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Abstract

Extreme values and other attained values of the degree variance
are treated for two classes of graphs. In Class 1 the order of the graph
is a fixed number n and the size of the graph is a fixed number r,
0<r< (g) In Class 2, n is fixed but r is not fixed. The structure of
the optimal graphs is investigated and it is shown that the maximum
value of the degree variance can be obtained from integer sequences
associated to the triangular numbers. Explicit formulas for the num-
ber of possible values and recurrence relations for the attained values
of the degree variance are developed.
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1 Introduction

This paper is concerned with attained values of the degree variance in graphs.
The degree variance of a graph on n vertices with r edges is defined as

i=1

where ; is the degree of vertex i and T = 23"z, = 2r/n. If Q = Y f
i=1

denotes the sum of the squares of the degrees we have that s = % — (2—;’)2 .
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Hence, if we multiply s? by n? we get an integer valued quantity, denoted z,

z = 71282

nQ — 4r?.

For graphs with fixed values on n and r, there is a one-to-one correspondence
between possible distinct values on @) and s?.This paper will show that there
are some integer sequences associated to z and (), that are of theoretical
and/or practical interest. An example is the connection between the integer
sequence

1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1, ...

and the number of possible values attained by @ for fixed n and r. A related
sequence is

1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6, ....

The distinct values attained by () are also connected to these sequences. The
importance of knowing the possible values of () is illustrated by Hagberg
(2003b) who shows that for certain random graphs it is possible to improve
on common approximations to the probability distributions of the degree
variance.

Two classes of graphs are treated here. In Class 1 the order of the graph
is a fixed number n and the size of the graph is a fixed number r, 0 < r < (Z)
In Class 2, r is not fixed. Section 2 treats the maximum value of the degree
variance and Section 3 the minimum value of the degree variance in the
two classes. In Section 4, we develop a counting formula for the number of
possible values of the degree variance. Finally, Section 5 treats other attained
values of the degree variance.

2 The maximum value of the degree variance

2.1 Class 1

For graphs of order n and size r, the maximum value of Q = >~ z? and/ or
i=1

52 = % — (2—71")2has been treated in at least seven papers and one textbook
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known to the author: Snijders (1981a, b), Boesch et al.(1990) , Mahadev
and Peled (1995), de Caen (1998) , Peled et al. (1999), Caro and Yuster
(2000) and Hagberg (2000). The proof by Caro and Yuster is based on the
connection between the number of triangles in the graph GG and the maximum
value of (). Another method is to use the connection between threshold graphs
and the maximum value of (). Several equivalent properties may be used to
characterize the threshold graphs and they are treated in detail by Mahadev
and Peled (1995). Three of the equivalent properties are given below:

(1) There exists some hyperplane that strictly separates the charac-
teristic vectors of the independent sets of vertices of G from those of the
non-independent sets.

(2) Every three distinct vertices 1, j, k of G satisfy the following con-
dition in terms of the adjacency indicators z;; for vertices ¢ and j in G:
zix < xji for all k # 4, j whenever z; < z;.

(3) G can be constructed from the one-vertex graph by repeatedly
adding an isolated vertex or a universal one (a vertex adjacent to every other
vertex).

The first property gives rise to the name ”threshold graphs”. We use here
the second property and the fact that a graph G and its complement G has
the same degree variance s.

Theorem 1 Consider graphs of order n and size r. If G is such a graph of
mazximum degree variance, then G has the threshold property that z;; < x
for all k # i, j whenever z; < x;.

Proof. We prove the theorem by contradiction. If G does not have the
threshold property, then a graph G* can be constructed which has larger
degree variance. To see this, assume that z; < z; and x; > x;, for some
distinct ¢, 7, k. Hence z;; = 1 and z;;, = 0. Let G* be the graph obtained
from G by moving the edge from (i, k) to (j,k) so that zj, = 0, =5, = 1,
r; = x; — 1, and x = x; + 1. It follows that Q" = Q +2+2z; — 2x; > Q +2
since x; > z;, i.e. Q* > Q and s > s°. W

Theorem 2 Consider graphs of order n and size v satisfying the threshold
property that x;, < i, for all k # 1, j whenever x; < x;. If G is such a graph
of mazimum degree variance, then G consists of either
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1) a complete subgraph, at most one other vertex adjacent to some of the
vertices in the subgraph, and possibly some isolated vertices, or

2) a set of saturated vertices, possibly some independent vertices, and at
most one other vertex adjacent to all the saturated and some of the indepen-
dent vertices.

Proof. The optimal graph of type 1 has r = (m; 1) +t with 0 <t <m and
m < n if there are m connected vertices and n—m isolated vertices. Note that
t = m — 1 implies that r = (7;) and that there is a complete subgraph and
isolated vertices only. The optimal graph of type 2 hasr = (n — 1) m— (’;) +t
with 0 <t <n— (m+1) and m < n if there are m saturated vertices and
n—m non-saturated vertices of which one is adjacent to t of the non-saturated
vertices. Note that m = n implies that ¢ = 0 and the graph is complete. For
m < n and t = 0 all non-saturated vertices have degree m.

In order to prove the theorem by contradiction we assume that G is a
graph satisfying the threshold property but not being of type 1 or type 2 and
we show that there exist a graph G* satisfying the threshold property and
being of larger degree variance than G.

Let G satisfy the threshold property and consist of a complete subgraph of
order m—1 and two (or more) other vertices connected to ¢; and ¢, vertices in
the subgraph, respectively, where t; +t; =t, 0 <ty < t;. Figure 1 illustrates
a case of the adjacency matrix of G. Assume x4, n1 = 1 and x4, 41.m = 0.
Then xy, = m, Typy1 = to, Ty 41 =M — 2, Ty = 1.

—_
—_

m
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Figure 1. The adjacency matrix of the threshold graph G.



Let G* be the graph obtained from G by moving the edge at (to,m + 1)
to (t; + 1,m). Now

Ty, = Ty —1l=m—1,
Tppy1 = Tmg1— 1L=1 —1,
Ty = Ty tl=m—1,

xy, = Tpm+1l=t+1,

and it follows that

Q* == Q+4+2($t1+1+$m—$t2 —.Tm+1)
= Q+4—|—2(m—2+t1—m—t2)

Hence Q* > @ with strict inequality if 5 < t;. When ty initially is
equal to t;, repeated application of this technique leads to a graph with
Q* > @@ . When initially there are more than two other vertices connected
to the complete subgraph, the same technique can be repeatedly applied to
move the ”last” 1 to the "first” 0 in the columns of the adjacency matrix
corresponding to the extra vertices.

A similar argument can be applied to a graph satisfying the threshold
property that consists of a set of saturated vertices, a set of independent
vertices, and two or more other vertices connected to some of the independent
vertices. W

The optimal graph of type 1 with r = (mz_l) +tand 0 <t <m —1 has

t vertices of degree m — 1
m — 1 — t vertices of degree m — 2
1 vertex of degree t

n — m vertices of degree 0,
and

Q = ttn—17"4+(m—1—1t)(m—2)
2+ (2m—3)t+ (m—1)(m—2)°.



Note that m is given by m = 1 + L% + 27“J where L% + 27“J yields the
sequence

1,2,2,3,3,3,4,4,4,4,5,5,5,5,5.6, ...

for r = 1,2, .... For details about the sequence, see, Graham et al. (1994) or

Sloane (2003).
The optimal graph of type 2 with r = (n—1)m — () + t and 0 < ¢ <
n —m — 2 has

m vertices of degree n — 1
1 vertex of degree m +t
t vertices of degree m + 1

n —m — 1 — t vertices of degree m,
and

Q = m(n—17+m+t)*+m+1*t+n—m—1—1t)m?

= 24 (dm+1)t+m(n—17%4+ (n—m)m?

Here m is given by m=n —1 — B—}—\/n(n—l)—QrJ .

The sequence of optimal graphs of type 1 for r = 1,2, ... can be considered
as locally grown with edges added one by one in the order (1,2),(1,3),(2,3),
(1,4),(2,4),(3,4),(1,5),..., so that the rth edge is adjacent to vertices ¢
and m for r = (mgl) +t,t=1,...m—1, m=2,3,.... Note that t and m
are uniquely determined by r. We write m = m, and t = ¢, if we need to
specify m and t for distinct 7.

The optimal graph of size r has m connected vertices, and the last edge
connects vertices of degrees m —1 and t. The other edges all connect vertices
of degree m — 1. Before the last edge was added, its incident vertices had
degrees m — 2 and ¢t — 1. Therefore the increment in @), say @), — @), _1, when
the rth edge is added is seen to be

Qr— Q1 = (m—1)2—(m—2)2+tQ—(t—1)2
= 2(m+t—2)



for r =1,2, ..., with Qg = 0. It follows that

Qr = ZQ(mk+tk_2)

k=1

_ r(r—l)—r(a—3)a+6<azl>

for r = 1,2,..., and a = L% + \/27’J . The rth increment in () is given as
element (¢,m) in the following matrix.

m=2 m=3 m=4 m=>5

=1 2 4 6 8
t=2 6 8 10
t=3 10 12
t=4 14

We see that % =r—1+a-— (‘21) yield the sequence

1,2,3,3,4,5,4,5,6,7,5,6,7,8,9,6,7,8,9,10,11, ....

We collect these results as the following theorem
Theorem 3 For type 1 graphs of order n and size r, the mazximum degree

variance 18 given by
max 21\ 2
S?nax (T) = Q - <_)
n n

where
Qmax = t* 4+ (2m — 3)t + (m — 1) (m — 2)?

and t and m are determined by r = (m2—1) +tand 0 <t < m so that
m=1+ E +V QTJ . Alternatively



T

Qmax — QZ(mk+tk—2)

k=1
1
= T(r—l)—r(a—3)a—|—6(al_ )
where tp and my are the values of t and m corresponding to r = k for

k=1,2,....7 anda= E—}—\/Q_rj

Corollary 1 For all graphs of order n and size r, the mazimum degree vari-
ance is given by the largest of the two values s>, (r) and s> ((") — 7“) :

max max 2

The optimal graph of type 2, mentioned in Theorem 2, with r = (n — 1) m—
(Tg) +tand 0 <t <n—m—2 has

m vertices of degree n — 1
1 vertex of degree m + ¢
t vertices of degree m + 1

n —m — 1 — t vertices of degree m,
and

Q = mn—1)"+m+t)’+m+1)°t+(n—m—1—1t)m?
2+ @Am+1)t+m(n—1)7°+ (n—m)m>.

Here m is given by m =n — 1 — B—}—\/n(n—l)—QrJ :

A similar incremental procedure can be advised for graphs of the second
type. The sequences of optimal graphs of type 2 forr = 1,2, ..., (Z) are consid-
ered as globally grown with edges in the order (1,2),(1,3),...,(1,n),(2,3),
(2,4),...,(2,n),(3,4),.... We omit the further details and close this section
with the following conjecture:

Conjecture 1 For graphs of order n and size v we have

QQmaX - leax Z 0 Zfr S % - ? - Ln(3?277)J

where Q1 max 15 the mazimum sum of squares for graphs of type 1 and Q2max
18 the maximum sum of squares for graphs of type 2.
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The conjecture is true at least for n < 150.

2.2 Class 2

Theorem 4 A disconnected graph of order n has mazximal degree variance if
and only if it consists of k isolated vertices and a complete subgraph on the
other n — k = m wvertices. A connected graph of order n has mazximal degree
variance if and only if it consists of k wvertices of degree n — 1 and no other
edges.

Proof. We use the fact that a graph G and its complement G have the
same degree variance s?. Let G denote graphs of type 1. From Section 2.1
we have

n?s? (Gy) = n((m—l)(m—2)2+2(m+t—2))—47’2

— n((m—l)(m—2)2+2(m+t—2))—4((m2_1)+t>

= n—4)t*+n2m—3)—4(m—1)(m—2)|t
+(n—m+1)(m—1)(m—2)*

= fm(t)

For n < 4 it is easy to show that a complete graph on n vertices and no
more edges yield the maximum value of f,, (¢). For n > 4 we see that f,, (t)
is a convex function of ¢, and for a fixed m, f,, (¢) has a minimum in ¢ for a
unique t = t,,. That is
t=m-—1ift,, <0
max fp, (t) occurs for t=0orm—1if0<t, <m-—1
t=0ift,, >m—1.

In all the cases f,, (0) or fu11(0) = f(m —1) is the optimal (maximal)
value of f, (t). Therefore

o0-m(5) e ()

Theorem 4 is identical to the conjecture given by Caro and Yuster (2000),
hence the conjecture is proved.
To determine the optimal m, we let n — mg, = k.
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Theorem 5 For graphs of order n, the mazximal degree variance is given by

2
Silax = k(n—k) (n—_k—l)

n
1
where k = VhL J .

4
Proof.
s kT (n—k)(n—k-1-7)°
T n
B (m—k—1
where 7 = (n=k)n-k-1)
n
that is
—k—1\?
2 -k (222
st = kln—h) ("=
and it follows that s2_ = max s3. By writing
) k+1\°
sp=Jfulk)=k(n—Fk)(1-— "

it follows that
foo1 (k) < fo (k) for all k
and
fa(k)=0for k=0, n—1, n.
Further, denote by k, any value of k£ for which
fu(k£1) < fu (k) .
That is, k should satisfy the inequalities A and B below.

A:0<kn—kn-k-12—(k+Dn—-k—1)(n—k—2)?
4k* — (5n — 8)k + (n — 2)* < 0
a, <k <A,
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where

5n — 8 — v/9n2 — 16n A 5n — 8 +v/9n2 — 16n
ap = 5 n —
8 8

B:0<kn—kn—k—1*~(k—1)(n—k+1)(n—k)?
4k* —5nk+n(n+1) >0
k<b, ork> B,

where.

b _ 5n—+/9n? — 16n B _ 5n++v9n? — 16n
" 8 o 8 '
That is, k& should belong to the interval [a,, A,] but not to the interval
(bn, By). Since b, = a,+1 and B,, = A,,+1, this means that b,—1 < k,, < b,,.
If b, is an integer both b, — 1 and b, are possible values for k,. Otherwise
there is a unique k, = |b,].
If we rewrite b,, as

— 5n—\/9n2—16n_n+3n<1_ } 16)

8 T 48 In

we see that v, = % Using a generalization of the binomial theorem, it can
be shown that

SR G [C))
- 230506

Hence, for n > 2 we have that 1 <, < 2 i.e., b, is an integer if and only if
n=2. Thus, k, = |2 +7,] is unlque for n > 2 and

n+1<b <n+1 > 2
13y yTy o

Thus, since the cases n = 1 and n = 2 are trivial, we have k,, = L% + ﬂ =
L"T“J foralln. W
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3 The minimum value of the degree variance

3.1 Class 1

The degree variance is zero for any m-regular graph and we need the following
result from graph theory.

Theorem 6 (Chartrand and Lesniak (1996)) If n is even it is possible to
construct m-reqular graphs for m = 0,1,2,....n — 1 and if n is odd it is
possible to construct m-regular graphs for m =0,2,4,....n — 1.

Theorem 7 Consider graphs of order n and size r. If G is such a graph of
minimum degree variance, then G has k vertices of degree m + 1 andn — k
vertices of degree m, where m = LQ—U and k = 2r —nm. The minimum degree
variance 18 given by

2. =0(1-0)

min

where

Proof. The mean degree T = m + 60, 0 < 0 < 1, and 2r = nm + k,
0<O<n If %T = m where m is an integer, then 8 = 0, n is even if m 1is
odd, and G should be reqular with all degrees equal to m, i.e. an m-regular
graph. Otherwise G should have n (1 — ) vertices of degree L%’“J =m and nf
vertices of degree m + 1. To obtain an optimal graph, we either construct an
m-reqular or an (m + 1)-reqular graph. If the m-reqular graph is constructed,
we add k/2 edges with no common vertices. If the (m + 1)-reqular graph is

constructed, we remove (n — k) /2 edges with no common vertices. Hence,

s n(1-0(m-7)+nb(m+1-7)°

min ~

n
where T = 2—7: =m+ 0. It follows that
s2m = (1—0)0*+0(1-0)
= 0(1-9).
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The optimal graph is not unique, for instance, consider the three graphs
in Figure 2. They are all of order n = 7 size r = 9 and have m = 2,k = 4.

Figure 2

Both G; and G5 are obtained by adding (k/2) = 2 disjoint edges to an
m-regular graph for m = 2, n = 7. However, there may also be other ways to
construct an optimal graph. The graph G5 in Figure 2 is the disjoint union
of two regular subgraphs and for n —k > m and k > m + 1, it is possible to
construct such optimal subgraphs . This follows since

g 3 m-reg of order n — k > m

neven eYenSoq 3 (m + 1)-reg of order k > m + 1
k odd so 4 m-reg of order n — k > m
n odd, m odd :>{ n —keven so 3 (m+ 1)-reg of order k > m +1 |
k even so 4 m-reg of order n — k > m
n—koddsod (m+1)-regoforder k >m+1 |’

n odd, m even = {

The minimum value of () is given by

Qmin = n(silin—{—TQ)
= n[(Z-m)(1-Z+m)+7°

_l’_
2 2
= 2r— {—TJ (n—4r+n {—T) .
n n
In particular, r < 7 implies that Qpu, = 2r.
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3.2 C(Class 2

In Class 2 there is no restriction on the size of the graph and any m-regular
graph is obtainable for n even and any 2m-regular graph is obtainable for n
odd. The degree variance for any m-regular graph is zero. Hence, min s% = 0
in Class 2.

4 Counting the number of possible values of
the degree variance

Introduce the notation M, , for the number of possible distinct values of @
among the graphs of order n and size r. For small and large values of r, we
have the following explicit result. Note that M, , does not depend on n for
the range of r considered.

Theorem 8 Consider graphs of order n and sizer < 5 orr > (g) — 5. For
such graphs we have

3 1
M,, = (T; )—a(r+2)+<a;r )

where a = B + /2 (r+ 3)J . An upper bound is given by M, , < (;) + 1.

Proof. From Section 2.1 we have that the maximum value of @ for r < %
is obtained if one vertex has degree r and r vertices have degree 1. All other
vertices are isolated. This graph is a star and the maximum value of @) for
such a graph is r (r +1). The graph that yields the second highest value,
has one vertex of degree r — 1, two vertices of degree 2 and r — 3 vertices of
degree 1 and so on (see Figure 3). Let A (t) denote the maximum value and
B (t) the minimum value of ) when we move t edges from the center of the
star. A (t) is obtained when we let ¢ moved edges join one of the peripheral
vertices with ¢ other peripheral vertices. Then we have 1 vertex of degree
r —t, 1 vertex of degree 1 + ¢, t vertices of degree 2 and r — 2t — 1 vertices
of degree 1. We have that

A==t +t{t+4)+r
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for ¢ < 1. The minimum value B (¢) is obtained when we let the ¢ moved
edges become isolated, so that we have 1 vertex of degree r —t and r — ¢ + 2t
= r + t vertices of degree 1. We have that

Bt)=(r—t)(r—t+1)+2t.

To see that the difference between any two consecutive values of @) is 2
from A (t) to B (t), we first note that the A (¢) graph has t vertices of degree
2. Then, consider an edge connecting the vertex of degree ¢t + 1 with a vertex
of degree 2. If we let this edge connect the vertex of degree ¢ + 1 with a
previously isolated vertex, we reduce () by 2. By repeating this ¢ times, we
reduce ) by 2t. This yield a graph with 1 vertex of degree (r —t), 1 vertex
of degree t + 1 and r — 1 vertices of degree 1 (See the third graph for ¢ = 2 in
Figure 3.). Move one of the edges connecting the vertex of degree t 4+ 1 with
a vertex of degree 1 to two previously isolated vertices. Now we have reduced
Qbyt?— (t+1)*+1= —2t. By connecting the t — 1 edges of the vertex
of degree t with ¢t — 1 star vertices of degree 1, we increase @) by 2(¢t — 1).
The overall change of @ is 2(t — 1) — 2t = —2. We now have an A (t — 1)
graph plus one edge connecting two previously isolated vertices. We repeat
the process until we obtain a star with » — ¢ edges plus 2t vertices of degree
1 (See the last graph for ¢ = 2 in Figure 3.) i.e. a B (t) graph.

t=0 O%%g
o R oK K
3 3%

o)
o
2.

Figure 3. Graphs with r=7 edges and t=0,1,



Al —k

k

t A(@) 2 4 6 8 10 12 14 16 18 --- 2((")9) 1)
0 r*+r - - oo - oo oo
1 (r— 1) (1+4)+r X X - - - - - - - - -
2 (r 2) 2(2+4)+r X X X X X - - - - - -
3 ( 3) 3(34+4)+r X X X X X X X X X - -
X X X X X X X X X e -
m (r—m) +m(m+4)+r x x x x x X X X X X X
Table 1. The distinct possible values of @ () for each t. Each x means a

possible value.
From Table 1 we see that there are (t+2) distinct values for each t. When
A(t+1) > B (t) the difference between any two consecutive values is 2 from
A(t) down to the minimum value 2r, which also can be seen from Table 1.
The difference B (t) — A(t+ 1) is
B)—A({t+1)=2(r—=3)—t(t+7).
and from the inequality
2(r—3)>t(t+7)

solved for ¢, we have

o - (g
) (g>+1_<a4 {2(r—3)2—t(t+7)_11)
= (T+2)2(T+3;Oéa(6r+13a)

= (T;3) —a(r+2)+<a;1).
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For r =1, ..., M, , yields the sequence
1,2,4,7,10,14,19, 25,31, 38, 46, 55,65, 75, ....

According to the The On-Line Encyclopedia of Integer Sequences (Sloane
(2003)) the convolution of the natural numbers 1,2, ..., with the sequence

1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1, ...

denoted by A023532 in Sloane (2003), yields the sequence 1,2, 4,7, 10, 14,19, 25,
31, 38,46, 55, ..., here denoted by ¢, or A023536 in Sloane (2003). One alter-
native, but not closed formula for ¢, is given by the author in The On-Line
Encyclopedia of Integer Sequences (Hagberg. (2002)).

We state the following theorem:

Theorem 9 M,,, = c, for graphs of order n and sizer < % orr > (g) - 5.

Proof. The sequence A023532 takes the value zero for m(m + 3)/2, and
the inequality

m (m + 3)
— 5 S

< 3—1—1/2 +9
m —= T+ —1.
- 2 4

Consider the case r = 9 in Table 2.

r,

solved for m, gives
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Sum
9 8 7 6 5 4 3 2 1 45

101101110

90 76 04 3 20 31

Table 2. The convolution of the natural
numbers 1,2, ...,9 with A023532.

We see from Table 2 that cg is given by

09:w—@@“)—(?””)):%

and in general, ¢, is given by
N ]
L ey T ey
" 2 2

m=1

= %— {—g—F\/Qr—%%J (r+1)— mZ —m(W;—i—i’))

_ (7"+2)2(7"+3> - éb (6r + 13 — 1?)

_ (T;?’) —b(r+2)+(b§1>

where b = E+\/27’+%J
Alternatively, since A023532 or 1,0, 1, 1,0, 1,1, 1,0, 1, 1, 1, 1, ..., is
given by

1 1
5t 2(r+1)J+1— 5t 2(r+1)+1J,

the convolution of the natural numbers with A023532 is given by

¢ = Z( %—i— 2(t+1)J+1— %—i— 2(t+1)+1J>(r+1—t)

t=1

_ 2 (r+3) —é EJF\/WJ (13+67“— {%JFWJQ)

2
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The two formulas obtained for ¢, and the formula for M, , look different,
but they yield the same sequence. For r = 1,2, 3, ..., the rth element of the
sequence

1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, ...
is given by
1
{§+J§J
It follows that

{%+ 2&+3w

yields the sequence
3,3,3,4,4,4,4,5,5,5,5,5, ...

and

E + /20 + 2)J

yields the sequence
2,3,3,3,4,4,4,4,5,5,5,5,5, ...

For—%§6<l

W~

1 1
bme _ bme |
The lower bound of ¢ is given by the solution to the inequality

y+¢2mm+1y—m

2 2

1
+4+6:§+VMa+D+2+52a+1

and the upper bound is given by the solution to

1 2(a(a+1)—4)
§+\/

1
5 +4+6:§+ ala+1)+d6<a—+1.
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Hence
1 9
_ 2 Z
{2 + r 4+ 4J

2,3,3,3,4,4,4,4,5,5,5,5,5, ...

yields the sequence

forr=1,2,3,....
Furthermore, let

1 1
ar:bjt 2(7’—1—3)J andb,«:b—i- 2(T+2)J=Gr1,7“:1,2;3a---

That is, if a, = a,_; we see that

6r + 13) (a, — a,_1) — (a2 — a>_ =0,
r r—1

and a, —a,_1 =1&7r= (‘g) — 2, ie.

6(61(61_—21)_4> +13— (a®—(a—1)*) =0, a=3,4,5,...

Thus
M, , = c,.
|

For other values of r < n — 1, we can determine M, , by calculating the
minimum value of ) and adjusting B (t). When r = n — 1, the minimum
value of Qis 2 (2r — 1), B(t) = (r —t)* +4t+(r —t) and B(t) = A(t + 1) =
2(r—3)—t(t+5). This yields

r(r+1) 2(2r—2)

,, = "R 2 —2+a—%(t0(2(7“—3)—75(75—1—5)))

o r=1)(r+2) 1 5
= 5 +6a(5—6r+a)

- (Tgl)—l—a(r—l)—i—(a;l),
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where a = L%—i—\/gj andr=n—-—1> 2.

For (n—1) <r < n(n;l), M,,, is more complicated to determine due to
the structures of the graphs that yield the maximum value of ). Anyhow,
results from computer calculations show that the difference between two con-
secutive values attained by () is 2 when @) is not too close to its maximum

value.

5 Other attained values of the degree vari-

alrce
5.1 Class 1
By ordering the distinct values of z = nQ — 4r2, we get the integer sequence
21 < zg < -+ < zZp where z; is the minimal value given in Section 3.1 and

Zm is the maximal value given in Section 2.1. In Section 4 we have seen that
the difference between two consecutive values is 2 when () is not too close
to its maximum value. Since z = nQ — 47?2, the following recurrence relation
holds for graphs of order n and size r :

zj:2n—|—zj,1 forj:2,...,t§m—1 (51)

where z; is given in Section 3.1. If the edges are generated according to the
Uniform(n, r) random graph model (See Hagberg (2003 a, b).) the probabil-
ity to obtain a z-value close to its maximum value decreases when r — (Z)
For large n this probability is very small and the recurrence relation given
by (5.1) is useful even if ¢ is not known. All possible values of the degree

variance times n? for graphs of order 7 are given in Table 3.
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10

12,26

6,20,34,48

6,20,34,48,62,76

12,26,40,54,68,82,110
10,24,38,52,66,80,94,108,150
0,14,28,42,56,70,84,98,112,140
10,24,38,52,66,80,94,108,122,136
12,26,40,54,68,82,110,124,138
6,20,34,48,62,76,00,104,118,132,146,160

OO || T =W DN~ 3

—_
=)

Table 3. The possible values of z = n?s? for graphs of
order n = 7 and size r = 0, ..., 10.

The possible values of z in graphs of order 3, ...,6 and size 0, ..., (’;) are
given in Hagberg (2003b).

5.2 Class 2

For graphs with no restriction on size, the recurrence relation is given by
zj:2n—|—zj,)\ for]22,,t§m—1 (52)

where ) is a integer valued lag length of the recurrence relation. If the number
of edges are generated according to the Bernoulli(n, p) random graph model
(See Hagberg (2003a, b).) the probability to obtain a z-value close to its
maximum value decreases for fixed p when n increases. For n > 9 this
probability is very small, even for p close to 0.5, and the recurrence relation
given by (5.2) is useful even if ¢ is not known. All values in the left tail can
be derived by the formula for the minimum value of s? given in section 3.1.
In particular, the first three values of z; are

217 = 0, 22=2(n—2) , 23 =2n if n is even, and

27 = 0, 22=n—-1,23=2(n—2) ifnisodd.
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The parameter A i.e. the lag length, tell us in how many subsequences
21, ..., Zm can be separated so that the difference between any two consecutive
terms, except for the right tail, is 2n in every subsequence. From Table 3
where n = 7, we can see that \ = 4,

Zj:]_4—|—2j_4721:072226723:10724:12

and in this case \ is equal to the size of the set of initial values. In general,
A and the initial values are obtained in the following way: Calculate the
minimum value of z for every r < (Z) /2 and order the distinct minimum
values from a; < ay < - -+ < a,,. Denote the set {ay,...,a,,} by A. Remove
from A such elements a; if a; + 2n = a; for ¢ = 1,...,m to obtain a new set
{b1,...,bm} denoted A. The number of elements in A equals the lag length
A of the recurrence relation (5.2). Further, A C I, the set of initial values,
and [ consists of {by, ..., by} and (b; + 2n) < b, for i = 1, ..., m. It should be
noted that I might contain elements (b; + 2n) ¢ A. The reason is that the
minimum value z; for fixed r might be larger than z, for another r. More
formally we have

= A

Z(n) = {znr):5=12... ,r=0,1,...}
A(n) = {z:z:mrinZ(n)}
D(n) = {z:z+2nzmrinZ(n)}
A(n) = A(n)— D(n)
|

Z (n) = {z . 2 < maxmin z;(n,) € A(n)}

T J

I(n) = A(n)UZ (n)
For example, for n = 15 we have

A(15) = {0,14,26, 36,44, 50, 54,56},
A(15) = {0,14,26,36, 50,54},
I(15) {0, 14, 26, 30, 36, 44, 50, 54},
zj = 30+ z;_¢ and
Z9 = 56, 210 = 60, 211 = 66,
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The lag length of the recurrence relation (5.2) and the initial values for
n = 7,...,20 are listed in Table 4. Note that for n = 4,12,20,28, ..., (5.2)
can be written as z; = n + z;_y/2. For n even, the lag length A\,_; > A, and
under the Bernoulli(n, p)- model this give rise to less smoother distribution
of the degree variance when n is odd. The implications of the smoothness of
the distribution are discussed in Hagberg (2003b).

| n | A | The initial values of z = n?s?

714 |0,6,10,12

82 [0,12,16

9 |4 081418

10]3 ]0,16,20,24

11]6 |0,10,18,22,.24.28.30

124 |020,24,32.36

137 |0,12,22,26,30,36,38,40,42,48

14| 4 | 0,24,2840 48

15[ 6 | 0,14,26,30,36,44,50.54

163 | 0283248

1719 10,16,30,34.42,50.52.60.66,68,70.72
18 |4 | 0,32.36,56.68,72.80

19 | 10 | 0,18,34,38.48,56,60.70.72.76.78.84.36.88.00
20 | 6 | 0,36,40,64,76.80,84,96

Table 4. The lag length and initial values of

Zj = 27’L + Zj,)\.

All possible values of z for graphs of order n =
Hagberg (2003b).
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