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Abstract

Degree moments and functions of degree moments are investigated
for three random graph models. The degree of vertex 7 in a graph is the
number of edges incident to vertex 7. Exact and asymptotic formulas
are given for various degree statistics, in particular the degree variance
S2.
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1 Introduction

In statistical applications of random graph models the degree moments, and
functions of the degree moments, have been found useful both as summary
statistics and for inference on particular random graph models. See, for
example, Hagberg (2000, 2003), Snijders (1981a), and Wasserman & Faust
(1994). Section 2 introduces the three random graph models of this paper.
The moment notation and formulas for basic statistical measures are given in
Section 3. Sections 4 and 5 give particular and general formulas for various
mixed moments of the type EX{™ - - - X;™, where Xi, ..., X; are the degrees
of ¢ distinct vertices in a random graph of order n. Here ¢ is the dimension of
the moment and m = m+...+m; is the total order of the moment. Section 6
gives some applications to degree statistics with focus on the degree variance.



2 Degree distributions for some graph mod-
els

2.1 Uniform graphs of order n and size r

Let G (n,r) be the class of all graphs with r edges on n fixed labeled vertices,
G (n,r)| = (¥ ) where N = (3). If the r pairs of distinct vertices ¢ and j
connected by an edge, are chosen uniformly at random without replacement
among the N pairs, we get a random graph G that is uniformly distributed on
G (n,r). This is denoted by G ~ Uniform (n,r) or G ~ Uniform (G (n,r))

and we have

P(G=G)=p(G)= ﬁ for each G € G (n, 7).
Let X be the random adjacency matrix of G. The entries X,; in the n x n
zero-one matrix X indicate which pairs of vertices are adjacent. If vertex ¢
and j are adjacent, then X;; = 1, and if vertex ¢ and j are not adjacent, then
Xi; = 0. Obviously X;; = Xj; and by definition X;; = 0. The N elements
X,; for ¢ < j are

Xi; ~ Bernoullt (%) ,

but they are not independent.

Let X; be the number of edges incident to vertex i, i.e. the degree of
vertex i. We have X; = 377 | Xj; for i = 1,...,n. It follows that X; is
hypergeometrically distributed with selection size r and subgroup sizes n — 1
and N —n + 1. This is denoted by X; ~ Hypg. (r;n—1,N —n+1) and
means that
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Example: for n = 5, r = 8 we have that 2 < 2 < 4, p, = =, ps = & and
5

Pa = 13-
Note that neither X;; for all ¢ < j nor X, for all ¢ = 1,...,n are indepen-
dent. For instance, let

Xl = X12—|—U1 and
XQ = Xm—i—Ug, (22)

where U; = 2?13 Xi; and Uy = 2?13 Xyj. The multivariate distribution
of (X12,U1,Us) is hypergeometrically distributed with selection size r and
subgroup sizes 1,n —2,n — 2, N — 1 — 2(n — 2) which is denoted

(X12,U1,Up) ~ Mult.Hypg. (r;1,n —2,n—2, N —1—2(n—2)).

For details on the multivariate hypergeometric distribution, see, for instance,
Johnson, Kotz & Balakrishnan (1997).We have that

P(Xi=2,Xo=y) =pyy =P ((X12,U1,U3) = (0,z,y) or (1,z —1,y—1))
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2.2  Uniform graphs of order n

N
Let G(n) = U G (n,r). A random graph that is uniformly distributed on

r=0
G (n) is denoted G ~ Uniform (G (n)) or G ~ Uniform (n). In this model,
all 2V labeled graphs of order n have the same probability to occur, so that

P(G =G)=p(G) ZQLN for each G € G (n).

The adjacency matrix X of G has elements

1
X,; ~ Bernoulli (5) , 1 .



The vertex degrees are

1
2),i=1,2,..,n

X; ~ Bin(n — 1, 5

and the size of G is

1 — , 1

Note that here X;; for all i < j are independent but X, fori = 1,...,n are not
independent. If we use (2.2) again we have that X9, Uy, Us are independent
Bernoulli (%) , Bin (n -2, %) , Bin (n -2, %) so that

Pzy = P(Xi=2,Xo=1y)
= P((Xi12,U1,U02) = (0,2,9) or (1,z -1,y —1))
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2.3 Bernoulli graphs of order n and edge probability p

The Bernoulli model of order n and edge probability p, is a generalization of
the uniform model of order n. With probability p, 0 < p < 1, each pair of
distinct vertices ¢ and j is connected by an edge. Hence, G ~ Bernoulli (n, p)
means that P (G =G) = p"¢" " for each G € G (n,r) where r = 0,...., N
and ¢ = 1 — p. Now the adjacency indicators, degrees and size of G have the
following distributions

X;; ~ Bernoulli(p) ,i # j,
X; ~ Bin(n—1,p), i=1,2,...,n and (2.5)
R ~ Bin(N,p).



Here X,; for all i < j are independent but X; for ¢« = 1,...,n are not inde-
pendent. For instance, using (2.2),

Pzy = P(X1:~T7X2:y)
= P((X12,U1,U02) = (0,2,9) or (1,z -1,y —1))

n—2 o (N —2 9
= q( )pqu ? ( )pyq 2
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# DDy (2.6)

3 Degree moments

3.1 Degrees in a graph

Consider a graph GG on n vertices and r edges, i.e. a graph of order n and size
r. The number of edges incident to vertex i, the degree of vertex i, is denoted
by x;, and (x1,...,z,) is the degree sequence of G. The sum of the degrees
of the vertices of the graph is equal to twice the number of its edges, that is
S x; = 2r. The ordered degree sequence of G is the sequence (dy, da, ..., d,,)
obtained by listing the vertex degrees (x1, s ...,x,) in non-increasing order
(dy > dy > ... >d,). For example, with n = 4 and r = 2 we have 15 la-
beled graphs, 13 degree sequences (x1, ..., x4) and 2 ordered degree sequences
(dy,...,ds). One degree sequence, (1,1,1,1) is common to 3 labeled graphs,
but the other 12 labeled graphs have unique degree sequences corresponding
to the 12 permutations of the ordered degree sequence (2,1, 1,0).



3.2 Exchangeability

The degrees of the vertices in the models of this paper are exchangeable
random variables denoted X7, ..., X,,. In particular exchangeability means

EX; = EX,,
EX? = EX?,

EX;X; = EX1Xo,i# 7,

EX}X; = EX;X;=EX{X,,i#j],

EXZ-QXJ2 = EX?XZ,i#j and so on.

3.3 Moment notation
We use the following notation for single moments of order m
A, = EXT,
and
Amyooom, = EXT™ -+ - X[,

for mixed moments of dimension ¢, separate orders (my,...,m;) and total
order m = mq + ... + my. Due to exchangeability it is no restriction to
assume m, > mo > ... > my. For example, the moments of order 4 are
Ay, Asr, Aga, Asrr,and Aqn.

The factorial moment F (X, (X; —1)(X; —2) - (X; —m+1)) is de-
noted

B, = EX™.

It is well known (See, for instance, Graham, Knuth and Patashnik (1994).)
that powers and factorials are related according to

Z Sy — X Z Sy X P (3.1)

1=

where S, are the Stirling numbers of the second kind. Therefore we have
that

Am = SmiBs (3.2)
k=1



where Sk, the Stirling numbers of the second kind, can be explicitly given
by

mk—kif; ' (5) - (33)

The first few of these numbers are given in Table 1.

k

12 3 4 5 6
m
1 1
2 1 1
3 1 3 1
4 1 7 6 1
) 1 15 25 10 1
6 1 31 90 65 15 1

Table 1. Stirling numbers of the second kind, S,

3.4 Means, variances, covariances and correlations

If we use the notation above, we obtain the following expressions for the
means, variances, covariances and correlations.

EX, = A,
VarX, = Ay — A?,
Cov(X1,Xy) = Ay — A%,
Ay — A2

Corr(Xy, Xs) TR
2 —

where A, = Y 2™p, and Ay = ) > xTYpsy, and the p, and p,, are given
x x

in the previous section for the three models considered. This leads to the
formulas given in Table 2



Uniform (n,r) | Uniform (n) | Bernoulli (n, p)

E(X1) . o (n=1p
2'r(n27n72r> n—1

Var (X1) i T (n—1)pq
2r(n2—n—2r) 1

CO’U(Xl,X2> —m 1 pq

Corr(X0. X = T T

Table 2. Means, variances, covariances and correlations.

We see that the correlations have the same absolute value for all the
models and tend to zero for increasing n. In the sequel we will not treat the
uniform graph model of order n separately since it is a particular case of the
Bernoulli (n, p) model with p = %

4 Degree moments in uniform graphs of or-
der n and size r

Theorem 1 For the Uniform(n,r)-graph the degrees X; have moments

'r(n 1)

— EXT" = Z Sk ) (4.1)
form=1,2,... and N = (") Mixed moments are given by
m1m2 = Z Z ( > ( ):uklkg + <1 - %) :umlmg (42)
=0 ky=0
where
klzl kQZ:1 Sk Smarok ! (7, 2) (nk22) (klikz)
Hmymg = N—1
(kl—l—kz)

and 1* is obtained from u by replacing r by r — 1.

Proof. According to (2.1) X; has a hypergeometric distribution. Its
factorial moments are given by Johnson, Kotz & Kemp (1992), and they are

Lm0
)

B, = EX™



Hence, from (3.2)

i kak - Z Smk ( (;_1)

The mixed moments

Am1m2 = ElelXQmQ =K (X12 + Ul)ml (X12 + UQ)m2
r m m r mi 7 rm
= —E[(1+U1) 14 U)™ | Xp = 1]+ (1_N>E[Ul U™ | X19 = 0]
- —ZZ EUf UL | Xiz =1] + (1- ) BIUP05 | Xi2 = 0]
1 Ya N 1 Us
=0 ko=
where

(U1,Uy | X12 = 0) ~ Mult.Hypg. (r,n —2,n—2,N — 1 —2(n — 2))

and

Z Z Stk Smaks K11kl ( )(nk22> (m:m)

E(UUy | X1p=0) = 2zl —
(k1+k2>
= Hmym, (1) say.
Hence
mo r
m1m2 = Z Z (kl) ( ),uklkz ( 1) + (1 - E) ,umlmg (T) .
=0 ko=0

| |

Some particular formulas obtained from Theorem 1 are given below.

A = By,

Ay = B+ By,

A3 = B;+3B;+ Bs,

Ay = By+T7By+6Bs+ By,



and so on, where

B o= 2,
_ A1)
b = (n+1)n’
8 =3)r(r—1)(r—2)
By = (n+1)n(n2—n—4) ;
B, — 16(n—4)r(r—1)(r—2)(r—3)
m+2)(n+1)n(n2—-—m-—4) °
_ 2r 4r (r —1)
A= nin—1) (n+1)(n—1)
Ay = 2r An+2)r(r—1) 8m2—2n—1)r(r—1)(r—2)
nn—1) (n+1)n(n—1) m+Dnn—1)(n2—n—4)
Ay = 2r 4(44+n)r(r—1) 16 (n2 = 5)r (r — 1) (r — 2)

" nn—1) (+nn-1) (m+1)nn-1)(n2—n—4)
6n—=2)r(r—1)(r—2)(r—23)
n+2)nn—1)(n2—n—4)

Furthermore, by using
" 3
(50)
i=1

3! [(n n
= nA3 + 52(2>A21 + 3‘ (3)14111

12r (r—1) 8(n?—2n—2)r(r—1)(r—2)
m+1)nn—-2) (m+Dnn—-2)(n>—n—4)

we find that

Alll =

10



5 Degree moments in Bernoulli graphs of or-
der n and edge probability p

Theorem 2 For the Bernoulli(n,p)-graph the degrees X; have moments
A = EXT and Apym, = EXT" X3™ given by

- n—1
A, = Zsmk"“!< N )pk, (5.1)
k=1

Am1m2 - AmlAmz + (%) (Aml - A:m) (Amz - A:rm) ’ (52)
where A* is obtained from A by replacing n by n — 1.

Proof. A,, = > S,xBr and B, = (n — 1)(k) p* according to Johnson,
k=1

Kotz & Kemp (1992).
Write X; = Xi2 + Uy and Xy = X5+ Uy where U; = ) X, fori =1,2,

=3
and n > 3. Now X9, Uy, Us are independent Bernoulli (p), Bin(n —2,p),
and Bin (n — 2,p). Thus we obtain by conditioning on X,

Apymy, = E(X12+ Ul)m1 (X2 + U2)m2
= qEU™MEU® +pE(1+U)™ E(1+Uy)™.

Now
Ap = E (X2 +U)" = qBUT" + pE (1 + Uy)™
and
EU" = A7,
so that
E(1+U)" = w.

By substitution into the formula for A,,, .,

(Aml - qA:nl) (Amz — qA;;w)
b

Ay = gAL A*

miT Tm2

11



which simplifies to the expression given for A, /m,. ®

Note: it is also possible to use

F— +p2 S (k,>( ) 45,45

=0 ko=

Theorem 3 For the Bernoulli(n,p)-graph the degrees X; have moments
Amymams = EXT X5 X" given by

Amlmgmg == SA** A:;A::S

+pg° my (A — 4 ’;‘;)( s — 0A%)
Ar, = qAR ) A% (AL, — A%

_|_pq2( m q m1> pr;@( ms q m3>

+pq2( mi q m1> (p2m2 q m2) ms
Amy =245, + A7) (A5, — aAn,) (An, — aAT

+p2q( q 1 +q 1) (p4 2 q 2) ( 3 q 3)
Ay — a4 (Amy — 2045, +*AL) (AL, — a4,

+p2q( A ( qp4z ¢*An,) ( qA5)
Ay = aAm) (A = 0Am) (Amg — 2045, + ¢ As,

3 (Aml — QQA:M + QQA;‘);‘I) (A 2qu2 + qQA;;;‘Q)
+p p
X (Apy — 2¢A%,, + AL (5.3)

where A** is obtained from A by replacing n by n — 2.
Proof.

An = E(Xpp+ Xi3+U)™
= GFEUM +2pqE(14+U)" +p*E(2+U)"

12



where U; is Bin (n — 3,p) . Let EU" = A**. Now

A* _ A**
E(1l+U;)" =m—Tom
p
and
m A — AT = 2pgE (14 U)"
E@+U)™ = 7 om pgpq Cha)
Am — @Ay — 29 (Ay, — gA%)
(Am — 2945, + 2 A%)

2
Theorem 3 follows by substituting these expressions into

Apimoms = E (X12 + X153+ Up)™ (X12 + Xos + Us)™ (X3 + Xos + Us)™..

Theorem 4 For the Bernoulli (n,p)-graph with degree sequence (X1, ..., X,)
the mized moment Ay = EX,--- X, = Ay is given by

3]
A[t] = ZCtmptim

I_%J t—2m
= > Aln D mgm (5.4)

,,,,,

= ml (t —2m)!2™
where
L%J -m t—2m—2k
_ k t(n—1)
Ctm = ; (=1) mlk! (t — 2m — 2k)12m+k
Proof.

EXlXt:EZZXIJIXtJt

=t el
I#L it

13



Let ¢, be the number of sequences (ji, ..., j;) with m ”doubles” and t — 2m
"singles”. Here (j,,js) is a "double” if j, = s and j; = r and j, < js. Let e;;
be the event that (i, 7) is a "double” for 1 < i < j < t. We define

51:ZP(e,~j) ,ngZZP(eijﬂekl) g e

1<j i<j k<l

which equals
t 1’ N t—2Y1/ 1 \*
=) (=) o= )(2):6)
In general we have

S = (g)(tj)...(F?(;n—l))%(nil)gm

t!
= yform < |-
(t — 2m)Im!2m (n — 1)*™ P bJ

Now Cym/ (n— 1)" is the probability of exactly m ”doubles” and it can be
obtained as (See Feller (1970).)

-1 e (")

k=0

[5]-m #(n— 1)t72m72k

m = —1)F .
T2 D i = 2m = e

Each term with exactly m ”doubles” contributes p'~™ to the expected value
Apy and therefore

E
A[t] = Z Ctmptim-
m=0

14



Generally for the Bernoulli (n, p)-model we have,
t
Ay = E]]E(X™
i=1

¢ t
= EJ[EWi+2)™ = B[] am, (@)
i=1

i=1

where
U, = Z Xi; ~ Bin(n —t,p)
j=t+1

are independent for i = 1, ..., t and also independent of (X7 — Uy, ..., X; — Uy)
and (zq, ..., z;) = (X1 — Uy, ..., Xy — Uy) is the degree sequence of a Bernoulli (t, p)
model. Hence

EU;+2)™ = am,(x)

=¥ (”;) amk BU (5.5)

k=0

m; k

) mi\ .- N

= xml—{—g (k>xk§ Skj(n—t)(])]ﬂ.
k=1 j=1

Although the calculations based on (5.5) are straight forward, they are
somewhat cumbersome and they have to be followed by taking the expecta-
tion over (X; — Uy, ..., Xy — Uy). For large ¢ this is prohibitive. An alternative
approach is given by Frank (1979). Below follows the formulas for the mo-
ments of total orders 2, 3,4, and 6.

Ay = m—1D)p+(n—1)(n—2)p*

A11 = p+n(n—2)p2

15
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(n=1p+3n—-1)(n=2)p"+(n—1)(n—2)(n—3)p’
p+(n+2)(n—2)p*+(n—2)(n*—2n—1)p°
(n—1°p*+3(n—1)p%

(n—1)p+7(n—1)(n—2)p*+6(n—1)(n—2)(n—3)p*
+(n—1)(n—2)(n—3)(n—4)p*

p+n+6)(n—2)p* +3(n—2)(n(n—1)—4)p°
+(n—2)(n—3)(n(n—2)—2)p*

p+(n—2)(n+4)p*+[(2n—4) ((n— 1) (n—3) +4(n —2))]p’
+(n+1)(n—2)°(n—23)p*

(3n—1)p* + [(n+4)(n —1)(n — 3) +2(n + 1)(n — 2)]p*
+[(n+1)(n—-1)(n—-2)(n—3) —n(n—3)]p*

(n—1)"'p"+6(n—1)7%p’q + 3p°¢?
(n—1p+31n—-1)(n—-2)p*+90(n—1)(n—2)(n—3)p*
1+65(n —1)(n —2) (n—3) (n—4)p*
+15(n—1)(n —2)(n —3) (n —4) (n — 5) p°

+(n-1Mn—-2)n-3)(n—4)(n—>5)(n—6)p°

p+(n—2)(n+30)p*+15(n —2) (n* + 3n — 16) p*

+5 (n — 2) (n — 3) (5n® — 2n — 42) p*
+5(n—2)(n—3)(n—4) (2n* — 3n — 11) p°
+(n—-2)(n—3)(n—4)(n—>5) (n* —2n—4)p°

16



A42

A33

p+ (n—2)(n+16)p?

+2 (n — 2) (4n* + 15n — 59) p*

+(n—2) (n—3) (13n* 4 21n — 114) p*
+(n—2)(n—3) (7Tn® — 22n* — 49n + 136) p°
+(n—22%mn—3)(n—14) (n* —2n—17)p°

(3n+11) p* + (n® + 32n* — 69n — 64) p°

+ (n —3) (70’ + 28n* — 128n — 22) p*
+3(n—3) (2n* — Tn® — 17Tn* + 62n — 4) p°
+(n—3)(n—4) (n* =50’ +20n — 4) p°

p+(n—2)(n+12)p*+6(n—2) (n* + 5n — 16) p’
+(n—2) (n—3) (11n* + 23n — 94) p*
+3(n—2)*(n—3) (2n* —n—19) p°
+(n—2)"(n—3)7%1n—4)(n+2)p°

(3n45) p* + (n® 4 17n* — 30n — 40) p*

+ (n — 3) (4n® + 23n* — 59n — 26) p*

+2(n —3) (2n* — 3n* — 28n* 4+ 51n + 5) p°
+(n—2) (n—3) (n* — 5n® — 2n® + 26n — 2) p°

3p* + (6n* + 24n — 48) p’

+ (n* + 23n® — 81n® — 46n + 142) p*

+ (3n® — 6n* — 69n° 4 210n* — 42n — 132) p°

+ (n® = 9n® + 20n" + 26n" — 120n° + 58n + 36) p°

3(n+1)p2+(n3+12n2—21n—20)p3
+3(n—3 (n +6n% — 10n—6)p4
+3(n —3) (n* — 17n* 4 20n + 4) p°
+n(n —3)° (n® —3n* — 6n + 12) p°

17



Api1 = 3p°+2(3n* +6n—14) p’
+ (n* + 14n* — 40n* — 58n + 98) p*
+ (2n° + n' — 68n” + 145n* + 12n — 104) p°
+ (n® — 8n° + 13n* + 34n° — 96n* + 28n + 32) p°

Ay = 3(5n—1)p’ + (10n° + 9n® — 1050 + 50) p*
+ (n° + 9n* — 70n* + 68n* + 102n — 74) p°
+ (n® = ™n° 4+ 6n" + 40n* — 62n* — 18n + 28) p°

A111111 = (n — 1)6 p6 + 15 (n — 1)4])561 + 45 (n — 1)2])4612 -+ 15p3q3

6 Applications to degree statistics

6.1 Degree mean

In the Uniform (n,r) model, r is fixed and the degree mean T = 2r/n is not
random. Under the Bernoulli (n,p) model with N = () we have

n

2. Xi 2R 2

X =5 =22 ZBin(N,p)
n n n

and
—m  (2\" Rk
EX" = (=) > SuN®pt.
"=
In particular

EX = (n—1)p, (6.1)

and

VarX = Mpq. (6.2)

18



6.2 Degree variance

The moments of the degree variance S? = % Sy (Xi — 7)2 are essential for
the approximate distributions of S?. Hagberg (2000 and 2003) shows that
S? is approximately gamma distributed with parameters obtained from the
first two moments of S2. Another application of the degree variance under
the Uni form (n,r)-model, can be found in Snijders (1981b).

Theorem 5 For the Uniform (n,r)-graph the degree variance S* has ex-
pected value

2 _
ESQZQT(n n — 2r) (6.3)
n?(n+1)
and variance
)M —n—2r)(n2—n—2r —2
VCLTSQZST(T )(n®—n r)(n*—n r ) (6.4)

n2 (n+1)*(n+2) (n2 —n —4)
Proof. First note that EX; = A; =T = 2r/n. By writing S? = % S XE-
A? we obtain

ES? = A,— A%

ES' = % >N EXIX] - 2A§% > EX?+ A}

1 -1
= DA+ Ay, — 2424, + AL
n n
Substitution leads to
2_
S? — 2r (n®* —n — 2r)
n?(n+1)

and
4(n—2)2r+4(n3—n2—16n+28)7’(7“—1)
n? n*(n+1)
16(n® —n?>—14n+24)r(r—1)(r —2)
nt(n+1)(n?—n—4)
16(2n —8+n?)r(r—1)(r—2)(r—3)
nt*(n+1)(n+2)(n? —n—4) '

ES* =

19



The variance of S? is given by

VarS? = ES'— (ES?)?

1 n—1
= —A,+
n

Ay — A2

which by substitution becomes

87“(7"—1)(n2—n—2r)(n2—n—2r—2)‘

VarS? = 5
n?(n+1)"(n+2)(n? —n—4)

The mean and variance of S? can also be found in Snijders (1981a and
1981b).

Theorem 6 For the Bernoulli (n,p)-graph the degree variance S* has ex-
pected value
n—1)(n—2)

ES? = ( - Pq (6.5)

and variance

2(n —1)(n — 2)?

n3

VarS? =

pq (1+ (n—6)pq). (6.6)
The correlation coefficient between the degree mean X and the degree variance
S? is equal to

q—7p
1+ (n—06)pg

Corr (52, X) = ,n> 2. (6.7)

In particular, for p = %, the degree mean and the degree variance are uncor-
related for n > 2.

Proof. For the Bernoulli (n,p) -model it is convenient to use that
=13y Ly xx
S DL )
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We obtain

1
ESQ = A2 - ﬁ (HAQ —|—n(n— ].) AH)

n—1

= o (AQ _All)-

and substitution yields

o e [

Now

St = %ZZX?X? —~ %ZZZXfXijJr%ZZZXinXkXJ

and

1
ES4 = (nA4 +7’L(TL— 1) Agg)

—%(nA4+2n(n— 1) Ay 41 (n— 1) Ags + 1 (n — 1) (n — 2) Agy)
—i—%[(nﬁh +dn (n—1) Agt + 30 (n— 1) Asy
+6n(n—1)(n—2) Ay +n(n—1)(n—2) (n —3) A1111)]

Substitution from the formulas given in Section 5 yields

pst = = 1)75371 — 2)2pq
N (n—1)(n— 2);(77, —3)(n+ 4)qu2

and we obtain

2(n —1)(n — 2)?

n3

VarS? =

pq (1 + (n —6)pq) .

Furthermore

_ ES*X - ES?EX
VVarS2VVarX

Corr (SQ,Y)
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where

ES*X

X ¢ —3
~o(zew)

= Ay +n(n—1)An) ~ <nA3 +6(Z)A21 +6(§)A111>
_ %((n—l)Ag—i—(n—l)(n—?))Agl— (n=1)(n—2) Am)

and EX, VarX, ES?, and VarS? are given by (6.1), (6.2), (6.3), and (6.4).
Substitution yields

q—7p
1+ (n—6)pg

Corr (SQ,Y) = ,n > 2.

Furthermore, since R is binomially distributed and )  X; = 2R, we do
not need Ay, for ES'. We illustrate this for ¢t = 6.

ESS =

3

2
1 - 1 —
EE ;ZI:XZ. - (5 ;:1: Xl-)

i=1 i=1

% (n6A6 — 3n*EX} (Z XZ») + 3n’EX? (Z XZ») - E (23)6>

n*(3+n(n—3))As—6n(n®) A5; +3n* (n— 1) (n(n — 3) + 7) A
6

N —3n (n(3)) (n—6) A4 —6n (n(g)) Asz — 12n (n(g)) (n—4) Az

N 12n (n®) Az111 +n (n«;)) (n(n 71 3) +9) Aggy

N —3n (n®) (n — 6) AQQ?I + 31 (n®) Ay — E (2R)°

nb
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By substitution this becomes

BS6 W?q L 209 (30— 4) [(7; - 2)(nt6) =8 .o
+n<4) mt*n+3)—4Bn—-4)[3(n—2)(n+6)—n— 4]]p3q3.

nb

6.3 Squared degree deviation from the mean
Let

n

nS? = (X@-—Y)Q:ZQiy
i=1 =1
Q = (X,-X)°.

Theorem 7 For the Uniform (n,r)-graph the squared degree deviations from
the mean, QQ; = (Xi — 7)2 , have expected values

2(n+1)(n—2)r—4r(r—1)

BQi = n?(n+1)

Y

variances

2(n—2)(n—4)27’+4(2n4—11n3+43n2—48n—112)7“(7’—1)
nt nt (n+ 1)
32(n—3)(n®—2n*+12n+16)r (r — 1) (r — 2)
nt(n+1)*(n2—n—4)
+32(n?’—2712—|—12n—i-16)r(7“—1)(7"—2)(7"—3)
nt(n+1)*(n+2) (n? —n —4)

VarQ); =

and correlation coefficients
Corr (Q;,Q;) =

n?(n+1)(n®—7mm?+10n —8) —8(n? —6n —8) (n> —n —2r)r
—n2(n+1)(n—1°n2—10n+8) —4(n—1) (n® —2n (n — 6) 4+ 16) (n2 —n — 2r)r
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In particular, n*Corr (Q;, Q;) tends to —2

tending to p. For N even and r = N/2

g;g’q for increasingn and 2r/n (n — 1)

4
Corr (QZ’Q]) = _n(n _ 1)2 )
and for N odd and r = (N/2) + %
4
Comr (€,Q)) = "
8(n —4)°

nin—12(n-2"+5mn-2)"+10(n—-2)"+4(n—2)* - 16)
Proof. Due to exchangeability

EQ:Q: — (EQy)
Var®:

EQ1Qs — (EQ,)?
EQ? — (BEQy)?

Corr (Qi, Q;)

for i # j.
Here Q; = X? — 2A, X, + A? so that

EQ, = Ay — 242 + A2,

EQ? = E(X?-24,X, + A}’
Ay +F4A%A) + AT — 4A A5+ 2A2A, — 4A3 A,
Ay — 4A A3 + 6ATA, — 3AT
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VarQ, = EQi— (BQ,)’
— Ay — 44 A3+ 6A2A, — 3AY — (Ay — 242 + A2)°
= Ay —4A1 A3 +8A3A, — A3 — 4A%
2(n—2)(n—4)°r 4(2n* —11n3 +43n2 — 48n — 112) 7 (r — 1)
nt * nt (n+ 1)
2Mn—-3)(n*—2n*+12n+16)r(r — 1) (r — 2)
nt(n+1)*(n? —n—4)
32(n® —2n*+12n+16)7 (r— 1) (r — 2) (r — 3)
nt (n41)* (n+2) (n? —n —4)

Y

and
EQiQ: = E(X7—-241X;+ A7) (X5 - 241Xz + A7)
= Ay —2A1 45 + A%AQ —2A1A5 + 4A?A11
—2A3A, + A2 A, — 2A3 A, + A}
= A —4A1 Ay +4A2A ;) +243A, — 3A]
Hence

Agy — 441 Agy + 4A2A,; — A2+ 4A2 A, — 4A!

Corr (Q1,Q2) = Ay —4A Ay + 8A2 A, — A2 — 4A1

B n*(n+1)(n®—T?+10n —8) —8(n* —6n—8) (n* —n —2r)r
C —n2(n4+1)(n—12n2—10n+8) —4(n—1)(n® —2n(n—6) + 16) (n> —n — 2r)r

For increasing n and 2r/n (n — 1) tending to p, we have

1—dp+4p*  1—4dpq
—2p(1—p) 2pq

n?Corr (Q1, Q) — (6.8)
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By substituting r = N/2 for N even, and r = (N/2) + 1 for N odd into
the formula for Corr (@1, Q2) we obtain

Corr (Q1,Q2) = —% , for N even and r = N/2,
n(n—1)
and
Corr (Q1.Q2) = ~————
orr 1, 2) = n(n_l)Q
B 8 (n —4)°
nn—17%(n-2°+5mn-2"+10(n—-2)">+4(n-2)>-16) ’
for N odd andr:(N/Q):I:%.
[

Theorem 8 For the Bernoulli (n, p)-graph the squared degree deviations from
the mean, QQ; = (Xi — 7)2 , have expected values

(n—1)(n—2)

EQ; = Pq;
n
VATLances
VarQ, — (n—1)(n— 2)”/(;7, (n—6)+ 12)pq
+2 (n—1)(n—2)(n*(n—6)+20n — 36)p2q2

n3
and correlation coefficients

nn+2)—12—4(n(n+4) — 18) pq

Corr (Qn Qg) = (n _ 1) ((n (n _ 6) + 12) 1+ 92 (nQ (n — 6) +20n — 36) pq)

In particular, n*Corr (Q;, Q;) tends to

1-4 ‘ ‘
Qp;’q for increasing n. For p =

1

29
4(n—3)

(n—1)(n® —4n? +8n — 12)

Corr (Qi,Q;) = —
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Proof. Here

2 1
— 2_ “vy. I X
= X7 — nXl Ej X]+n2 E, Ej XX
so that, using the exchangeability,

2 1
EQI = AQ—Z(AQ—F(?’L—1)A11)+¥(7’LA2+77,(7’L—1)A11)

= T2 (4 An)
_ (n—l)n(n—Q)pq7

EQ? = A4—%(A4+(7’L—1)Agl)
+%(A4+(n—1)A22+2(n—1)A31+(n—1)(n—2)A211)

_%[A4+4(n—1)A31+3(n—1)Agg+6(n—1)(n—2)A211
+(n—1)(n—2)(n—3) Al

1 n n n n
—|—m (HA4 +8 (2>A31 + 6(2>A22 + 36 (3> Aoy +24 (4> A1111>

— i[(n —1) (n* = 3n+3) (A4 — 4431) + 3 (n — 1) (2n — 3) Ay

n3

‘|—3 (n — ].) (n - 2) (n — 3) (2A211 - Allll)]

VarQ:, = EQ}— (EQ:)’
_ 1 (n—1)(n* = 3n+3) (Ay — 4431) + 3(n — 1) (2n — 3) Ay,)

+L8 0= 1) (00— 2) (1= 3) (s — A

1
—ﬁ (TL — 1)2 (AQ — AH)Q

_ (n—l)(n—Q)é;z(n—G)—!—lQ)pq
+2 (n—1)(n—2)(n*(n—6)+20n — 36)p2q2,

n3
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and

4
EQ1Qs = Ay — - (As1 + Ago + (n — 2) Asyy)

+%(A4+(n—1)A22+2(n—1)A31—|—(n—1)(n—2)A211)

4
+ﬁ (2A31 + (n - 2) A211 + 2A22 +4 (n - 2) AQll + (n - 2) (n - 3) Allll)

_%[A4+4(n—1)A31+3(n—1)Agg—l—6(n—1)(n—2)A211
+(n—1)(n—2)(n—3) Al

1 n n n n
+ﬁ (nA4 +8 (2)A31 +6 (2)A22 + 36 (3) A1 +24 (4) A1111>

_ %[(271 — 3) (As — 445) + (n? (n — 2) — 3 (n — 3)) An,
— (n + 3) (n — 2) (n — 3) (2A211 — Allll)]-

Hence
a
COTT (Qb QQ) - 57

where

a = (2n—3)(As—445)+ (n® (n—2) —3(n —3)) Ay
— (n + 3) (n — 2) (n — 3) (2A211 — Allll) —nNn (n — 1)2 (AQ — A11)2

b = (n—1)(n*—3n+3) (A —4A43) +3(n—1) (2n — 3) A
+3 (n - 1) (n — 2) (n — 3) (214211 — Allll) —n (7’1, — 1)2 (AQ — A11)2 .
Substitution yields

n(n+2)—12 —4(n? + 4n — 18) pq
(n—1)((n(n—6)+12) +2(n* — 6n2 + 20n — 36) pq)’

Corr (Q1,Q2) =
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and

2 1 —4pq
n“Corr (Q1,Q2) — TR (6.9)

Forp:%

n(n+2)—12 — (n?+4n — 18)
(n—1) ((n(n—6)+12) + % (n® — 6n% + 20n — 36))
4(n—3)
(n—1)(n®—4n? +8n — 12)

Corr (Q1,Q2) =

For both the models Q, ..., Q,, are almost uncorrelated for large n and S?
can be regarded as a sum of almost uncorrelated random variables. Under
the Uni form (n,r)-modell Corr (Qq,Q2) is negative and close to zero when
(2r/n(n — 1)) = 3. Under the Bernoulli(n, p)-modell Corr (Q1, Q2) is zero
when p = § + (\/§(n —3)/y/54+n(n+6)(n— 5)> . We also see that the

limiting correlations given by (6.8) and (6.9) have the same absolute value.
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