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A Bayesian Approach

Christian Tallberg

Abstract

The problem of estimating the size of hidden populations is con-
sidered. A practical design to obtain e¢cient estimators is snowball
sampling which allows units to provide information not only about
themselves but also about other units. In classical approaches infer-
ences about the model are based on asymptotic theory, and accuracy
of con…dence statements is questionable for small sample sizes. We
employ Bayesian methods enabling exact …nite sample inference in
terms of whole distributions of the unknown parameters given the
observed data. Often, prior information on the model parameters is
available. The Bayesian analysis enjoys the advantage of the possibil-
ity to implement this information into the analysis which, if properly
used, should improve the estimators. Simulation results are provided
where the Bayesian estimator is compared to frequentist competitors.
Applications of our proposed model are illustrated with analysis to
three studies of hard drug use.
Keywords: Bayesian analysis; Network sampling; Random graphs.

1 Introduction
In studies where the purpose is to estimate small, hidden and hard-to-access
human populations such as heroin users, standard probability sampling de-
signs are often ine¢cient. This is due to the fact that in order to yield
su¢ciently accurate estimates very large samples have to be drawn. Often
however, contact patterns between members of the population exists, which
facilitates for more e¤ective procedures to collect data. Such procedures are
link-tracing sampling designs, which means that social links are followed from
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one respondent to another to obtain a sample. An example of link-tracing
designs is adaptive cluster sampling which has been treated in the graph set-
ting as well as the spatial setting by Thompson (1997) and Thompson and
Seber (1996). We shall consider another example of a link-tracing procedure
in which individuals in an initial sample are asked to identify acquaintances,
who in turn were asked to identify acquaintances, and so on for a …xed num-
ber of stages or waves. The procedure was termed snowball sampling by
Goodman (1961). Various statistical methods for snowball samples are in-
vestigated by Frank (1971, 1977, 1979), Snijders (1992), and Thompson and
Frank (2000) have developed survey theory for snowball sampling. Recent
publications include Spreen and Coumans (2001), where an initial simple
random sample is drawn from an existing sampling frame for one part of
the population, and the objective is to estimate the size of the population
excluded from the frame by snowball sampling technique. Chow and Thomp-
son (1999) consider Bayesian methods for the estimation problems under the
link-tracing design used by Thompson and Frank (2000). An overview of
link-tracing designs and further references to the literature on the subject is
provided in Spreen (1992).
Working from the frequentist point of view, Frank and Snijders (1994)

use both design-based and model-based approaches to estimate the size of a
hidden population. In this paper we consider their graph model, and address
the estimation of the size of a hidden population from a Bayesian viewpoint.
Often, prior information is available on the parameters that one wants to
estimate. Using this information e¤ectively via a Bayesian approach should
yield improved estimators. The initial sample is selected under a design
posed by the applications considered in this paper.
The organization of the paper is as follows. In Section 2, the notation is

outlined and necessary terminology introduced. Graph models and sampling
designs are described in Section 3. Assignment of prior distributions and
derivation of posterior distributions are given in Section 4. The developed
methods are illustrated in Section 5 on several real data sets. Section 6
provides a simulation study where characteristics of frequentist estimators
and Bayesian estimators are compared under three graph models. Some
concluding remarks are given in the …nal section.
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2 Concepts of snowball sampling
Consider a directed graph on the vertex set V = f1; 2; :::; vg. By following
the notation outlined by Frank and Snijders (1994), we let V 2 denote the set
of all ordered pairs (i; j) from V . By denoting the adjacency matrix y, each
entry yij; (i; j) 2 V 2 takes the value 1 if an arc is present from i to j and 0
otherwise. The diagonal entries of y are equal to 1. A sample S from the
graph is a subset of vertices and a subset of vertex pairs. In the snowball
sampling approach S consists of an initial sample S0, which is a subset of V ,
selected by some adequate design and K waves after the initial sample.
The subset of vertices that are adjacent from vertex j is denoted by

Aj = fi 2 V : yji = 1g, and given by row j of y. The size of Aj is called the
out-degree and is denoted by aj. It is obtained as the sum of the elements
in the jth row of y

aj = jAjj =
vX
i=1

yji:

If we by

A (S) =
[
j2S
Aj

denote the subset of vertices adjacent from vertices in S, the …rst wave of
the snowball sample is given by S1 = A (S0) \ ¹S0. The second wave is given
by S2 = A (S1)\ ¹S0 \ ¹S1, and so forth. The snowball initiated by S0 is given
by S0 [ S1 [ ::: [ SK where K is the number of waves of the snowball and
SK+1 is the …rst empty set in the sequence S1; S2::::

3 Graph models and sampling designs
The vertex set V is partitioned into two disjoint vertex subsets V1 = f1; 2; :::; v1g
and V2 = fv1 + 1; v1 + 2; :::; v1 + v2g, where v = v1 + v2. The …rst vertex set
V1 consists of vertices that are known through some register, whereas V2 is
constituted by the remaining vertices which are unknown or hidden. In the
context of sampling heroin users, V1 is self-generated by the members of the
population that are in need of medical treatment or social support. The un-
known selection method of the registered members is modeled by Bernoulli
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sampling. This implies that each member is drawn independently from the
population with equal but unknown probability ½. Thus, the size of the regis-
tered part of the population v1, is binomial (v; ½). Since a frame of V1 exists,
random sampling procedures can be designed exclusively on this set at the
initial sampling stage. In this paper, we let the initial sample S0 be a simple
random sample without replacement subset of V1 of size n = jS0j. Our goal
is then to estimate the size of the total population v. The estimation of the
size of the hidden population is performed after the initial sample and the
…rst wave of the snowball sample has been drawn.
Assume that the arc indicators are independent identically distributed

Bernoulli variables with probability 1 on the diagonal (yii) and with prob-
ability ¯ elsewhere. Let r be the number of nonloop arcs in the initial
sample, s the number of arcs from the initial sample to non-registered ver-
tices in the …rst wave of the snowball and q the number of arcs from the
initial sample to registered vertices in the …rst wave. Conditionally on
S0, r is binomialfn (n¡ 1) ; ¯g distributed, s is binomial(nv2; ¯) and q is
binomialfn (v1 ¡ n) ; ¯g distributed. For k = 0; :::; n let mk be the number
of individuals in V2 that are mentioned by exactly k members of S0. De…ne

m = m1 +m2 + :::+mn:

Then

m0 = v2 ¡m
s = m1 + 2m2 + :::+ nmn

and m =(m1; :::mn) is multinomial(v ¡ v1; p1; :::; pn) where

pk =

µ
n

k

¶
¯k (1¡ ¯)n¡k :

We assume mutual independence between r; q andm conditional on v1; ¯
and v. Furthermore, since ½ provides no additional information about r and
m conditional on v1 and v, the likelihood is given by

p (r; q; ;m; v1 j½; ¯;v )
= p (r jq;m; v1; ½; ¯;v ) p (q jm; v1; ½; ¯;v ) p (m jv1; ½; ¯;v ) p (v1 j½; ¯; v )
= p (r jv1; ¯;v ) p (q jv1; ¯;v ) p (m jv1; ¯;v ) p (v1 j½; v ) ;
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assuming the distribution of v1 does not depend on ¯. By inserting the
proper conditional distributions given above, the likelihood is computed as

p (r; q;m; v1 j½; ¯;v )
=

µ
n (n¡ 1)

r

¶
¯r (1¡ ¯)n(n¡1)¡r

µ
n (v1 ¡ n)

q

¶
¯q (1¡ ¯)n(v1¡n)¡q

£ (v ¡ v1)!
"

nY
k=0

pmk
k

mk!

#
v!

v1! (v ¡ v1)!½
v1 (1¡ ½)v¡v1

=

µ
n (n¡ 1)

r

¶µ
n (v1 ¡ n)

q

¶
¯r+q (1¡ ¯)n(v1¡1)¡r¡q ¯s (1¡ ¯)nm+nm0¡s

£
"

nY
k=0

¡
n
k

¢mk

mk!

#
v!

v1!
½v1 (1¡ ½)v¡v1

=
v!

(v ¡ v1 ¡m)!v1!¯
t (1¡ ¯)n(v¡1)¡t ½v1 (1¡ ½)v¡v1

£
µ
n (n¡ 1)

r

¶µ
n (v1 ¡ n)

q

¶ nY
k=1

¡
n
k

¢mk

mk!
;

where v = v1 +m +m0 and t = r + q + s. By discarding a multiplicative
constant which does not depend on model parameters, the essential part of
the likelihood is given by

f (r; q;m; v1 j½; ¯;v ) = v!

(v ¡ v1 ¡m)!¯
t (1¡ ¯)n(v¡1)¡t ½v1 (1¡ ½)v¡v1 : (1)

4 Prior and posterior distributions
The Bayesian setting allows us to incorporate our subjective information of
the model parameters, prior to looking at data, into the inference stage in
form of a probability distribution. We shall assume mutual independence
between ¯; ½ and v a priori, and that ¯ »beta(a; b) and ½ »beta(a½; b½). The
prior distribution of v is discussed below.
We consider a statistical model where the unknown parameters ¯; ½ and

v are included, although ¯ and ½ are not of our immediate concern. Despite
describing relevant aspects of the reality they are modeling, they are regarded
as nuisance parameters and it is our desire to eliminate them from the analysis
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in order to concentrate on v. From a Bayesian point of view, this is achieved
by computing the marginal posterior distribution of v in the following way

p (v jr; q;m; v1 )
/ p (r; q;m; v1 jv ) p (v)
=

Z 1

0

Z 1

0

p (r; q;m; v1 jv; ¯; ½) p (v) p (½) p (¯) d½d¯:

If we insert the likelihood derived in (1) and the assumed priors, the posterior
distribution of v is given by

p (v jr; q;m; v1 ) /
Z 1

0

Z 1

0

v!

(v ¡ v1 ¡m)!¯
t+a¡1 (1¡ ¯)n(v¡1)+b¡t¡1

£½v1+a½¡1 (1¡ ½)v¡v1+b½¡1 p (v) d¯d½
=

v!

(v ¡ v1 ¡m)!
¡ (t+ a) ¡ (n (v ¡ 1) + b¡ t)

¡ (n (v ¡ 1) + b+ a)
£¡ (v1 + a½) ¡ (v ¡ v1 + b½)

¡ (v + a½ + b½)
p (v)

/ v!

(v ¡ v1 ¡m)!
¡ (n (v ¡ 1) + b¡ t)
¡ (n (v ¡ 1) + b+ a)

¡ (v ¡ v1 + b½)
¡ (v + a½ + b½)

p (v) :

So far nothing has been said about the priors on v. A non-informative
prior for v is given by the uniform distribution over the set of integers 1; :::; N ,
for some upper limit N . An alternative non-informative prior advocated by
Je¤reys (1961) which is also the leading term of Rissanen’s (1983) prior based
on information theory argument, is given by p (v) = 1=v; v = 1; 2; :::. In this
paper we will consider both priors. A convenient method to obtain a discrete
informative prior is to assign a proportional functional value in a continuous
distribution as a probability to the associated discrete outcome; see Bernardo
and Smith (1994). An appropriate choice of such a prior for v, which only
takes positive values, is a zero truncated ”discretized” gamma distribution.
To determine a point estimator, within the Bayesian framework, that

summarizes the entire information of the distribution into a single value one
has to consider the associated loss functions. Unless one has strong evidence
against a reasonably symmetric posterior distribution, a natural candidate
is a symmetric loss function. We will consider one of the most commonly
used loss functions, the quadratic loss function. The optimal decision rule
(Bayes estimator) with respect to the quadratic loss function is the posterior
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mean. An alternative estimator, associated with the 0-1 loss function, is the
posterior mode.

5 Empirical examples
We now illustrate the methodology presented in previous sections on three
real data sets. In all three examples, the adjacency matrices involved are
non-symmetric.
To proceed with the Bayesian approach, we need to specify prior distri-

butions of the model parameters. In each of the three data sets we will use
two priors on v. The …rst one is the ”discretized” gamma distribution with
various combinations of the hyperparameters, ° and µ. A way to determine
° and µ is to equate the mean E (v) = °µ to a value which represents our
initial belief about v, and the variance V ar (v) = °µ2 (as a result of the dis-
cretization, these relations are only approximate) to a value which represents
our uncertainty about v. Subjective speci…cation of the mean and variance
yield the following system of equations(

° = [E(v)]2

V ar(v)

µ = V ar(v)
E(v)

: (2)

The second prior is the uniform distribution which can be seen as a refer-
ence prior with a minimum of subjective prior information on the population
size. This approach allows us to derive results more in line with those used
in non-Bayesian settings. We avoid making choices about ½ and ¯ by setting
the hyperparameters in the beta distributions to one. That is, ½ and ¯ are
uniformly distributed over their range zero to unity.

5.1 Data set 1

The …rst considered data set is a study of heroin use in the town of Groningen
described and analyzed by classical methods in Frank and Snijders (1994).
A snowball sample of heroin users was taken, which consisted of an initial
sample of size n = 34. In their analysis all the registered heroin users were
included in the initial sample, i.e. the inclusion probability ® equals 1. In-
terviews were carried out in which the respondents were asked to mention
other heroin users in the town of Groningen. The number of heroin users in
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the …rst wave was m = 237 and the number of nominations was t = 311, of
which r = 15 were within the initial sample. From independent information,
the police estimate the number of heroin users to v = 800 in Groningen. We
use the police estimates as a guideline for assignment of our priors which
are centered on their estimates with various precisions expressing various
uncertainty about v. The hyperparameters are then determined by (2).
Figure 1 gives marginal posterior distributions of v with the correspond-

ing prior distributions. The solid vertical lines depict the lower and upper
boundaries in 95% high posterior density (HPD)-intervals. The police esti-
mate v = 800 is covered by the three intervals under informative priors, and
it just falls outside the interval under the non-informative prior. This result
stresses that the police estimate is reasonable under the condition that the
underlying model is correct.
Besides providing HPD-intervals for the Bayes estimate, without any ad-

ditional di¢culty the posterior distribution also allows us to answer various
number of questions such us

Pr (v > 700 jdata) = 0:262

Pr (v 6 500 jdata) = 0:00079

under our non-informative prior.

5.2 Data set 2 and 3

The second data set we analyze, is network data obtained from Heerlen Drug
Monitoring System (DMS). It is a study of daily users of opiates and/or
other drugs like cocaine in Parkstad Limburg in 1999, analyzed previously
by classical methods in Spreen and Coumans (2001) where a more detailed
description of the data set is given. The number of registered hard drug
users as clients at aid agencies were v1 = 435. A simple random sample
without replacement of size n = 55 was drawn from V1. They mentioned 204
drug users of which m = 97 were non-registered. The reported number of
nominations was t = 302.
The third data set, collected by DMS, is a study of the same population in

2002. The number of registered users was 326 from which a random sample
without replacement of size n = 71 was drawn. The number of nominees was
223 constituting the …rst wave of which m = 64 was non-registered, and the
number of nominations was t = 349:
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Figure 1: Priors (dotted curves) and marginal posteriors (solid curves) of v
under various prior variances for data set 1.

For these two data sets, the police estimate the number of heroin users to
v = 1500 at both time periods. As in the previous example, we use the police
estimates as a guideline for assignment of our priors, and center the priors on
their estimates with various precisions expressing various uncertainty about
v.
Figures 2 and 3 show that the 95% HPD-intervals only cover the police

estimate with high precision on the priors, i.e. when they are quite certain
of their prior beliefs. Hence, according to the collected data the police rather
seriously overestimates the number of drug users. In the analysis given by
Frank and Snijders (1994) for the …rst data set, and Spreen and Coumans
(2001) for the second data set, their obtained estimates are lower than the
police estimates as well. We note that a Bayesian approach, where empirical
observations and prior information are coupled in a natural way, o¤ers a
compromise between the police and data estimates which may be used for
policy decisions.
From prior knowledge, the proportion of registered drug users, ½, in aver-

age varies between 0:58 and 0:66 in Dutch cities. By using this information, a
convenient way to determine the hyperparameters is by solving the following
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Figure 2: Priors (dotted curves) and marginal posteriors (solid curves) of v
under various prior variances for data set 2.
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Figure 3: Priors (dotted curves) and marginal posteriors (solid curves) of v
under various prior variances for data set 3.
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equations

Pr (kl 6 ½ 6 ku ja½; b½ ) = ¸ (3)

E (½ ja½; b½ ) =
a½

a½ + b½
; (4)

where kl and ku are percentiles of the beta distribution. The numbers kl and
ku, and the probability ¸ are set to values which represent our initial belief
of ½. By specifying the …rst moment in the beta distribution to (kl + ku) =2,
the solution to (3) and (4) is c = 871 and d = 534 for the values k1 = 0:58,
k2 = 0:66 and ¸ ¼ 0:998, which corresponds to a beta distribution with
mean 0:62 and variance 0:00017. In Figures 4 and 5, the posteriors of v are
compared for the two considered priors on ½ on data sets 2 and 3, respectively.
Conditional on a prior on v, it seems that the posteriors of v are insensitive to
the choices of priors on ½ since the posteriors of v are quite similar, although
the priors of ½ are not. The location of the posterior of v is slightly moved
in the direction towards f1 ¡ E (½ ja½; b½ )g½¡1v1 if an informative prior is
assigned on ½. Simulation results, not presented here, demonstrate that
the robustness of the posterior of v holds if extremely informative priors is
assigned to the other nuisance parameter ¯.

6 Some simulation results
In this section we apply the Bayesian approach to six simulated datasets.
Data was simulated as follows. For each of the population sizes v = 100 and
v = 1000, one directed graph was generated from the stochastic models used
by Frank and Snijders (1994). In each of the models the expected in-degree
(excluding the self-loop) was …xed at 5, whereas the expected variance of
the in-degrees, ¾2, di¤er. The three models described in their paper are the
following

1. Constant in-degree: for each vertex i, …ve other vertices are chosen at
random (without replacement) to have an arc going to i; here ¾2 = 0.

2. Bernoulli: all arcs are determined independently, and each ordered pair
(i; j) with i 6= j has a probability 5= (v ¡ 1) for an arc; here ¾2 ¼ 5.

3. Two-block model: vertices are distinguished in two equal size groups
and all arcs are determined independently; within the …rst group arcs
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Figure 4: Marginal posteriors of v under a non-informative (dotted line) and
an informative (solid line) prior on ½ for data set 2.
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Figure 5: Marginal posteriors of v under a non-informative (dotted line) and
an informative (solid line) prior on ½ for data set 3.
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have probability 12= (v ¡ 2), within the second group 6= (v ¡ 2), and
between the two groups 1=v; here ¾2 ¼ 7:25.

The inclusion probabilities for the registered part of the population were
determined to ½ = 0:2 for v = 100 and ½ = 0:06 for v = 1000. By allowing
all the registered vertices into the initial sample, i.e. ® = 1, the sizes of the
initial samples are E (n) = 20 and E (n) = 60, respectively. Conditional on
n, the associated sizes of the …rst waves can be shown to be m ¼ 50 for
v = 100 and m ¼ 240 for v = 1000.
In our analysis we avoid making choices about ½ and ¯ by setting the

hyperparameters in the beta distributions to one. That is, ½ and ¯ are
uniformly distributed over their range zero to unity. We will consider two
priors for v. Our …rst prior is an improper reference prior re‡ecting lack of
information on the population size, obtained by setting p (v) equal to 1=v for
v = 1; 2; :::.
Our second prior is an informative ”discretized” gamma distribution where

the hyperparameters are determined by solving the equations

Pr (ll 6 v 6 lu j°; µ ) = ¸ (5)

E (v j°; µ ) = °µ; (6)

where ll and lu are percentiles of the gamma distribution. By specifying the
…rst moment in the gamma distribution to (ll + lu) =2, the solutions to (5)
and (6) are ° = 46:44 and µ = 2:15 for ll = 70, lu = 130 and ¸ ¼ 0:96
when v equals 100, which corresponds to a gamma distribution with mean
100 and variance 215. Analogously for ll = 800, lu = 1200, ¸ ¼ 0:96 and
v = 1000, equations (5) and (6) yield the solution ° = 105:01 and µ = 9:52,
which corresponds to a gamma distribution with mean 1000 and variance
9520. Thus, our rather informative prior beliefs are that v lies in the interval
(70; 130) for v = 100, and in the interval (800; 1200) for v = 1000 with an
approximate probability 0:96.
The simulated results are based on 20,000 iterations. In Table 1, the

mean and root mean square errors of the 20,000 computed estimates of the
Bayes estimator under the two given sets of priors are compared to three
of the estimators, including the Horvitz-Thompson estimator, presented in
Frank and Snijders (1994). The …rst one is the model-based maximum like-
lihood estimator denoted by v̂3. The second estimator is derived from a
design-based approach where the population (digraph) is considered as …xed
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and probability plays a role only via the sampling procedure. Hence, the
arc indicators yij are not random but unknown. The estimator, which is a
Horvitz-Thompson type estimator, is denoted by v̂7 and given by

v̂7 =
vX
j=1

max
i
xiyij=^́j =

X
j2S0[S1

^́¡1j (7)

where ^́j is an estimate of the inclusion probability given by

´j = Pr fj 2 S0 [ S1g = E
³
max
i
xiyij

´
= 1¡ (1¡ ¼)rj ;

where rj is the in-degree of vertex j; the estimate of ´j is obtained by re-
placing ¼ with ¼̂ = n=v̂3. The third ”estimator”, denoted by v̂HT , is the
Horvitz-Thompson estimator. It is given by (7) except that calculation of
the sampling inclusion probabilities requires the value of ¼. The choice of
v̂3 and v̂7 as competitors to the Bayes estimators is because of on average
better performance than the remaining estimators discussed in Frank and
Snijders (1994) in terms of unbiasedness and root mean square errors. Note
that v̂7 and v̂HT require more information from data such as the in-degree of
all sampled vertices.
In general, it seems that the Bayes estimates and their associated root

mean squared errors under a non-informative prior agrees with the estimates
and root mean squared errors of v̂3 and v̂7. An advantage with Bayesian
methods is that we are allowed to implement conceivable information of the
parameters of interest, besides the data, into the analysis in functional form
of a prior distribution. It is clear that an estimator such as v̂2B, with an
informative prior centered on the true value of v, enjoys a drastic decrease in
the root mean square error. Furthermore, although v̂1B is computed under
a non-informative prior it is slightly better than v̂3 and v̂7 in terms of root
mean square errors. Although the concept of unbiased estimators is of less
importance from a Bayesian viewpoint, we see that v̂1B seems to be less
biased than its non-Bayesian competitors v̂3 and v̂7 under the Bernoulli model
(Model 2), whereas v̂7 is less biased under the block model (Model 3).

7 Concluding remarks
In the present paper we have employed a Bayesian method to estimate the
size of a hidden population. The method yields not only point estimators,
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v Model v̂3 v̂7 v̂HT v̂1B v̂2B
100 1 111(17) 108(15) 100(12) 110(15) 106(9)
100 2 103(12) 103(13) 100(13) 102(11) 100(6)
100 3 97(12) 100(13) 100(13) 97(12) 97(8)

1000 1 1165(228) 1146(218) 998(115) 1146(210) 1043(63)
1000 2 1015(128) 1018(139) 1001(117) 1001(123) 992(47)
1000 3 968(130) 978(137) 1000(117) 956(129) 971(58)

Table 1: Means and root mean squared errors (between parentheses) for
various estimators of v under various models.

but also provides us with a distribution of the unknown parameter, valid for
all sample sizes, from which we easily can obtain various information, such as
interval estimates, without any additional di¢culty. By setting independent
beta priors on the nuisance parameters, the marginal posterior of v is easily
evaluated analytically.
A simulation study is carried out where the Bayes estimators are com-

pared with frequentist candidates such as the maximum likelihood estima-
tor and a Horwitz-Thompson type estimator. Under non-informative prior
knowledge of v, the performance of the Bayes estimator is at least as good
as its competitors in terms of point estimates and root mean square errors.
Furthermore, the simulation results demonstrate that incorporating informa-
tive prior of v into the analysis increases the precision in our estimate. It is
also shown via an example that the posteriors of v is rather insensitive to
prior information of the nuisance parameters.
Our analysis is based on a model that assumes that the relations between

any two vertices are independent. It may seem rather simplistic as a prob-
ability model in the social sciences. E¤orts should be put to develop more
elaborate models that considers dependency aspects. Further, we assume
that the probability of a relation between two vertices is equal for all ver-
tices. To assess more accurate estimators, an alternative could be to consider
block models where the probability distribution of the relations between two
vertices depends on their block a¢liation. Allowing the selection probabil-
ities in the initial sample to vary between the blocks should improve the
estimators further. In a forthcoming paper we will consider blockmodeling
in the context of snowball sampling.
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