This
problem often arises in model selection for social network models but can usually
be solved by finding a point in the parameter space for which it is possible to
evaluated the likelihood (Koskinen, 2002, 2004a). The harmonic mean estimators,
in addition to being very unstable, require that the likelihood can be evaluated
for every point in the parameter space.

In the following we drop the notational dependency on the models, since all
calculations are carried out separately for each model. Note that the marginal
likelihood is the normalizing constant of the posterior distribution. By solving for
the marginal likelihood in Bayes theorem we obtain what is commonly called the
basic marginal likelihood identity

(7.1) m(x) =
LD(θ; x)π(θ)

π(θ|x)
.

Since this equality holds for all θ ∈ Θ, if the model under investigation belongs

to � rec we can evaluate the numerator for an arbitrarily chosen θ∗ ∈ Θ̃. If the
models considered constitute a pairwise nested set of models, we can compute
Bayes factors in such an order that the data likelihood cancels out. This leaves
the problem of evaluating the posterior ordinate π(θ∗|x). Following Chib and
Jeliazkov (2001) we can write

(7.2) π(θ∗|x) =
E1 {α(θ, θ∗|w)q(θ, θ∗)}

E2 {α(θ∗, θ|w)}
,

where E1 is the expectation with respect to the joint posterior distribution π(θ, w|x)
and E2 is the expectation with respect to π(w|x, θ∗)q(θ∗, θ).

Since expectancies can be simulation consistently estimated taking samples from
the appropriate distributions and averaging the desired quantities, and we have a
procedure for sampling from the desired distributions, we are more or less done.
To describe the estimation process in a little more detail, consider first obtaining
a sample (θ(g), w(g))G

g=1 as described in Section 4. An estimate of the numerator
in 7.2, is given by averaging

1

G

G∑

g=1

α(θ(g), θ∗|w(g))q(θ(g), θ∗).

For the denominator, run the algorithm for another J iterations giving a sample
{w(j)}J

j=1, from the full conditional posterior π(w|θ∗, x). For each j = 1, . . . , J ,
make a draw

θ(j)
∼ q(θ∗, θ(j)),

and thus we have pairs (θ(j), w(j)) drawn from the distribution

π(w|θ∗, x)q(θ∗, θ).
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The estimate of the denominator in 7.2 is given by

1

J

J∑

j=1

α(θ∗, θ(j)|w(j)).

8. Valued data

We have only dealt with binary data, i.e. � = {0, 1}N , but the extension of
these model selection procedures to valued data is straightforward as long as we
keep to a set of models that is pairwise nested. By valued data we mean networks
where we at different points in time record the strength of the relationship between
i and j for each dyad (i, j) ∈

�
. If the strength take values {0, 1, . . . , R − 1},

the evolution of the network is described by a process on � = {0, 1, . . . , R−1}N ,
defined in a way equivalent to section 3. The inference scheme as described in
Koskinen (2004b) still applies as does the procedure for estimating the posterior
ordinate. Of course, the definition � rec does not immediately apply, and some
modifications are needed.

9. Example

To illustrate the procedures we fit two models to data on 32 freshmen students
collected by van de Bunt (1999). The observations are made at seven points in
time, t0, . . . , t6, the time span between consecutive observations is three weeks for
t0 through t4, and six weeks between t4 and t5, t5 and t6. We have focused on
the ”friendly relation”, more closely described in van de Bunt (1999). Missing
data has been imputed with the last observed value (or 0 for missing values at
t0), which is a rather conservative choice with respect to the evolution model to
be presented next.

The models fitted are so called actor-oriented models and for details of different
specifications and interpretations we refer to Snijders (2004). Effects considered
are

(1) Density effect si1(x) =
∑

j∈V \{i} xij

(2) Reciprocity effect si2(x) =
∑

j∈V \{i} xijxji

(3) Distance 2 effect si3(x) = |{j : xij = 0, maxk(xikxkj) > 0}|
(4) Balance si4(x) =

∑
j∈V \{i} xij

∑
h∈V \{i,j} |xik − xjk|. (Note that we choose

not to include the constant b0 in the balance statistic c.p. Snijders, 2001).
(5) Transitivity effect si5(x) =

∑
j,k∈V \{i} xijxikxjk.

In addition for covariates sex (female/male), smoking (yes/no) and pro-
gram (length in years of program participation, 2,3,4), denoted by v1i, v2i

and v3i we have the following effects
(6) Popularity with respect to sex si6(x) =

∑
j∈V \{i} xijv1j

(7) Dissimilarity with respect to sex si7(x) =
∑

j∈V \{i} xij |v1i − v1j |

(8) Dissimilarity with respect to program si8(x) =
∑

j∈V \{i} xij |v2i − v2j |

(9) Dissimilarity with respect to smoking si9(x) =
∑

j∈V \{i} xij |v3i − v3j |.
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The coefficients β1 through β9 together with two rate-related parameters, α and
ρ, were collected in a parameter vector θ = (ρ, α, β1, . . . , β9). We define a full
model with rate

λ(θ, x) =
∑

i∈V
λi(ρ, α, x),

where

λi(ρ, α, x) =
ρ

n− 1

[
(n− 1 − xi+) eα + xi+e

−α
]
,

in which + in place of an index means that the variable should be summed over
that index. The jump probabilities are of the form

π(θ, x, y) =
λi(ρ, α, x)

λ(θ, x)

er(θ,x,y)

∑
z∈�i(x) e

r(θ,x,z)
,

where y differs from x only in the element (i, j), and

r(θ, x, y) =
9∑

k=1

βksik(y)

for the full model. The statistics 3, 4, and 5, are related and represent various
aspects of network closure. The local maxima of 4 and 5 and the local minimum
of 3 are all achieved for networks with several disconnected subgraphs (Snijders,
2004). A way of removing effects from the model that can be theoretically moti-
vated would be to exclude distance 2 and transitivity. In Snijders (2004) it was
concluded that the distance 2 effect and the transitivity effect should be omitted.
This was motivated by the approximate standard errors of the method of moments
estimates for the corresponding parameters. The purpose here is to illustrate how
these two models, the full and reduced, can be compared using Bayes methodol-
ogy. The reduced model does not contain the effects transitivity and balance but
is defined equivalently for the other components in the full model (note that the
model fitted to van de Bunt’s freshmen students in Snijders 2004 had a slightly
different parameterization for the balance effect, included an effect correspond-
ing to differences between sexes with respect to friendship formation activity, and
assumed different ρm for all m = 0, . . . ,M − 2).

Both models belong to � rec since for any θ∗ with α = β1, and βk = 0 for k > 1,
we have that

λ(θ∗, x)π(θ∗, x, y) = λxij
,

where y differs from x only in the element (i, j), and

λ0 =
ρ

n− 1
eα, and λ1 =

ρ

n− 1
e−α.

Since the reduced model is nested within the full model, these two models also
constitutes a pairwise nested set of models. Hence, for appropriate values of the
parameters, when we compute the Bayes factor using the expression (7.1), the
data likelihoods cancel each other out. More specifically, we can evaluate the
posterior ordinate in any θ∗ for the reduced model if we at the same time evaluate
the posterior ordinate for the full model for the same parameter values except for
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the extra parameters β∗
4 and β∗

5 , both of which are set to 0. In the calculations to
follow we illustrate this procedure only.

For updating the parameter vector in the algorithm as described in section 4,
the following proposal distribution was used. Given the current parameter vector
θ = (ρ, α, β1, . . . , βp)

′, a candidate vector θ∗ was proposed from
(
α∗, β∗

1 , . . . , β
∗
p

)′
∼ Np+1

(
(α, β1, . . . , βp)

′
,Ω

)
,

and independently thereof

ρ∗ ∼ Gamma(ρk, k−1).

The jumping scales Ω and k were set to γ√
p+1

Σ̂, where Σ̂ is the posterior covari-

ance estimated from a test run, and λ is chosen so that the acceptance rates are
appropriate.

9.1. Training sample. When model selection is carried out using proper prior
distributions with convenient analytical forms, once we have obtained the esti-
mates of the relevant posterior ordinates, the marginal likelihoods can be com-
puted in the manner described. Using priors obtained from a training sample
there are some additional complications that need to be dealt with. Consider first
the case when using the first two observations for training priors. When training a
prior on the first two observations, we obtain a sample from the posterior distribu-
tion of θ given x(t1) and x(t0). In the algorithm of Koskinen (2004b) it is assumed
that the ratio of posterior distributions in 4.1 is cheap to evaluate, which is not
the case if we need to estimate the prior density in a new point in each iteration.
The sequential nature of Bayesian inference however allows us to obtain a sample
from the posterior of θ given data x(t1), . . . , x(tM−1) with prior π(θ|x(t1), x(t0))
by conducting the analysis for the entire data set with a vague (constant) prior,
giving a sample from θ given x(t0), . . . , x(tM−1). Using π(θ|x(t1), x(t0)) as the
prior distribution, the posterior distribution is written

π(θ|x(t1), . . . , x(tM−1)) =
LD(θ; x(t1), . . . , x(tM−1))π(θ|x(t1), x(t0))∫
LD(θ; x(t1), . . . , x(tM−1))π(θ|x(t1), x(t0))dθ

and noting that π(θ|x(t1), x(t0)) ∝ LD(θ; x(t0), x(t1)), since the prior used in the
training set was vague, and by the Markov property

LD(θ; x(t0), x(t1))LD(θ; x(t1), . . . , x(tM−1)) = LD(θ; x(t0), . . . , x(tM−1)),

we have

π(θ|x(t1), . . . , x(tM−1)) =
LD(θ; x(t0), . . . , x(tM−1))∫
LD(θ; x(t0), . . . , x(tM−1))dθ

,

in which the RHS is the posterior of θ given data x(t0), . . . , x(tM−1), with a vague
prior. Thus, when estimating the posterior ordinate π(θ|x(t1), . . . , x(tM−1)), we
may apply the technique described in section 7 on the sampling algorithm for θ
given x(t0), . . . , x(tM−1) with a vague prior. The data likelihood in the numerator
of the basic marginal likelihood identity is evaluated for x(t1), . . . , x(tM−1), and
the prior ordinate in the numerator is again estimated using the technique in
section 7 for a separate analysis of x(t0) and x(t1).
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The number of observation points used for training prior distributions need not
be limited to one or two, but can be any number of observations. The procedure
described still applies as long as at least one observation is spared for model
evaluation. Recommendations for the proportion of sample points that should be
used for training ranges from as few as possible to half of the sample (see O’Hagan,
1995). If we let y denote the part of the sample that is used for training, the
training sample, and let z denote the part of the sample used for model comparison,

(9.1) B(z|y) =
m1(z|y)

m2(z|y)

is usually called the partial Bayes factor (O’Hagan, 1995).

9.2. Posteriors. For each model the first three observations, x(t0), x(t1) and
x(t2) were used as a training sample, and the marginal trained prior distributions
along with the resulting posteriors are given in Figures 1, and 2 for the reduced
and full model respectively. These distributions are summarized in Table 1. The
partial log-Bayes factor for the reduced model relative to the full model was well
over 200, which is rather strong evidence that balance and transitivity should
be excluded from the model. One explanation of this is that the full model is
penalized for including the transitivity effect, β4. Looking at Table 1 and Figure 2,
notice that whereas the (95%) probability interval of β4 includes the origin, the
trained prior suggests that β4 has an effect. In addition the posterior of β1 is
centered (more or less) over zero for the full model but not for the reduced model.
Comparing the number of intermediate changes between t1 and t2, the uncertainty
is greater for the reduced model than for the full model, which together with the
location of the trained priors for the full model suggest over fitting. This might also
contribute to the low posterior probability of the full model. While the reduced
model is better, neither model seems to capture the differences in early stages
of the network evolution (which could be termed a ”getting to know” period) as
compared to the evolution of the later phase. This inadequacy manifests itself
in the differences between trained priors and the posteriors of the rate-related
parameters, α and ρ, corresponding to the density effect on the change rate and
the constant factor in the rate function. Whether this could have been taken care
of within the framework of stochastic actor-oriented models or not is a question
for future research.
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