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Abstract. A natural approach for modeling stochastic processes on social net-
works is by using continuous-time Markov chains, examples of which have been
given by Wasserman (1977, 1980b,a) and Leenders (1995b,a). Snijders (1996)
proposed a class of models that allow for greater flexibility in defining the dy-
namic components, relaxing the restrictions on the type of dependence struc-
tures that could be modeled. Previously, estimation of the parameters in such
models has been based on a Markov chain Monte Carlo (MCMC) implementa-
tion of the method of moments. In this paper we generalize the class of stochastic
actor-oriented models, and propose an MCMC algorithm for exploring the pos-
terior distribution of the parameters. The generalized class of stochastic actor
oriented models can handle un-directed, bipartite and valued social networks
in addition to the dichotomous directed networks of the stochastic actor ori-
ented models. The MCMC procedure explicitly models the changes in-between
observations as latent variables.

1. Introduction

Social network analysis is concerned with the patterns of relationships between
actors. Typically the social network is conceived as graphs, directed or un-directed,
in which the vertices represent actors and the edges or arcs represent the relation
of interest. For the actors i, j = 1, . . . , n the relational ties are recorded as xij ,
representing the strength of the relation from i to j. For symmetric relations
such as friendship, acquaintance, and collaboration, xij often is a binary variable
indicating the presence or absence of the relation with xij = xji. Being for example
the pattern of giving/receiving of advice among actors one has to discriminate
between xij and xji, the first saying whether j receives advice from i whereas the
latter indicates whether j gives advice to i. In addition, both are instances of
non-reflexive relations, since relations from an actor to himself is not meaningful.
The proximity of structural concepts and measurements has contributed to making
quantitative analysis a popular tool in social network analysis and has found many
applications since its introduction, generally attributed to Moreno (1934). An
introduction and fairly exhaustive review is given by Wasserman and Faust (1994).

Key words and phrases. Longitudinal social networks; data augmentation; Bayesian inference;
valued relations; random graphs.
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2 JOHAN KOSKINEN

Whereas quantitative analysis has been the prevalent mode of investigation of
social networks, realistic statistical modeling is notoriously complicated by the in-
terdependencies naturally arising between the tie variables. Building on the work
of Besag (1974), the nature of the structural dependencies in social networks were
thoroughly investigated in Frank and Strauss (1986), leading to a class of expo-
nential random graph models. Popularized and further elaborated by Wasserman
and Pattison (1996) much work has been done in the field of estimation (Strauss
and Ikeda, 1990; Wasserman and Pattison, 1996; Corander et al., 1998; Besag,
2000; Hancock, 2000; Snijders, 2002). The study of the dependence structures
that underpin social networks and has been further investigated by Frank and
Nowicki (1993); Robins (1998); Pattison and Robins (2002); Robins and Pattison
(2004).

Another line of attack has been to model the tie variables as conditionally in-
dependent conditional on latent structures. Originating in models for stochastic
block models (Fienberg and Wasserman 1981; Holland et al. 1983; see also Frank
2004 for some recent elaborations of the p1 model), via recent approaches to param-
eter inference (Snijders and Nowicki, 1997; Nowicki and Snijders, 2001; Tallberg,
2004), the fixed latent blocks have been elaborated to include latent settings (see
e.g. Schweinberger and Snijders, 2003, on ultra metrics) and Euclidean or arbitrary
metric (social) spaces (Hoff et al., 2002).

The study of longitudinal social network data offers a wealth of information
about the network (see e.g. Wasserman, 1980a; Doreian and Stokman, 1997). In-
stead of a single observation it is assumed that we have a sequence of M ob-
servations X(0), X(t1), . . . , X(tM−1). Several methods have been proposed for
analyzing repeated observations on social networks using models where changes
are made in discrete steps from one moment to the next (Katz and Proctor, 1959;
Wasserman and Iacobucci, 1988; Sanil et al., 1995; Banks and Carley, 1996; Robins
and Pattison, 2001). As argued in for example Snijders (1996), considerable advan-
tages can be had from modeling longitudinal social networks in continuous time.
Especially using continuous-time Markov chains, as proposed by Kalbfleisch and
Lawless (1985) for non-network data. Early models for longitudinal social networks
using continuous-time Markov chains include Holland and Leinhardt (1977a,b)
and Wasserman (1977). A model taking the dependence between xij and xji into
consideration, called the reciprocity model, was proposed by Wasserman (1977,
1980b,a) and further investigated by Leenders (1995b,a). The reciprocity model
assumes that the dyads in a directed graph, (Xij, Xji), evolve as mutually inde-
pendent Markov chains. Although providing a computationally attractive model,
the assumption of independent dyads is somewhat contrived in most instances of
social networks, since other structural features of the network are neglected. In re-
sponse to this Snijders (1996) proposed a class of model, stochastic actor-oriented
models. In this and subsequent papers (Snijders and van Duijn, 1997; Snijders,
2001), a class of models were developed where the rate of change as well as the
type of changes taking place are allowed to depend on higher order features of the
network structure as well as known covariates. This allows for a great flexibility
in modeling data while not making concessions in terms of empirical testability.
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The relevance of this class of models was also shown in that the reciprocity model
could be seen as a special case (Snijders and van Duijn, 1997) and that the p∗-
model can be obtained as the limiting distribution for certain parameterizations
(Snijders, 2001).

The likelihood function for stochastic actor-oriented models is however only
available in closed form in a few special cases wherefore estimation has had to
rely on a Markov chain Monte Carlo (MCMC) implementation of the method
of moments. More specifically, a stochastic approximation algorithm, a version
of the Robbins-Monro (1951) algorithm was used to solve the moment equations
numerically. Generally for these types of models the moment estimators do not
coincide with the Maximum likelihood estimate. Parameter-estimate uncertainty
as measured by the approximate standard errors obtained from the delta method
(Bishop et al., 1975), rely on asymptotics and numerical approximations in several
phases. The performance of these asymptotics for small samples are unknown but
a reasonable assumption is that they are not any better than in the case of probit
models (c.f. Griffiths et al., 1987).

In this paper we provide procedures for conducting ”exact” Bayesian inference.
In addition we extend the class of stochastic actor oriented models, both with
respect to what kind of structures can be analysed as well as providing means for
relaxing some of the assumptions, notably, the axiom of independence of irrelevant
alternatives (usually abbreviated IIA).

The proposed inference scheme consists of augmenting the observed data with
a latent variable describing the network evolution in-between observations. To
employ data augmentation to facilitate inference was first suggested by Tanner
and Wong (1987) and is nowadays a commonly used tool in Bayesian statistics.
Once data has been augmented with the latent variable a conventional Metropolis
(Metropolis et al., 1953) algorithm can be implemented, making the necessary
modifications to handle variable model dimensionality (Green, 1995; Richardson
and Green, 1997). MCMC algorithms have been used to analyse binary longi-
tudinal data in epidemiology with various restrictions on the indicators of being
in infection-states. Gibson (1997) considered the order of infections for a simple
epidemic, with non-recurrent infections. This has been elaborated to handle in-
creasing degrees of complexity (Gibson and Renshaw, 1998; O’Neill and Roberts,
1999; Auranen et al., 2000; Eerola et al., 2003). To the best of our knowledge,
none of them are suited to the kind of dependencies that are usually associated
with social network analysis. The mechanisms of the evolution of social networks
arguably differ a great deal from the mechanisms of infections, which are to their
nature passively received as opposed to consciously sought. This has consequences
both for the design of the models and the inference procedure. In this paper, for
example, a certain emphasis is put on the generation of the latent evolutionary
paths.

We now proceed to give the general formulation of a network process along with
examples of specifications and their interpretations. The main components of the
proposed inference procedure are presented in the following section and the details
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of some implementational issues are commented and illustrated in the concluding
empirical section.

2. Notation and model formulation

In the following we consider a fixed set of actors represented by the vertex
set V = {1, . . . , n} and a fixed set of (ordered) pairs of actors

� ⊆ V × V ,
N = |� |. For example, symmetric, non-reflexive relational data would have�

={(i, j) ∈ V × V : 1 ≤ i < j ≤ n}. For an affiliation network with a set
C of organizations and a set M of members, the vertices of the corresponding
bi-partite graph would be V = C∪M , and the set of pairs of interest

�
=C×M .

We limit the study to relations with ordinal or nominal scale that takes values
in the label set � = {0, 1, . . . , R − 1}. A network can be described by a (di-)
graph with vertices V and set of coloured (arcs) edges

�
, with colours in � .

We let the generalized adjacency matrix of this (di-) graph consists of a collection
X = (Xe : e ∈ � ) of variables with range space � = � N .

For the elements of � define the distance metric

|x− y| =
∑

e∈�
|xe − ye|,

which in the case of binary � becomes the Hamming metric. The network evo-
lution model is a continuous-time Markov chain on � , but for our purposes is
best defined in terms of the embedded chain. The transition probabilities in the
embedded chain are

(2.1) π(θ, x, y),

and the time spent in x ∈ � exponentially distributed with rate

(2.2) λ(θ, x).

It is assumed that π(θ, x, y) > 0 for x, y ∈ � such that |x−y| = 1 and 0 otherwise.
Note that the underlying graph of the state-space graph of the embedded chain is
an R-ary N -cube. The event that the embedded chain traverses one of the edges of
the state space graph constitutes a mini-step. Processes such as those of Mayer’s
(1984) where more than one mini-step type change can occur simultaneously are
not considered. The p × 1 parameter vector θ ∈ Θ ⊆ R

p includes all unknown
parameters. These two functions, π and λ, determine the rate functions

q(θ, x, y) = λ(θ, x) π(θ, x, y)

which defines the generator of the continuous-time process on � .
Assume that we have observations on the network X(t) for fixed time points

t0 < t1 < · · · < tM−1. The analysis is throughout made conditional on the first
observation at t0. Because of the Markov property we can drop the notational
dependency on the observation points, in order to make the notation more lucid.
Note also that we need not concern ourselves with the kind of stationarity assump-
tions for the marginal distributions X(t) needed for estimation of parameters in
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the expansiveness and popularity models (Wasserman, 1977, 1980a). In the se-
quel we refer by s and t to two generic consecutive observation points, s < t, with
T = (t− s).

For t and s, denote the distance between these two observations by

H = |x(t) − x(s)|.

To construct a sequence of m ministeps that transforms x(s) into x(t), we let the
times at which these ministeps occur be a sequence of m event times s1, s2, . . . , sm,
with s < s1 < · · · < sm < t. At time sh the value of only one element eh is changed
by ah ∈ {−1, 1}. Hence the value on the edge e immediately after the change at
time sh is made, is xe(sh) = xe(sh−1)+ah if e = eh, and otherwise it is unchanged,
i.e. xe(sh) = xe(sh−1). The time between consecutive changes, the holding times,
are the differences uh = sh − sh−1. For the last change at time sm we have
xe(sm) = x(t), for e ∈ � . The total number of changes m is at least equal to the
distance between the observations at time s and t, but can also include an even
number of extra steps. Thus we can describe the complete observation consisting
of the m = H+2k, for some k ∈ {0, 1, 2, . . .}, changes transforming x(s) into x(t),
in terms of a series of holding times, indicators of what elements are changing, and
the direction of change. A complete observation of the continuous-time stochastic
process can be expressed by m triples

(uh, eh, ah)

where h = 1, 2, . . . , m, eh ∈ �
, and ah ∈ {−1, 1}, (for all h), subject to the

following constraints:

(2.3)

(1) uh > 0 (all h);
∑m

h=1 uh ≤ T ;
(2) for each e ∈ � , and for, h = 1, 2, . . . , m, the partial sums

ye,h = xe(s) +
∑h

v=1 av1{ev = e}
ye,h ∈ �
ye,m = xe(t)

For binary � , ah is redundant and condition 2 can be expressed as that the number
me = ]{h ∈ {1, . . . , m} : eh = e}, is odd if and only if xe(t) 6= xe(s). This can
be expressed in terms of the ah’s as that when a change is made to element eh, if
the last change to that particular element was ah′ = a, then ah = −a. Adding the
number of individual changes we must have

∑
eme = m.

A sequence of triples subject to the constraints 2.3, defines an observation on
a completely observed process. With this representation, the likelihood of aug-
mented observations

x(s) = x(s0), x(s1), x(s2), . . . , x(sm) = x(t)
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of the continuous-time stochastic process can be written as

exp

{
−

m+1∑

h=1

uh λ(θ, x(sh−1))

}
(2.4)

×
m∏

h=1

π (θ, x(sh−1), x(sh))λ (θ, x(sh−1)) ,

where um+1 = t− sm, given that all constraints mentioned are satisfied.
The focus on mini-steps might seem too restrictive for valued relational ties and

perhaps larger steps would seem more intuitive. In the current framework, though,
this restriction is a necessity since larger steps would introduce indeterminacy in
the model - a big step is hard to distinguish from many mini-steps.

2.1. Applications. Social network data comes in many shapes and sizes and each
structural form bring with it different kinds of dependencies between the elements
of
�

. The network evolution models gives the researcher great freedom in mod-
eling these dependencies. Since this is done through focusing on the mini-steps
and the mini-step has a different interpretation for different relational structures,
different specifications apply. Here follows a few examples.

2.1.1. Directed graphs. For directed graphs and vertex set V , R = 2, and
�

=
{(i, j) ∈ V 2 : i 6= j}. For a stochastic actor-oriented model (Snijders, 2001) the
following is assumed for the behaviour of the actors and the process for t in the
time window [t0, t1):

i): Control. Every actor has complete control over his or her out-going ties
ii): Relative myopia. The decisions of the actors are based only on the

present state and the states that can be reached by a single change to
their composition

iii): Complete information. Each actor is assumed to have full knowledge
about the state of the network at each given time.

Given the present state x ∈ � , the rate at which actor i’s performs a mini-
step is modeled by the individual change rate λi(x, θ). Given the state x ∈ � ,
independently for each i ∈ V , the time until actor i decides to make a change
to the composition of his out-going ties is exponentially distributed with rate
λi(x, θ). Since the event that someone makes a change changes the composition of
the network, all actors have to re-evaluate the network when such an event takes
place. From the properties of the exponential distribution we have that given
that a change is made, the actor who may change his out-relations is actor i with
probability λi(x, θ)/λ(x, θ), where

(2.5) λ(x, θ) =
∑

j∈V

λj(x, θ).

Denote by x(i j) the adjacency matrix that differs from x in exactly the element
(i, j) ∈ � . Now, make the assumption that for given x, when actor i evaluates the
configurations obtainable �i(x) = {y ∈ � : y = x(i  j) for some j ∈ V \{i}}
by making a change, i assigns a measure Ui(t, x, j) of the attractiveness of each
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configuration relative to the present configuration x. In addition to assumption
i), ii), and iii), we now assume that

iv): Given configuration x, and that actor i may change his out-going rela-
tions, i changes his out-relations to the actor j that maximizes Ui(t, x, j).

The utilities are conceived as consisting of two basic components, a systematic
and a random component, which we express as

Ui(t, x, j) = r (θ, i, j, x) + εi(t, x, j),

where εi(t, x, j) is the random component. Assume further that εi(t, x, j) are
independently and identically distributed according to the Type 1 extreme value
distribution for all t, x, and j. This is a common and convenient specification which
leads to the familiar Conditional Multinomial Logit (CML) model for each choice
situation (see e.g. McFadden, 1974). For the CML formulation it is straightforward
to show that given configuration x and that actor i may change his out-going
relations, i changes his out-relations to actor j with probability

(2.6)
er(θ,i,j,x)

∑
k∈V \{i} e

r(θ,i,k,x)
.

It terms of the social network evolution process we see that Eq. (2.5) corresponds
to Eq. (2.2) and that the one-step probability 2.1 of going from x to x(i j), is
given by λi(x, θ)/λ(x, θ) times (2.6). For various sociological aspects of stochastic
actor oriented models see for example Zeggelink (1994).

The previously mentioned reciprocity model (Wasserman, 1977, 1980b,a; Leen-
ders, 1995b,a), can be seen as a special case of the actor oriented model (c.f.
Snijders and van Duijn, 1997) and thereby a special case of the network evolution
model. For a parameter vector θ = (θ1, θ2, θ3), with θ1 > 0, define

λij (θ, x) = xije
θ2
[
xjie

θ3 + (1 − xji)
]
+ (1 − xij) e

−θ2
[
xjie

−θ3 + (1 − xji)
]

for each (i, j) ∈ � . This constitutes the generator of the continuous-time process,
i.e. q(θ, x, x(i  j)) = λij (θ, x). The individual change rates are then obtained
through

λi (θ, x) =
θ1

n− 1

∑

j∈V :(i,j)∈�
λij (θ, x) ,

and the systematic part of the utility is modeled as a weighed sum of the number
of out-going ties and the number of reciprocated ties for i in the new configuration

θ2

n∑

j=1

xij + θ3

n∑

j=1

xijxji.

The transition probabilities in the embedded chain incorporate information on how
many ties each node has and how many of them are reciprocated. Specifically for
the reciprocity model, the general propensity to change is modeled by θ1, if all
other parameters are zeros, the expected time until a specific actor makes a change
is [θ1/(n − 1)]−1. For θ2 > 0 actors with few relations to others are most eager
to change and when making a change, the change is likely to increase the actors
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out-going relations. The worth, from the perspective of the ego, is taken to be the
number of such ties weighted by θ3. Note that whereas the method of moments
estimates coincide with the maximum likelihood estimates for the independent
arcs model, this is not the case for the reciprocity model. The reason for this is
that the former belongs to the exponential family of distribution and the latter to
the curved exponential family of distributions (c.f. Snijders and van Duijn, 1997).

An example of higher order sub-graph counts is the indirect relations effect,
defined as the number of actors one actor is only indirectly related to. For an
actor i, this can be defined for one intermediary

]{j : xij = 0,max
k

(xikxkj) > 0},

as well as for two intermediaries

]{j : xij = 0,max
k

(xikxkj) = 0,max
h

(xikxkhxhj) > 0},

or for an arbitrary number of intermediaries less than n− 1. The contribution of
the number of indirect relations to the utility for actor i of configuration x can be
given the form

θ
∑

j∈V \{i}
(1 − xij) max

k
(xikxkj).

The relative desirability of having structurally similar (Burt, 1976) alters could be
expressed by including

θ
∑

j∈V \{i}
xij

∑

k∈V \{i,j}
|xik − xjk| .

in the utility for i of configuration x, for some θ.
Typically, stochastic actor-oriented models include predictors based upon actor-

bound covariates, dyad-covariates, and interactions between these and the struc-
tural statistics.

2.1.2. Graphs. For graphs with a fixed set of vertices V , having R = 2, since
the relation is symmetric and

�
= {(i, j) ∈ V × V : 1 ≤ i < j ≤ n}, we

can not, as in the case of directed graphs, assume that the actors control their
out-going ties. The individual change rates have to be replaced by dyad rates
λij(θ, x) for each dyad (i, j) ∈ �

, that measures the relative stability of each
dyad. Alternatively, (2.2) can be defined directly for the whole graph, using for
example standard sociometric measures of stability, balance, etc. The one-step
transition probabilities, can be defined using a multinomial logit or probit link
function.

As an example, consider the case of modeling friendship formation. It seems
natural to view friendship as something that is driven by mutual friends (as sug-
gested for example in Leenders, 1995b, ch. 4). The simplest model with θ = (ρ, β),
could have a constant rate λ(θ, x) = ρ, for all x ∈ � , and

π(θ, x, y) =
exp

{
β
∑

(i,j,k)∈(V

3)
yijyikyjk

}

∑
z∈� :|x−z|=1 exp

{
β
∑

(i,j,k)∈(V

3)
zijzikzjk

} ,
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which simplifies to

exp
{
β
∑

k∈V \{i,j} (1 − xij)xikxjk

}

∑
(k,`)∈� exp

{
β
∑

v∈V \{k,`} (1 − xk`) xkvx`v

} ,

for y that differs from x in exactly the element (i, j). For β > 0, the more common
friends two actors have, the more probable it is that they will become friends.
This simplistic transitivity model can well be extended with covariates - both
dyad specific and actor specific - as well as more sophisticated network effects. In
particular, the structural position of a tie in the network should be incorporated,
for example structural holes (Burt, 1992) or Simmelian ties (Krackhardt, 1999).

2.1.3. Bipartite graphs. In the field of criminal networks, a common unit of study is
the co-offending network (Reiss, 1986, 1988; Reis and Farrington, 1991; Sarnecki,
1999; Frank, 2001). For a set of offenders A, the co-offending network has the
adjacency matrix Y = (Yij : 1 ≤ i < j ≤ n), where the entry i, j, is 1 or 0
according to whether i and j has been recorded to commit a crime together. For a
set of crimes C, Y is obtained from the offender by crime matrixX, where the entry
(i, k), is 1 if i ∈ A has been recorded to commit crime k ∈ C, and 0 otherwise.
The rate of change λ (θ, x) is subdivided into,

∑
i∈A λi (θ, x), modeling variable

levels of activity among the criminals and the duration of the crimes, crimes being
conceived as long-term projects rather than fleeting liaisons. It is natural, from
the time perspective to define the values as non yet committed, in progress and
completed, denoting them 0,1, and 2 respectively. For the purpose of the evolution
model consider now defining vertices as V = A ∪ C, and pairs

�
= A× C, and

R = 3. We are able to model the evolution of the criminal network taking for
example third party effects into account, i.e. how the ”decision” to commit a
crime together with someone previously unknown is influence by a third person (or
group) that both offenders are related to. When events occur transition are made
with probabilities π(θ, x, x′), decomposed in a way similar to the stochastic actor
oriented models. This is interpreted such that given that a change is made, the
probability that it is criminal i who decides to act is λi (θ, x) /λ (θ, x). Conditional
on i making a change, i chooses to become involved in a new crime, decides to
participate in a crime in progress or terminates the involvement in a crime. The
relative merits of each cause of action in the eyes of the criminals can be modeled
as a random utility model through r(θ, x, y), assigning utilities to each option.

Another important field of study that concerns bi-partite graphs is sexual con-
tacts between heterosexuals (often with claims to policy implications Bearman
et al., 2004, see e.g.).

2.1.4. Valued relations. As noted in for example Robins et al. (1999), measure-
ments of social networks are often in valued form, but typically data is dichotomized.
Working directly with valued data complicates statistical modeling if not because
many standard network concept do not apply, then because of the combinatorial
explosion. Within the proposed modeled framework, using the original valued re-
lations instead of the dichotomized network comes at a low computational cost,
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on the contrary one can argue that the loss of detail entailing dichotomization
seldom motivates disregarding the labels. Consider the case when the original
data takes values � = {0, 1, 2, 3, 4}, measuring say, the strength of acquaintances,
and that we have dichotomized data, letting 0 and 1 denote the absence of a tie
and 2 through 4 the presence of a tie. The dichotomized variable Xe(t) then takes
values 1 or zero according to whether there exists a tie or not for e ∈ �

, t in
the time window [t0, t1). If we for e ∈ �

, have recorded the dicotomized values
Xe(t0) = 0, and Xe(t1) = 1, we do not take into account whether the strength
has really increased from 1 to 2 or from 0 to 4. Even more serious, some changes
might not be recorded at all. If the dichotomized data is recorded as Xe(t0) = 1,
and Xe(t1) = 1, this could mean that no change has been made, but there is great
difference between a dyad that stays at a high level of intensity - a strong tie -
and one sustaining a lower level of intensity. There might in fact also have been a
decline or a growth in intensity.

A word of caution is that when labels refer to frequencies of interaction (e.g.,
EIES, number of messages sent Freeman and Freeman, 1979), one has to ascertain
the time-dimension of the labels is negligible in comparison to the time between
observations. Standard statistical considerations naturally comes into play, such
as assuring that the scale of the colors are comparable across pairs in

�
. An

example of an analysis of valued relations is given in Section 4.4.

3. Parameter estimation

The purpose in this section is to describe a procedure for obtaining the poste-
rior distribution of the parameter vector θ. Denote the prior distribution for the
parameters π(θ), the form of which is not elaborated upon further here. Since the
likelihood given data is available in a closed form only in a limited number of spec-
ifications on the longitudinal model (for example for the reciprocity model Leen-
ders, 1995b,a; Snijders, 1999), we employ a reversible jump Metropolis-Hastings
algorithm (Green, 1995), which augments observed data with latent data.

For data x(s), x(t), and specification λ(θ, x) and π(θ, x, y), denote the data
likelihood LD(θ; x). For a sequence (uh, eh, ah)

m
h=1 latent variables w = (yh, uh)

m
h=1

can be constructed to form a walk from x(s) to x(t) in the state space graph of
the embedded chain with holding times. The range space of the latent variables is
defined to comply with the constraints 2.3. For given m let

�
m = {(u1, . . . , um) ∈

(0, T )m : u1 + · · · + um < T}, and let �m(x, y) be the set of all walks in the
R-ary N -cube from x to y, x, y ∈ � . Where it is clear from the context we set
�m = �m(x(s), x(t)). For a fixed m, the latent variables has range space �m =
�m × �

m, and in general w takes values in � = ∪∞
k=0�H+2k. The complete data

likelihood, or augmented likelihood, function L(θ;w, x(s)) conditional on x(s), x(t)
and a w, is given by (2.4). The MCMC scheme consists of constructing a sequence
(θ(r), w(r))G

r=0 that converges to a sample from the joint posterior distribution of θ
and w given data by in each iteration successively employing the two move types

(a): updating the latent variables w
(b): updating the parameters θ.
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Of course, this is a very general formulation but it is important to point out that
(a) involves altering the dimension of (θ, w) since (uh)

m
h=1 contains m continuous

variables and m is variable. We assume in the following that (b) can be performed
using a conventional Metropolis step. In some instances it is worthwhile specifying
the mini-steps with a probit link function, in which case w can be augmented even
further with latent variables (Albert and Chib, 1993). We will not dwell on this
possibility here but merely point out that in that case (b) can be performed with
direct sampling from standard distributions.

Both (a) and (b) are designed to sample from the full conditional posterior
given data and conditional on all other parameters and latent variables. The full
conditional posterior of w conditional on data and θ, is given by

π(w|θ, x(t), x(s)) = L(θ;w, x(s))/LD(θ; x) ∝ L(θ;w, x(s)).

For given present state w ∈ � , let q (·|w) be a candidate distribution for drawing
w∗ with range space � (w) ⊂ � , conditional on w. Hence for move type (a), for
the current value w ∈ �m, a move to w∗ ∈ �m∗ sampled from q (w∗|w), is accepted
with probability min{1, A}, where

(3.1) A =
L(θ;w∗, x(s))

L(θ;w, x(s))
× Π,

and

Π =
q (w|w∗)

q (w∗|w)
J,

in which J is the Jacobian of the transformation of going from w to w∗, to make
sure that the continuous part of π(w∗|θ, x(t), x(s))q (w|w∗) has a finite density
with respect to a symmetric measure on

�
m∗ × �

m for each (y∗h)
m∗

h=1 ∈ �m∗ and
{yh}m

h=1 ∈ �m (Green, 1995). As usual, in the ratio of full conditional posteriors
in the RHS of (3.1) the normalizing constants, in this case LD, cancels out. In a
similar fashion, for move type (b), given the current parameter value θ, a move
to θ∗, sampled from q (θ∗|θ), is suggested. The expression for A in the acceptance
probability corresponding to (3.1) becomes

(3.2)
L(θ∗;w, x(s))π (θ∗)

L(θ;w, x(s))π (θ)
× Π,

where π denotes the prior distribution, and since this move preserves the dimen-
sions, Π simplifies to the ratio q (θ|θ∗) /q (θ∗|θ).

This is so far fairly standard procedures for Bayesian inference and for general
aspects of implementation we refer to the extensive MCMC literature (e.g. Gilks
et al., 1996). Most issues are likely to depend on the particular specification of the
transition probabilities (in the embedded chain), and the rate functions (for exam-
ple what proposal distribution to use, whether to thin the sample or not, etc.) and
we touch on a few of these issues in the empirical section. We need however, to
elaborate on the form of the proposal distribution for the latent variables. There
are many candidates for proposal distributions, particular in the case of � binary
(c.p. e.g. Auranen et al., 2000), and it is especially simple to construct proposals
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(1)(2)(3) (4)(5)
. . . , eh, eh+1, e, e, e, eh+5, eh+6, e, e, eh+9, eh+10, . . .

(a1) . . . , eh, eh+1, e, eh+5, eh+6, e, e, eh+9, eh+10, . . .

(a2) . . . , eh, eh+1, e, e, eh+5, eh+6, e, eh+9, eh+10, . . .

(b1). . . , eh, e, e, eh+1, e, e, e, eh+5, eh+6, e, e, eh+9, eh+10, . . .

66

(b2). . . , eh, e, eh+1, e, e, e, e, eh+5, eh+6, e, e, eh+9, eh+10, . . .

66

(b2). . . , eh, eh+1, e, e, e, e, e, eh+5, eh+6, e, e, eh+9, eh+10, . . .

66

Figure 1. Illustration of shortenings (a1 and a2) and prolongings
(b1, b2, b3) by making a change to the element e

that draw either separate coordinates or entire walks independently of the previ-
ous state of the algorithm. For the relatively complex network evolution models
however, the algorithm fails if too large jumps in � are proposed. We propose
a nearest neighbor candidate distribution that for binary � takes the topology
of the binary N -cube into consideration and respects the importance of order
in the sequence of changes. For valued data, the nearest neighbour proposal is
supplemented by independently of the previous state conditional on the proposed
sequence of changes, drawing lattice walks for specific coordinates. Although the
supplemented candidate distribution no longer has the nearest neighbour inter-
pretation, there is sufficient dependence between proposed walks and previous
walks.

3.1. Nearest neighbour proposal. Recall that the longitudinal social network
process with � = {0, 1}, has a representation as random walk on a hypercube
�

with vertices consisting of all N -bit binary strings and a step from one vertex
to another is performed by adding 1 modulo 2 to the bit in which the strings
differ. For a given walk we can obtain a new one by inserting two ”unnecessary”
changes to a bit. The walk then makes a detour and the vertices visited in between
these changes are identical to the corresponding vertices in the original walk bar
for the bit that was changed. If for the present walk m ≥ H + 2, there exists
such a detour that can be removed. For a walk in

�
between two vertices we

define three types of neighbourhoods and endeavor to design a proposal which
samples conditionally uniformly on these. The three neighbourhoods consists of
the prolonged, shortened, or swapped walks that can be obtained from a walk by
the operations defined below.
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Given w ∈ �m with the representation (uh, eh)
m
h=1, define for each e ∈ �

and
` ∈ {1, . . . , m}

Ke` = ]{h ∈ {1, . . . , m− `+ 1} : eh+v = e, for v = 0, . . . , `− 1

subject to eh+` 6= e, or h + `− 1 = m, and (eh−1 6= e or h = 1)},
which counts the number of un-interrupted sequences of changes to the same
element e, e-runs, of a given length `. Note that

∑
` `Ke` = me, and for� = {0, 1},

ai = r implies ai+1 = −r. A sequence of changes (eh)
m
h=1 subject to the above

mentioned constraints can be shortened by removing two elements e from two
distinct e-runs or removing two changes from the same e-run. This is illustrated
in Figure 1, where the sequence at the top has two e-runs, one of length 3, and
one of length 2. The shortened walk (a1) is obtained by removing any two of the
three consecutive changes, (1), (2), and (3), from the first e-run. By removing one
element from each of the two e-runs, say (3) and (4), we obtain (a2). The total
number of distinct walks that can be obtained in this manner is

γ−e =

(∑
`≥1Ke`

2

)
+
∑

`>1

Ke`

ways, where
(

k
2

)
is defined as 0 for k < 2. The first term counts the number of

ways there is to remove two elements from distinct e-runs whereas the second term
is the number of ways of removing elements from the same e-runs.

For inserting two changes to a fixed element e in an walk (eh)
m
h=1, let Iẽ = {h ∈

{1, . . . , m} : eh 6= e} be the positions not occupied by a change to the element
e. An extra change to e can be inserted in a space immediately before a position
h ∈ Iẽ or in the spot immediately after max Iẽ. The sequence (b1) in Figure 1, has
been obtained by inserting two e’s in the space in front of position h+1. Similarly,
(b3) can be obtained by inserting two changes e in the e-run in front of position
h + 5. By instead inserting one e in each space we obtain (b2). The number of
insertion points, or distinct bins, is given by

|Iẽ| + 1 = m−me + 1.

Addition of the number of prolonged walks for which both changes are inserted
in the same spot and when the changes are inserted into distinct spots gives the
number of walks that can be obtained from prolonging by adding a change to e

γ+
e =

(
m−me + 1

2

)
+m−me + 1 =

(
m+ 2 −me

2

)
.

The sequence can be re-ordered by swapping places for two eh and eh′, eh 6= eh′ .
This can be done in

(3.3)

(
m

2

)
−
∑

e:me>1

(
me

2

)
,

ways.
We are now equipped with three move-types for up-dating sequences. The

number of changes can be increased from m to m+2 chosen uniformly at random
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from either one of the

γ+ =
∑

e∈�
γ+

e ,

distinct sequences obtainable from prolonging. The number of changes can be
reduced from m to m− 2 chosen uniformly at random from either one of the

γ− =
∑

e∈�
γ−e ,

distinct sequences obtainable from shortening. Furthermore, swaps can be af-
fected with probability the reciprocal of (3.3). In the sequel we call these move
type 1,2 and 3 respectively. In practice, move type 1 is performed by choosing
the element e to be affected with probability γ−e /γ

−, and then proceeding sequen-
tially by choosing to remove e from the same e-run or from two distinct e-runs,
with probabilities

∑
`>1Ke`/γ

−
e and 1 −

∑
`>1Ke`/γ

−
e , respectively. If the former

removal type is selected, one can simply draw two distinct e-runs uniformly at
random. For a removal of the latter type, choose one e-run from among the e-
runs with a lengths greater or equal than two at random and remove two of the
changes. For move type 2, a similar sequential procedure is used in practice. The
element e to be inserted is chosen with probability γ+

e /γ
+. With the appropriate

probabilities chose to either insert the two e’s at the same insertion point or place
them in two distinct insertion points. Given a walk (yh)

m
h=1 ∈ �m, move type

1 proposes a move to a walk in �m+2, type 2 a walk in �m−2 and move type 3
proposes a walk in �m. To take the cardinality of the reachable subsets of �m+2,
�m−2, and �m, into consideration has proved to be of some importance for the
performance of the algorithm for complex models.

We choose to perform move type j with probability ζj if all three move types
are possible and ζ ′j = ζj/(ζ1 + ζ3), for j = 1, 3 if m = H . Conditional on the
move type, a change to (eh)

m
h=1 is made as described above, and conditional on

this change and u = (uh)
m
h=1, u

∗ = (u∗h)
m∗

h=1 is proposed in the following manner.
The technique described here is closely related to the way in which Richardson
and Green (1997) up-date the weights in a mixture model. The mains differences
are that whereas mixture weights can be up-dated by proposing a new weight for
a single coordinate and the requirement that the weights sum to unity, we propose
a pair of new ”weights” with the requirement that all the weights sum to T .

For move type 1 and the new sequence (e∗h)
m+2
h=1 of length m+ 2 with additions

of an element e in positions h∗1 and h∗2, eh∗

1
and eh∗

2
, we need to propose holding

times corresponding to these positions, uh∗

1
and uh∗

2
. When one or both of the new

additions have been placed in positions adjacent to changes to the same element,
in an e-run, the holding times are up-dated starting with the last position in
the run. These are drawn from a rescaled Dirichlet distribution with parameters
(1, 1, m+ 1), with density

Γ(m+ 3)(T − uh∗

1
− uh∗

2
)m

Γ(m+ 1)Tm+2
,
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where T = t−s as defined earlier. To ”make space” for the new holding times the
old holding times are scaled down u∗h′ = uh(T − uh∗

1
− uh∗

2
)/T , where the position

h′ in relation to h is determined unambiguously by the position of h in relation
the insertion points (again with some modifications as mentioned above). The
Jacobian of this transformation is [(T − uh∗

1
− uh∗

2
)/T ]m and hence

(3.4)
q (u|(eh)

m
h=1, w

∗)

q
(
u∗|w, (e∗h)m+2

h=1

)J =
T 2

(m+ 2)(m+ 1)
.

Thus Π equals (3.4) times ζ2γ
+/(ζ1γ

−), if k ≥ 1, and ζ2γ
+/(ζ ′1γ

−) otherwise.
For move type 2 and the removal of eh∗

1
and eh∗

2
, from a sequence of length

m+ 2, set the new elements u∗h′ = uhT/(T − uh∗

1
− uh∗

2
), where the indices h′ are

matched to h for h 6= h∗1, h
∗
2. q

(
u|(eh)

m+2
h=1 , w

∗) /q (u∗|w, (e∗h)m
h=1) J then becomes

the reciprocal of the RHS of (3.4). For move type 3, u∗ is drawn from the symmetric
distribution on

�
m, and Π = 1. For some applications, conditional on move type

1 (or 2) sampling the entire vector u∗ independently of u works well. This is
accomplished in a similar way to how holding times are up-dated for the move
type 3, by drawing u∗ from the symmetric distribution on

�
m+2. Because of

the independence, the ration of proposal distributions becomes the ratio of scaled
Dirichlet distributions with the appropriate dimension, the expression of which
incidentally coincides with (3.4).

To ensure that the procedures presented thus far produces a Markov chain that
is aperiodic and irreducible (with respect to the joint posterior distribution of the
latent walks and parameters), we note firstly that aperiodicity is guaranteed by the
construction of Metropolis up-dating steps (c.f. Tierney, 1994). For irreducibility,
observe that each part of

⋃∞
k=0 �H+2k, can be reached by a sequence of prolongings

and shortenings, and for each swap the support of the holding time proposal is�
m.

3.2. Proposal for colours. For valued data, i.e. now the edges take values in
� = {0, . . . , R − 1}, the direction of a change to an element e is not uniquely
determined by the previous value. The proposed holding times and change indices
(u∗h, e

∗
h)

m∗

h=1 are drawn using the nearest neighbour proposal as described above.
For coordinates in

�
that have been effected the directions of change are drawn

conditionally independent of (ah)
m
h=1 conditionally on (u∗h, e

∗
h)

m∗

h=1. In other words,
if the old position of e∗h was h′, we set a∗h = ah′. For move type 1 and 2, and a
change to e ∈ �

, denote by I = {h ∈ {1, . . . , m∗} : e∗h = e} all the positions
occupied by a change to e. The idea is to propose a new sequence of directions,
a∗h for h ∈ I, transforming xe(s) into xe(t). Given that a swap has been made the
procedure described below is repeated for both the affected coordinates.

The total number of sequences (aij : aij = ±1), of length m∗ giving paths from

xe(t0) to xe(t1) is given by
(

m∗

e

N+

)
, where N+ = ]{ij ∈ I : aij = 1}. As in (2.3)

denote the partial sums yij = yij−1
+aij , for ij ∈ I, and y0 = xe(s). From standard

lattice path counting techniques (Fray and Roselle, 1971) we have that the number
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of paths such that 0 6 yij < R, for all ij ∈ I , is given by

Cm∗

e
(y0, yim∗

e
) =

∑

k∈Z

[(
m∗

e

N+ + k (`+ v)

)
−
(

m∗
e

N+ + k (`+ k) + `

)]
,

where ` = xe(s)+1, v = R−xe(s). This formula is obtained by iteratively applying
the reflexion principle. Sampling a path y0, y

∗
i1, . . . , y

∗
iF∗

e

, uniformly at random is

easily done by drawing a sequence of N+ up-steps and m∗
e down-steps, discarding

sequences for which maxij{yij} is greater than R − 1, or minij{yij} is less than
0. The probability mass function of any accepted sequence is P (y0, y

∗
i1
, . . . , y∗im∗

e

)

= Cm∗

e
(y0, y

∗
im∗

e

)−1. An alternative, when rejection sampling is inefficient, is to

draw the steps in a sequential manner. Let N+
j = N+(ai1 , . . . , aij ) denote the

number of positive steps until the j’th step and set aij+1
= 1, given the previous

ai1 , . . . , aij , with probability




1 if yij = 0
0 if yij = R− 1(
N+ −N+

j

)
/ (m∗

e − j) o.w.
.

The probability mass function of a realization is given by P (y0, y
∗
i1
, . . . , y∗im∗

e

) =

P (y∗i1|y0) · · · P (y∗im∗
e

|yim∗
e−1

). Note that the p.m.f. of the previous sequence of

changesP (y0,yi1 ,. . . , yime
) of colours is inexpensive to compute if done in the pro-

cess of proposing the new sequence.

4. Empirical illustration

In this section we analyse the Electronic Information Exchange System (EIES)
data collected by Freeman and Freeman (1979) to illustrate specifications for the
network evolution model and highlight some implementation issues. There were
two measurements of acquaintanceship taken 8 months apart, and the complete
data contains n = 32 actors. Since there are only 2 observations, the time scale
is arbitrary and we set T = 1. Each actor was required to give the status of his
relation to each other actor and thus

�
= V (2), and the number of non-redundant

entries in each adjacency matrix is n(n − 1) = 992. Data was originally coded
as 0 (person unknown to me, or no reply); 1 (person I’ve heard of but not met);
2 (person I’ve met); 3 (friend); and, 4 (close personal fiend). In addition to the
network data, an individual-bound covariate wi was recorded for each actor being
a measure of the attractiveness of the individuals research. If individual i had
12 or less than citations of his work in SSCI in the year before the first network
measure was taken wi = 1, and wi = 0 if he had more than 12 citations.

Of the three main parts of this section, the first two deals with the analysis of
the dichotomized data, while the third works directly with the original values. In
the analysis of the dichotomized data, the standard form of the adjacency matrix
X(t) = (xij(t)) is used in which xij(t) is equal to 1 or 0 according to whether (i, j)
is a friendship relation at time t or a null relation. In accordance with Snijders
and van Duijn (1997) null relations are defined as those with strengths less or
equal to 1. The diagonal elements are set to structural zeros. For the analysis
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of the valued data, xij(t) is the strength of the relation from i to j at time t, as
expressed by the original values.

4.1. Random utilities. In this section we analyse the EIES data using one of
the models fitted in Snijders and van Duijn (1997) but conducting likelihood based
inference rather than the method of moments.

The intention is to model the evolution of the network as driven by the actors
conscious efforts at seeking better network configurations. To this end we employ
a random utility effect where the utility of a network configuration to an actor is
combination of covariate and network effects as well as a random component, as
described in Section 2.1.1..

For the parameter (p+ 2) × 1 vector θ = (ρ, α, β1, . . . , βp)
′, ρ and α only occur

in the expression for the individual change rates and β only appear in the utility
part.

The most basic structural effect to consider is the activity of actors. An actor
is said to be active if he or she seeks to have many ties to other actors, which
suggests the out-degree statistic

si1(x) =
∑

j

xij .

The interpretation of a tie from i to j often has completely different interpretations
depending upon whether j also has a tie to i. This is captured by the reciprocity
statistic

si2(x) =
∑

j

xijxji.

To study the influence on friendship seeking of the covariates, we include

si3(x) =
∑

j

xijwj,

to capture whether actors with low citation rates are less popular, and

si4(x) =
∑

j

xij |wi − wj| ,

to investigate whether there is any clusterings based on the citation rate.
In addition to the statistics based on individuals and dyads, we include the

transitivity statistic

si5(x) =
∑

j,h

xijxihxjh.

A transitive triple or triad in which i is a head, is the sub (di-) graph consisting of
three vertices, where i has ties to both other vertices and where there is a tie be-
tween these. In terms of a friendship relation, a transitive triple is a configuration
in which the friends of i are also friends.

To make allowances to differential preferences in the eagerness to make changes
to ones personal network we define

λi(x, θ) = ρ{eα +
si1(x)

n− 1
(e−α − eα)},
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which is to be interpreted as that actors with few ties are more eager to change,
for α > 0. When α < 0, it is actors with many ties that are more active in making
changes to their composition.

For specifying the systematic part of the utility, we let si(x) = (si1(x), . . . , sip(x)),
and write

(4.1) r (θ, i, j, x) = si(x(i j))β.

Given data and the latent variable w ∈ �m, the complete data likelihood of θ
is easily obtained from (2.4) and (2.6) as proportional to

exp

{
−

m+1∑

h=1

uh

∑

i∈V

[
eα +

si1(yh−1)(e
−α − eα)

n− 1

]}
ρm(4.2)

×
m∏

h=1

[
eα +

sih1(yh−1)(e
−α − eα)

n− 1

]
esih

(yh)β

∑
z∈�i(yh−1) e

sih
(z)β

,

where for each h, eh = (ih, jh). The full conditional posterior of θ given w and
x(t0), is proportional to (4.2) times the prior π(θ).

4.1.1. Prior distributions. Throughout the empirical section, all prior distribu-
tions for the parameters are vague. To ascertain analytically whether the joint
posterior distribution of the parameters is proper is in general difficult. A com-
monly applied ad-hoc criterion for the appropriateness of the posteriors is to moni-
tor the progress of the MCMC-algorithm. The idea is that the algorithm would fail
to converge if the posterior were improper. A danger of using this ad-hoc criterion
is that conclusions regarding posterior moments might not be valid. No doubt,
the elicitation of prior distributions is an important issue for further studies. A
particularly important aspect is the prior relation between the parameters. The
nature of the relation between the statics, e.g. between out-degree and transitivity,
suggests some sort of prior dependence between the corresponding parameters.

4.1.2. Implementation. Proposals for moves of type (a), were chosen according
according to the procedure in Section 3.1., with (ζ1, ζ2, ζ3) = (2/7, 4/7, 1/7). The
relative weight assigned to shortenings, prolongings and swaps, respectively, does
not seem affect the performance to any great extent other than that it is a desirable
property that the algorithm is allowed to move fairly freely up and down.

For the parameters and moves of type (b), a Metropolis up-dating step was
employed. Given the current parameter vector θ = (ρ, α, β1, . . . , βp)

′, a candidate
vector θ∗ was proposed from

(
α∗, β∗

1 , . . . , β
∗
p

)′
∼ Np+1

(
(α, β1, . . . , βp)

′ ,Ω
)
,

and independently thereof

ρ∗ ∼ Gamma(ρk, k−1).

The proposal ratio, Π in (3.2), hence becomes

kk(ρ∗−ρ)Γ (kρ) /Γ (kρ∗) ek(ρ−ρ∗)ρkρ∗−1/ (ρ∗)kρ−1 .
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The performance of this MCMC scheme crucially depends on the choice of Ω
and setting this requires a fair amount of fine-tuning (setting k proves a much
less demanding task than setting Ω, and therefore we concentrate on the latter).
The dangers and pit-falls of the choice of proposal distribution are well known
(c.f. the review given by Chib, 1995), yet there does not seem to be any consensus
on automatization strategies. In the empirical examples, we have relied on a
combination of test runs and adaptive scaling. It is commonly suggested that the
variance of the normal proposal be set to some constant times the variance, or
approximation to the variance, in the target distribution (e.g. c times the inverse
information matrix evaluated at the posterior mode Tierney, 1994; Roberts et al.,
1997). In this particular case, there are a variety of options for choosing Ω. To
obtain a provisional proposal variance, consider conditioning on a path w ∈ �F ,
in which case the augmented likelihood can be evaluated. One can get a rough
estimate by evaluating the likelihood in a grid and then fitting a normal kernel
using restricted least squares or using the properties of the multinomial probit
(see below and the full conditional posteriors); or by maximizing the augmented
likelihood with the quasi-Newton algorithm which produces an estimate of the
Hessian en passant.

Once a provisional value is obtained, one, a couple or a few test-runs are per-

formed to get an estimate Σ̂ of the posterior covariance matrix of (α, β)′. For the

analysis carried out here, we set Ω = γ√
p+1

Σ̂, for γ roughly in the interval (.8, 3).

4.2. Normal random components. Despite the attractiveness of the expres-
sion (2.6) for the multinomial probabilities in the CML, this formulation is open
to criticism. First and foremost we have axiom of independence of irrelevant alter-
natives (IIA, c.f. McFadden, 1974, ; note however that IIA only applies whitin the
mini-step for the logit specification). For fixed V this should not be a limitation
but there is a definite advantage to be had from taking leavers and joiners into
consideration (c.p. Huisman and Snijders, 2003). Additionally, for affiliation net-
works there are substantial reasons for allowing for correlated utilities and varying
spread. An interesting question is whether the skewness of the extreme value type
1 distribution is theoretically warranted.

Apart from the increased flexibility with a multinomial probit model (MNP),
there are some computational advantages.

For a MNP formulation of the model described above, we retain the systematic
part in Equation (4.1) but make other assumptions for the random component ε.
Collect the utilities in an n − 1 by 1 vector ṽh=(ṽj : j 6= ih), where for each h,
eh = (ih, jh), and given the (n− 1) × p matrix of predictors Sh=(sih,j : j 6= ih),
sih,j = sih(yh−1(ih  j)), where p is the number of rows in β, we can write

ṽh = Shβ + ε.

As in the case of the CML formulation of the evolution model, the random com-
ponents are assumed to be independent over time but whereas it was previously
assumed εj was independently and identically distributed according to the Gum-
bel distribution, we now assume that ε∼ Nn−1(0,Γ(ih, yh−1)). Correlated random
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components can be motivated in analysis of for example affiliation networks, where
the choice categories do not vary over actors, but in the present context an un-
restricted covariance matrix is over specifying the model. Hence we follow the
formulation of the independent multinomial probit model and set Γ(i, x) =τ 2I
for all i ∈ V and all x ∈ � . Following standard practice we normalize on
one of the alternatives, k, to achieve identification, by taking the differences
εj = εj − εk, vj = ṽj − ṽk and zj = sih,j − sihk. The system of equations now
becomes vh = zhβ + εh, and thus

vh∼ Nn−2(zhβ,Σ),

where the diagonal elements of Σ, σjj = γkk + γjj − 2γjk, and for the off-diagonal
elements σj` = γkk + γj` − γkj − γ1`. Naturally, for the independent multinomial
probit model Σ = 1(n−2)×(n−2)+I(n−2).

4.2.1. Sampling from the full conditional posteriors. With normally distributed
random components sampling from the posterior, in each iteration draws are made
from 5 full conditional posteriors:

(a): (uh, eh,vh)
m
h=1| x(t0), x(t1)ρ, α, β

(b): ρ| (uh, eh,vh)
m
h=1, x(t0), x(t1), α, β

(c): α| (uh, eh,vh)
m
h=1, x(t0), x(t1), ρ, β

(d): β| (uh, eh,vh)
m
h=1, x(t0), x(t1), ρ, α.

In addition it is suggested that a step (a2) is added where only the latent
differences (vh) are up-dated. Whereas step (a) does not differ much from in the
logit formulation, and is carried out using a Metropolis step, as is step (c), we can
sample directly from the full conditional posteriors of ρ and β in steps (b) and (d)

The full conditional posterior of a complete observation (uh, eh,vh)
F
h=1 is pro-

portional to

(2π)−m(n−2) |Σ|−m/2 exp

[
−

m+1∑

h=1

uh λ (θ, yh−1)

]

×
m∏

h=1

λi (θ, yh−1) exp

[
−1

2
(vh − zhβ)′ Σ−1 (vh − zhβ)

]

×
m∏

h=1

1 {vh ' yh−1, yh} ,

where 1 {v ' x, y} simply is an indicator function which is one or zero according
to whether utilities are concordant with the transition from x to y.

Since explicitly modeling the latent utilities introduces extra randomness, the
performance of the algorithm is even more sensitive to the choice of candidate
distribution for complete observations. We will only mention one possible candi-
date. The holding times and element indicators (uh, eh) are proposed according to
the nearest neighbor proposal distribution as described in Section 3.1. For each
h, conditional on (u∗h, e

∗
h), v∗

h is drawn from Nn−2(z
∗
hβ,Σ), truncated such that

1
{
v∗

h ' y∗h−1, y
∗
h

}
= 1. How to draw random vectors with the desired truncation is
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more closely described below. Suffice it to show at this point that when Γ(i, x) = I,
we only really need a realization of v∗

h if the proposed move is accepted. Since the
functional form of the pdf is not altered by the truncation, and the density of v∗

h

appears in the expression for the full conditional posterior, all that remains of the
ratio of full conditional posteriors and proposal distributions is, suppressing the
indicator functions,

exp

[
−

m∗∑

h=1

u∗h λ
(
θ, y∗h−1

)
−

m∑

h=1

uh λ (θ, yh−1)

]

×
∏m∗

h=1 λi

(
θ, y∗h−1

)
ψ (S∗

hβ, j
∗
h)∏m

h=1 λi (θ, yh−1)ψ (Shβ, jh)
Π,

where Π is the ratio of proposal densities arising from drawing (u∗h, e
∗
h)

m∗

h=1 condi-
tional on (uh, eh)

m
h=1 and

ψ (Shβ, jh) =

∫

Rn−2

1 {v ' yh−1, yh}φ (v; zhβ, 1) dv

=

∫ ∞

−∞

[
∏

j 6=jh,ih

Φ (r − sih,jθ)

]
φ (r; sih,jh

β, 1)dr.

The quantity ψ can easily be estimated to any degree of accuracy using Monte
Carlo integration or importance sampling (in the calculations carried out on the
data material a normal distribution shifted to the right by 1, N(sih,jh

β+1, 1), was
used as the importance function, and to reduce variance an antithetical sampling
scheme was used, with 1000 sampling points).

For drawing vh given (uh, eh), ρ, and α, concordant with data, we employ the
Gibbs sampling scheme described in McCulloch and Rossi (1994). A draw from
the distribution Nn−2(zhβ,Σ), is achieved by cycling through all the components
and drawing values from the univariate conditional distributions. From standard
statistical theory we have that vj |v1, . . . , vj−1, vj+1, . . . , vn−2, θ is N(µj , η

2
j ),

µj = zjβ + Σj(−j)Σ
−1
(−j)(−j)

(
vh(−j) − zh(−j)β

)
,

and

η2
j = σjj − Σj(−j)Σ

−1
(−j)(−j)Σ(−j)j,

with the appropriate parts of a suitably partitioned Σ, and where vh(−j), and
zh(−j) are vh, and zh respectively, with the jth rows removed. For the independent
multinomial probit model, these quantities simplify to

µj = zjβ + (1 − (n− 3) / (n− 2))
∑

` 6=j

(v` − z`β) ,

and η2
j = 3 + (5 − 2n) / (n− 2). In addition, each coordinate has to satisfy

{
v

(h)
j < 0 for j 6= kh if jh = kh

v
(h)
j < v

(h)
jh

, and 0 < v
(h)
jh

for j 6= kh, if jh 6= kh

,
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which can be achieved by sampling from univariate truncated normal distributions.
Our experience is that the Gibbs sampler need only be run for a few iterations.

The full conditional posterior of ρ has a particularly simple form. Define firstly

gi(x, α) = {eα +
si1(x)

n− 1
(e−α − eα)},

and note that the rate function is equal to λi(x, θ) = ρgi(x, α), given state x, actor
i and a fixed parameter α. Recall that um+1 = [t1 − um], and the full conditional
posterior of ρ, is proportional to the prior π(ρ) times

exp

(
−ρum+1

∑

i

gi(x(t1),α)

)

×
m∏

h=1

φn−2(vh−1; z
′
h−1β, In−2)ρgih(yh−1, α) exp

(
−uhρ

∑

i

gi(yh−1, α)

)

∝ exp

{
−ρ
(

m+1∑

h=1

∑

i

uh gi(yh−1, α)

)}
ρm,

which we recognise as the kernel of a Gamma distribution with parameters m+ 1
and

1
∑m+1

h=1

∑
i uh gi(yh−1, α)

.

The parameter α is updated using a Metropolis step. A suitable proposal density
is a normal distribution centered over the present value. Note that in comparison
with the logit specification where we had to set a candidate variance covariance
matrix of size 6 × 6, the same model with the independent probit specification
only requires that we determine a scalar. The full conditional posterior of α given
all the rest is proportional to

π(α) exp

{
−ρ

m+1∑

h=1

uh

∑

i

gi(yh−1, α)

}
m∏

h=1

gih(yh−1, α).

Finally there remains treating the move type (d). The main motivation behind
using data augmentation in the frame work of the probit model (c.f. Albert and
Chib, 1993; McCulloch and Rossi, 1994) is that regular Bayesian conjugacy theory
applies once we have a realization of the latent variables. To simplify the analysis
even further we employ a transformation suggested in McCulloch and Rossi (1994).
Firstly, let C be the Cholesky root of the inverse variance covariance matrix,
such that Σ−1 = CC ′. Secondly, pre-multiply the regression equations by C ′,
C ′vh = C ′zhβ +C ′εh to obtain a system with standard normal errors v∗

h = v∗
hβ +

ε∗h. Stacking the covariates in Z∗= (z∗′1 , . . . z
∗′
m)′, the latent utility differences in

V∗= (v∗′
1 , . . .v

∗′
m)′ and assuming that a priori β ∼ N(µ,Ψ), the full conditional

posterior of β given the rest is N(µ̃, Ψ̃), where

Ψ̃ = (Z∗′Z∗ + Ψ)
−1

, and µ̃ = Ψ̃ (Z∗′V∗ + Ψµ) .
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4.2.2. Prior distributions. As in CML specification, we have assumed that the
parameters are mutually independent and vague a priori. In the previous section
we noted however that there are conjugated prior distributions with respect to
the full conditional posteriors, Gamma and Normal for ρ and β respectively, con-
ditional on α. How to use this to set proper and informative priors is however
not immediately clear, since the marginal posteriors are the marginalized joint
posteriors marginalized with respect to the latent walks. There is the interesting
possibility of training the prior on �1(x(t0), x) for all x ∈ ⋃i∈V �i(x(t0)), that is
an ”imaginary ” training sample, to obtain a proper prior. For convenience, the
resulting normal mixture could then be approximated by a normal model.

Naturally, the multinomial probit model is not exempt from dangers of improper
posteriors. Again, we use the ad-hoc criterion used for the multinomial logit
model with the already mentioned caveats. We conjecture that maxi∈V |si`(x(t0))−
si`(x(t1))| > 0 for all ` = 1, . . . , p, is a sufficient condition for proper posteriors.

4.3. Posterior distributions. The main objective of parameter inference is to
asses what effects are supported by data. We do this primarily by inspecting the
marginal posterior credibility intervals of the parameters. Because of the depen-
dencies between networks statistics (in the model), some effects should be included
regardless of whether they are close to zeros with high posterior probability. An
example of this is the out-degree effect, which serves as a control for other statis-
tics as well as an effect in its own right. This is further discussed in connection
with Figures 6, 7,and 8.

The increased efficiency when sampling directly from the full conditional pos-
terior of β is reflected in the sample auto correlations of the MCMC sample (see
Figure 4 ). Whereas the autocorrelation decrease very slowly for the logit param-
eters, the autocorrelations drop rather more sharply for the probit parameters.
These relatively high auto correlations for the logit model are not artifacts of too
low an average jump distance, and thereby too high an acceptance probability,
rather this is a remnant of the dependencies stemming from the latent paths.
This is reflected in that ”non–structural” parameters β3 and β4 display more well-
behaved sample auto correlation functions than the structural parameters. It is
important to maintain a good balance between the acceptance probability of the
latent paths and parameters and in general it seems that the acceptance rate of
the latent walks are negatively related to the acceptance rate of the parameters
β1, . . . , βp. The sample upon which Figure 4 is based had an acceptance rate of
.48 for the latent walks and .23 for the parameters with the logit specification. For
the probit sample the acceptance rates were .66 and .28 (i.e. for α). The scaling
constant γ for the proposal variance was set to .9/

√
6 and .7 for the logit and

probit parameters respectively.
The auto correlations reduce the value of many convergence statistics, since

there is often an implicit independence assumption. Visual inspection of trace
plots and the use of time series tools, in combination with over–dispersed starting
points and multiple chains, are recommended for convergence assessment. Figure 2
displays the difference in the cumulative and batched means for two independent
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Figure 2. Differences in cumulative (–) and batched means (×)
for two independent MCMC samples from logit specification. Initial
values and grand means given by (∆) and (◦) respectively

MCMC-samples for the logit parameters. One of the chains is started in a region
of the parameter space that has relatively high posterior mass whereas the other is
started in a region with low posterior mass. For all trace plots, the batched mean
seems to have stabilized round 0 somewhere between iteration 100 and 1000. The
differences in cumulative means lags behind because of the high initial differences
but has caught up around the 10,000th iteration. An alternative representation is
to inspect the standardized output (Geweke, 1992) an example of which is given
in Figure 3 for a typical MCMC-sample. The bounds should be treated very
leniently since the variance estimates (spectral density estimators with Daniell
windows, M = 2T 1/2) do not take the cross correlations into consideration nor the
dependence on the latent walks.

Figure 5 gives the marginal posteriors1 of the parameters for the logit and probit
specification. For comparison, the Method of moments estimates (as obtained
from the stochastic approximation algorithm described in Snijders and van Duijn,
1997), with approximate confidence intervals are included. It is interesting to note
that the point estimates for the logit specification agree with that of the method
of moments bar for α. The distribution of the statistic

∑
e∈� |Xe(t0) − Xe(t1)|,

the expected value of which is used in the moment equations, is relatively flat and
not particularly sensitive to changes in α. This is not picked up by the stochastic
approximation algorithm, and the 95% confidece interval just covers zero.

1All univariate density are estimated using normal kernel estimators with window width
.06an

−1/5, where n is the number of points in the sample and a is the minimum of the sample
variance and the interquartile range divided by 1.34. Multivariate densities are estimated with
multivariate normal kernels and the pre-whitening method of Fukunaga (1972)
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Figure 3. Geweke convergence diagnostics (+) with 95%- bounds
(dashed lines)
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Figure 4. Comparing the sample auto correlation functions for
MCMC samples from posteriors in logit (lines) and probit (bars)

In general the posteriors are fairly conclusive and easy to motivate: actors tend
to form ties to people from whom they already receive ties; to people with low
citation rate; and to people that are connected to someone they know beforehand.
That the similarity with respect to citation rates is a factor in forming ties to
others is not supported by data.

This brings us to the issue of interpretation of parameters and their relative
magnitudes. From Figure 5 (logit specification), it is clear that β1 is negative and
β5 is positive with high posterior probability. So, how should this be interpreted
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seeing as in the transition from one network configuration to another, the transi-
tivity count (si5) can not increase without the out-degree count (si1) increasing.
To investigate this we employ a situation analysis framed by the model ingredients.

Consider the subgraph x(0), in Figure 6, consisting of vertices i, j, and v. Assume
further that actor j may make a change to the composition of his out-going ties.
The courses of action involving the other two actors in the sub graph, i and v,
consists of removing the arc to v – in which case we would obtain the subgraph
y(0) – or adding an arc to i – which would produce the subgraph z(0). Now, under
the additional assumption that wi, wj , and wv, all are zero, given the fitted model,
the only relevant difference in the overall contribution to the statistics is a −1 and
+1, associated with going from x(0) to y(0) and z(0), respectively. Because of IIA,
the odds for actor j choosing to remove the arc (j, v) relative to adding the arc
(j, i) is e−2β1 . For the subgraph x(1), the situation is different, since there exists
a two-path from j to i via `1, and forming the tie (j, i) would create a transitive
triple. Hence, the odds for actor j choosing to remove the arc (j, v) relative to
adding the arc (j, i) is e−2β1−β5 , given x(1) (under the assumption that w`1 = 0).
In general, given configuration x(k) as in Figure 6, the odds for removing the edge
(j, v) (a transition to y(k)) relative to adding (j, i) (a transition to z(k) with a k–
fold triple) is e−2β1−kβ5. The posterior predictive odds for k = 1, . . . , 7 are given
in Figure 7. Naturally, there is a clear tendency for the support of y(k) to decrease
with k, which is further illustrated in the left panel of Figure 8. Interesting to note
is the differences when conditioning on the number of intermediate changes. It
appears that the influence of transitivity relative to the influence of (the negative)
out-degree decreases the more changes there have been.

Had there in Figure 6 also been an arc from i to j, adding the edge (j, i), would
have created a reciprocated dyad. In that case, the odds for choosing y(k) relative
to z(k) would have been e−2β1−β2−kβ5. The posterior predictive expectancy of the
odds of y(k) relative to z(k) in this case is illustrated in the right panel of Figure 8
for different k. When compared to adding an arc without producing a reciprocated
relation, there is a similar ordering of the predictive probabilities with respect to
the number of intermediate changes. The desirability of adding the arc increases
considerably more quickly if it produces a reciprocated tie as well as a k–fold
triple, seen as a function of k.

The results for the logit and probit specifications are to all intents and purposes
the same with some differences in scale, with the exception for β3 (see Figure 5
and Table 1). The marginal posterior probability that β1 is negative is .99, to be
compared with .003 for the logit specification, whereas the posterior probability
that β3 is greater than 0 is .94, compared to .9987 for the logit specification.
Any suspicions that high posterior correlation between β3 and β4 might conceal
the fact than one or other or both of the parameters actually plays a part are
dispelled when seeing that the origin is contained in the HPD-ellipses in Figure 10.
Differences might depend upon the more forgiving tails of the Gumbel distribution
as compared to the Gaussian. As an example consider Figure 9. In the context
of the network evolution process we see that the logit model is more willing to
accept changes to dyads for which the expected utility is relatively lower than
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Figure 5. Marginal posterior densities for logit (probit) param-
eters, with 95% Credibility intervals, darker (lighter) shades, and
posterior means ◦ (�); MM estimate (M) with approximate 95%
Confidence intervals (+ − · − +)

MM SE Bayes logit STD Bayes probit STD
α, activity in rate .58 .333 −.23 .384 −.41 .341
β1, activity −1.70 .582 −1.23 .434 −.31 .139
β2, mutuality 1.02 .270 .90 .238 .31 .086
β3, low citation .52 .228 .61 .214 .13 .082
β4, citation-similarity .20 .223 −.10 .190 −.06 .072
β5, transitivity .12 .029 .098 .0163 .024 .0047
ρ, constant in rate 4.89 1.055 4.94 .81 5.37 .97

Table 1. Point estimates for parameters in models fitted to di-
chotomized EIES data

in the case of the probit model. This to some extent explains why the probit
posteriors (i.e. posteriors for β) are closer to zero with smaller posterior variance
than the logit posteriors. This would also explain the higher posterior expected
walk length for the probit model since the order of changes are more important in
the probit model.
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Figure 6. Changing x(k) by either removing the edge from j to v,
y(k), or forming the edge from j to i, z(k)
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Figure 7. The posterior predictive log odds of a transition to y(k)

relative to z(k), given x(k)
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Figure 9. Multinomial probabilities. Uj = µj+εj for j = 1, . . . , 32,
differences µj −maxk 6=i{µk} (◦), εj are i.i.d. Gumbel (– –), and i.i.d.
standard Normal (−·). Homogeneous means, µj = µ for j 6= i where
εj are i.i.d. Gumbel (–), and i.i.d. standard Normal (· · · ).

4.4. Valued relations. The original data had the ordinal labels in� = {0, 1, 2, 3, 4}.
To model the evolution with valued arcs, we use the model described in sec-
tion 2.2.1. with a few minor modifications. Firstly, define the adjacency matrix
y = x(i

a
 j) which differ from x in exactly yij = xij + a. Secondly, an actor i

allowed to make a change given x, instead of only evaluating the graphs in �i(x)
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(dotted)

as defined in section 2.1.1., evaluates all graphs in the more generally defined
�i(x) = {y ∈ � : y = x(i

a
 j) for some j ∈ V and a ∈ {−1, 1}}. The utility is

then written

Ui(t, x, j, a) = r (θ, i, j, a, x) + εi(t, x, j, a).

In the empirical example we limit the analysis to the case when εi(t, x, j, a) are
independently and identically distributed according to the extreme value type one
distribution, for each t, x, and j and a such that x(i

a
 j) ∈ � . The form of the

resulting conditional multinomial jump probabilities is then more or less identical
to Eq. 2.6

er(θ,i,j,x,a)

∑
er(θ,i,k,x,a)

,

where the sum is taken over {k, a} ∈ V × {−1, 1} : x(i
a
 k) ∈ � .

For the sake of comparison, we begin by assuming a similar linear form for the
systematic component as in 4.1, using valued counterparts of the statistics used
in the previous analysis. A natural extension of the degree count is the out-degree
weighted by the strength of the relations

si1(x) =
∑

j:(i,j)∈�
xij .
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Since reciprocity measures the distance between i and j with respect to xij and
xji, valued reciprocity can be formulated in terms of distance

si2(x) =
∑

j:(i,j)∈�
(xij − xji)

2 .

The interpretation of the distance is different than the interpretation of reciprocity,
and the more unbalanced a dyad is, the more it contributes to the utility. For-
mulating transitivity with valued relations could be done in various ways. One
interpretation is that an actor want his friend to have at least as strong ties as he
has to them, leading to statistics based upon e.g. (xij − xjh)

2 + (xih − xjh)
2, for

the triple (i, j, h). A convenient specification is simply saying that the strengths
of the ties (i, j) and (i, h) are multiplied by a factor xjh. The valued transitivity
count then becomes

si5(x) =
∑

j,h

xijxihxjh.

We further use the same covariate counts as in the dichotomized example, si3(x)
and si4(x).

In addition, to take further advantage of the increased detail, we introduce four
statistics to be included in what Snijders (2001)(defined there only for binary
data) calls the gratification function. To take into account the costs of breaking
off already established relations, we define for k = 1, . . . , 4,

gik(x, j, a) = 1{a = −1}1{xij = k},
i.e. gi1(x, j, a) is equal to 1 if xij = 1 and a = −1, that is a transition from xij = 1
to xij = 0.

For valued data we fit two models, one where

r (θ, i, j, a, x) = (si1(x(i
a
 j)), . . . , si5(x(i

a
 j)))β,

and

r (θ, i, j, a, x) = (si1(x(i
a
 j)), . . . , si5(x(i

a
 j)), gi1(x, j, a), . . . , gi4(x, j, a))β,

where β are 5 × 1 and 9 × 1 vectors respectively.
The MCMC algorithm as described for the dichotomous data in Section 4.1.

applies with the addition of drawing (ah)
m
h=1 according to Section 3.2.

4.5. Posterior distributions for valued data. The posterior means and stan-
dard deviations for the parameters in the models fitted to the valued data are
given in Table 2, and in Figures 11, and 12. The first model (with 7 parameters)
gives conclusions similar to those for dichotomized data except for the out-degree
effect. When the strengths of relations are taken into account, there seems to be a
tendency (marginally) for seeking strong ties to others. This conclusion is however
somewhat week, as can be seen from the 96% Credibility interval in Figure 11,
which covers the origin. There also seems to be a tendency for actors to strive
for ”equality” in their relations. The sign of β2 suggests that it is unattractive
to have discrepancies in the dyads, and that actors wants to match the strengths
of their out-going ties to the strengths of their in-going ties. For the model with
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mean STD mean STD
α, activity in rate −.23 .24 −.17 .55
β1, activity .34 .17 −5.40 1.65
β2, relation dissimilarity −.30 .03 −.29 .03
β3, low citation .33 .10 .32 .10
β4, citation dissimilarity .14 .100 .08 .099
β5, transitivity .0024 .00097 .0033 .00105
β6, loss of strength 1 −11.0 3.3
β7, loss of strength 2 −12.5 3.3
β8, loss of strength 3 −10.0 3.3
β9, loss of strength 4 −9.9 3.4
ρ, constant in rate 3.26 0.21 3.41 0.60

Table 2. Posterior means and standard deviations for models fitted
to original data values for the EIES data

effects added for breaking of ties with different strengths, the conclusions are again
similar to the dichotomized case (Table 2, and Figure 12). As one would expect,
if a change to an actors composition means that the actor has to decrease the
strength of an established relation, this contributes negatively to the attractivity
of that configuration. These effect has however to be interpreted in relation to the
overall out-degree effect, which for this model has become negative.

The performance of the algorithm for the valued data is comparable to the per-
formance for the dichotomized data. The acceptance rates for the 7-parameter
(11-parameter) model were .61 (.49) and .22 (.13) for the latent walks and param-
eters respectively. The cardinality of the space of all possible walk is however con-
siderably greater. Whereas the minimum number of changes for the dichotomized
data was 154, for the original data values this becomes 371. Possibly because
of high posterior correlation between the degree related parameters, β1 and β6

through β9, the 11-parameter model takes a long time to settle. Interestingly, the
stability of the algorithm is unaffected by the long excursions taken by the degree
related parameters. It is instructive to study the trace plots in Figure 13. The
Figure plots the deviations from the grand mean (as estimated for every 50’th
iteration with the first 80,000 iterations discarded) in covariance norm (covariance
estimated from same subsample as the mean). Comparing the top two panels with
the bottom panel, we can state that the algorithm is remarkably stable for α, ρ
and β2 through β5 and the conditional posterior ordinate considering that β6 move
as slowly in the parameter space as it does.

5. Concluding remarks

In this paper we have shown an alternative to the methods of moments esti-
mators for longitudinal social network data. The main benefit is the more precise
measure of uncertainty in the inference procedure that comes with the posterior
distributions. We were also able to extend the class of models for longitudinal
social networks both with respect to the mechanisms that drive network evolution
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Figure 11. Marginal posterior densities for valued data with ef-
fects si1 to si5, with 95% Credibility intervals, and posterior means
◦

as well as the actual type of data. This was accomplished by focusing on the key
components of the embedded chain rather than defining the model in terms of
the generator matrix and the transition probabilities. The embedded chain also
provides a natural way for defining latent variables with which observed data is
augmented for inference purposes. Data augmentation ensures that flexibility of
the model framework does not hamper the ability to conduct inference and en-
ables exact Bayesian inference – with bonuses such as the analysis of intermediate
paths; posterior odds; various conditionings; etc.

Although the inference procedure entails augmentation with data with a high di-
mensional support with many combinatorial quirks, the algorithms seems to work
very well. Naturally, simultaneous sampling of parameters and latent variables
has as a result that the chain moves slowly in the parameter space (and more so
for the logit specification). This could however be considered a low price to pay.
The number of evaluations of the complete data likelihood for the algorithm is in
general of the same order of magnitude as for the MCMC implementation of the
method of moments. The latter also relies on sampling from the sample space but
the sampling is not made conditional on data in the same manner as is done here
and as a consequence the precision is considerably smaller.

The advantages of analysing valued data rather than dichotomous data, when
possible, were discussed. The analysis on valued data that was actually carried



34 JOHAN KOSKINEN

Figure 12. Marginal posterior densities for valued data with ef-
fects si1 to si9, with 95% Credibility intervals, and posterior means
◦

out mostly served the purpose of illustrating the possibilities. It turns out that
the computational complexity of valued data is not much worse than for binary
data. Much research is required in this area for assessing how the relative wealth of
information contained in valued longitudinal social network data is most efficiently
modeled.

There are some necessary future extensions to be done, notably the incorpo-
ration of changing composition (Huisman and Snijders, 2003) and changing be-
haviour. Bayesian inference is particularly suited to dealing with the former and
in contrast to the ad-hoc imputation of Huisman and Snijders (2003), missing
observations can be treated on a modeling basis. Missing observations enter the
inference scheme as part of the set of latent variables. Especially interesting is the
combination of missing values and correlated normal random components, and
missing values and co-offending networks. Offenders not appearing in the police
files can hardly be said to be missing at random (see Sarnecki, 1999, on the dark
figure in criminal networks).

For the model framework as it has been presented here, more work is needed
on interpreting effects, their magnitudes, analytical properties, etc (some work
on these issues in the context of stochastic actor-oriented models can be found
in Snijders 2001 and Snijders 2004). This is especially essential for setting prior
distributions. In this paper we have only worked with vague, ”non–informative”,
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Figure 13. Trace plots of ||B(r) − B̄||Σ−1

B
for model with si1 through si9

prior distribution. There is a need for investigating prior distributions, both the a
priori analysis - quantifying prior information in a useful way - and the posterior
analysis - sensitivity analysis. Not only is this interesting because of the advantages
that comes with a fully Bayesian analysis but also because of the necessity of using
proper priors in the model selection process. Model selection is the next logical
step after having put forward a scheme for parameter inference.
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