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Introduction
The propensity score weighting technique was introduced by Rosenbaum and Rubin
(1983) to enable proper inference about treatment e¤ects with data from observational
studies rather than from experiments. Typically, a treatment (say, wearing seat belts) is
confounded by an auxiliary Á variable (say, speed at which one drives: people not wearing
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seat belts were apparently also prone to driving faster). Thus, to properly evaluate the
e¤ect of wearing seat belts on the degree of injury in the case of accidents (here, the
study variable), the observed di¤erence in the study variable needs to be adjusted so as
to take into account the di¤ering level of the auxiliary variable. The original work for one
auxiliary variable was carried out by Cochran (1968). Rosenbaum and Rubin extended
the idea to the multivariate case. To do so they introduced and de�ned the propensity
score,

e (x) = Pr (Z = 1 j X = x) .
Here, x denotes the observed vector of values of a multivariate auxiliary variable X
for a unit, and Z indicates unit�s inclusion into the treatment group, given that it is
included in the study. Descriptively, the propensity score is �a scalar function of the
auxiliary variables that appropriately summarizes the information required to balance
the distributions of the auxiliary variables� � . In order for the propensity score technique
to balance the distributions and to correctly adjust the treatment e¤ect, two assumptions
jointly termed strongly ignorable treatment assignment (given in detail below, p. 13) are
needed.

As originally conceived, the propensity score technique balances for di¤erences in aux-
iliary variables between two populations. Terhanian (e.g. Terhanian, Marcus, Bremer,
Smith, 2001) saw that, with minor adjustments, the technique can be applied to bal-
ancing di¤erences in auxiliary variables when having two samples drawn from the same
population, but with di¤erent sampling procedures. One is an ordinary probability sam-
pling from the population using known, positive inclusion probabilities, which gives the
unrestricted sample. The other sample, the restricted sample, comes from a subset of the
population. No explicit sampling into this sample is performed; the inclusion propensi-
ties, while unknown, are presupposed to be contingent on auxiliary information or on the
study variables, or on both.

Primary motivation for using the approach that Terhanian suggested lies presumably
in greater ease, higher speed and lower cost of conducting web surveys compared to any
other known mode of data collection. While it is relatively easy to build a panel of web
respondents, these are not a random sample in the usual meaning of the word from the
target population. They often di¤er from the target population (usually, the general
population) in demographic variables like age, income, etc.; in addition, self-selection
is present to a considerable degree, which may introduce an additional bias. The road
Terhanian took was simply to adjust for these di¤erences, using a random sample from
the target population as an indication of how the auxiliary variables really ought to be
distributed in the population.

The study variables need not be collected from the unrestricted sample: this sample is
used to derive adjustment weights. Once produced, the weights may be reapplied to new
surveys of the web panel as long as it is believed that the panel or the target population
have not changed enough to justify a new derivation of the weights. In what follows, it
is assumed that no data exist for the values of the study variables in the unrestricted
sample.
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A comment is in place. Modelling in the present study the situation considered by
Terhanian relies on two tenets: (a) there is a single population with a (stochastically
de�ned) subset, and (b) sampling designs for samples both from the population and the
subset are known (i.e., the simple random sampling) but not the de�ning properties of
the subset (i.e., the relations of the auxiliary variables that characterize the subset). In
reality, neither are the inclusion probabilities for units in the restricted sample known,
nor is, probably, the important assumption of the subset being a stochastic one ful�lled.
Nevertheless, in order to model and run simulations, some assumptions need to be made
(robustness to assumption misspeci�cation may later be tested). Other choices than
those above exist, for instance in a to view web users and non-users as two mutually
exclusive populations and in b to view the units in the restricted sample as sampled by
unknown inclusion probabilities. There seems nothing to preclude these choices, provided
appropriate changes in the modelling procedure and in the estimation goal are made.
The decisions reached here were driven by a plausible view on the physical reality of
the phenomenon (the decision in a) and by the goal to estimate the properties of the
subset rather than to estimate the unknown inclusion probabilities (the decision in b).
Namely, a preliminary study has shown that estimation of inclusion probabilities yields
an estimator (irrespective of whether HT or the regression estimator is used) that, even
if practically unbiased, has quite a large variance.

While the work of Terhanian and his colleagues was made public in descriptive form
(e.g. Terhanian, Marcus, et al., 2001; Terhanian, Taylor, Siegel, Bremer, and Smith,
2001), there are to the best of my knowledge no published formal presentations of the
technique and of the details of its procedure. It is to the goal of giving a formal expo-
sition of the technique, together with a simple demonstration of its working, that the
present text is dedicated. Section 1 introduces a multivariate model of the population
and de�nes, through a relation of two of the variables, a subspace of the sample space.
Some population and subspace expectations are derived here for the use in later sections.
Section 2 presents a class of scores known as balancing scores and demonstrates balanc-
ing of the distribution of an auxiliary variable between the population and the subspace
by conditioning on a balancing score, namely the variable itself. In Section 3, balancing
between the population and the subspace of a study variable is performed by conditioning
on the propensity score. Section 4 presents the di¤erence between the previous work and
Terhanian�s approach in terms of regression functions and gives a graphical illustration of
the di¤erences. Some �nal thoughts and suggestions for further work are given in Section
5.

1 The model
The model chosen for the demonstration is a multivariate normal model. The reasons for
using this particular kind of model are two: its analytical tractability and its previous use
in a similar case (Cochran, 1968). Given that the study is of a demonstrative character, as
well as that a normal model may in at least a number of practical situations be applicable,
this need not be a serious limitation.

We have the model
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(X;Y; V ) » N � (0; 0; 0;§) , (1)
where § is the covariance matrix with the structure

§ =
2

4

1 ½ 0
½ 1 0
0 0 1

3

5 .

The variables are given the following meanings, common in the survey literature:

X, an auxiliary variable,
Y , the study variable,
V , a standard normal variable independent of the previous two.

Let a large number (�population�) of independent and identically distributed obser-
vations be generated by the model, a single observation pertaining to unit i�realised
from the stochastic vector [X � ; Y � ; V � ]�being [x � ; y � ; v � ]. Next, we de�ne a subspace of the
model�s sample space by using the relation V < X, and introduce an indicator variable Z
such that Z = I � � � . There is nothing special about the relation V < X, but it�as many
other relations with the similar composition would�de�nes a stochastic subspace. That
is, units satisfying this relation are not con�ned to only a subspace of X; rather, they
occur throughout the whole sample space of X, but with the probability of occurrence
related to X. In contrast, the condition e.g. 0 < X would restrict the sample space of
units with Z = 1 to only the positive values of X. In terms of the introductory example,
the relation V < X ensures that at least some seat belt wearing drivers drive very fast and
at least some drivers not wearing seat belts drive very slow. With the current de�nition,
Z complies to a requirement for strongly ignorable treatment assignment (Rosenbaum
and Rubin, 1983; see also p. 13 below).

1.1 The task
Let R denote the set of units in the restricted sample space, so that a unit i 2 R i¤
z � = 1 (but, see the discussion that follow immediately). Let r denote a simple random
sample from R, size of this sample denoted by k. And, let s denote a simple random
sample from the population, size of this sample denoted by n. It ought to be observed
that, with �nal populations, neither s \ r nor s \ R \ r 	 need be empty: that i is an
element of s (sampled from the population) does not preclude that the same element is in
the subset R or that it is in the sample r (sampled from the subset). Practically, for the
case i 2 s and i 2 r for the same i, such a unit appears twice in the data material: once
as a member of s without a y value and with a z 
 = 0 attached, and once as a member
of r with complete observation and with a z 
 = 1 attached. Also, practically, for the case
i 2 s and i 2 R\ r 	 for the same i, such a unit appears in s without a y value and with a
z 
 = 0 attached. (To take care of this situation formally, a variable Z � would have needed
to be de�ned, z �

� = 0 i¤ i 2 s; i = 1; :::; n, and z 

� = 1 i¤ i 2 r; i = n + 1; :::; n + k. Z �

would indicate the sample through which a vector of observations came to be collected:
unrestricted or restricted sample. But, as Z ! Z � when population size tends to in�nity
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Table 1: The observed data: a sample s of n units drawn from the population, with
data missing on Y , and a sample r of k units drawn from a subset of the
population, having complete information. Z = 0 indicates inclusion in s and
Z = 1 indicates inclusion in r.

Obs. X Y Z
1 x � ¡ 0
2 x � ¡ 0... ... ... ...
n x � ¡ 0
n+ 1 x � � � y � � � 1
n+ 2 x � � � y � � � 1... ... ... ...
n+ k x � � � y � 	 � 1

and the sample sizes are kept constant, this distinction was not explicitly made in the
present study.)

For all the sampled units (both those in s and in r), values on the auxiliary variable
X are recorded. For units in the restricted sample r even values on the study variable Y
are recorded (Table 1). The task is to estimate, based on the recorded data, the expected
value, E (Y ), of the study variable Y in the population. As is shown under the next
heading, for any ½ 6= 0, the naive approach of taking ¹Y 
 = �

�
P


 � � Y � as the estimator of
E (Y ) is biased, as r is not a simple random sample from the population but from the
subset. It is for the same reasons biased to take ¹X � = �

�
P

� � � X � to estimate E (X), the
task we will meet �rst.

1.2 The joint, conditional and marginal distributions and ex-
pectations

Material in this section is mainly a recapitulation of some properties of the multivariate
normal distribution, and can be found in sources like Johnson and Kotz (1972). Some
particular distributions and their expectations, used in the present and the following
sections, are derived here, showing biasedness of the naive estimators, those taken directly
from the r sample.

The model in (1) allows for the following decomposition:

(X;Y ) » N � (0; 0; 1; 1; ½) ,
V » N (0; 1) ,

with V and (X; Y ) independent, V ? (X; Y ). With ' (¢) denoting the standard normal
density, we can write the joint density of (X; Y ) as
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' � (x; y) = ' (x) 1
p1¡ ½ � '

Ã

y ¡ ½x
p1¡ ½ �

!

(2)

= ' (y) 1
p1¡ ½ � '

Ã

x¡ ½y
p1¡ ½ �

!

= (2¼) � � 1
p1¡ ½ � exp

µ¡x � ¡ 2½xy + y �

2 (1¡ ½ � )
¶

why we can write the trivariate density of the model in (1) as

f (x; y; v) = ' � (x; y)' (v) (3)
= (2¼) 	 
� 1

p1¡ ½ � exp
µ¡x � ¡ 2½xy + y �

2 (1¡ ½ � )
¶

exp
µ¡1

2v
�
¶

8

<

:

¡1 < x < 1¡1 < y < 1¡1 < v < 1 .
As the multivariate normal distribution in (3) has zero means and unit variances, its

component variables (X, Y , V ) are marginally standard normal. Thus for Y , the study
variable which we are especially interested in, E (Y ) = ¹ 
 = 0 in the population. Also,
for the auxiliary variable, E (X) = ¹ � = 0.

The above applies to the population and, in expectation, to s, the simple random
sample from this population. Properties related to the subset of the population de�ned
by V < X and, in expectation, to r�the simple random sample from that subset�are
now derived by conditioning the trivariate density f (x; y; v) on the event Z = 1, that is,
on the event V < X.

Due to independence of (X;Y ) and V , the joint distribution of (X, Y , V ) becomes
in this restricted case:

g (x; y; v) = 2f (x; y; v)
= 2' � (x; y)' (v)
= 2 (2¼) � �� 1

p1¡ ½ � exp
µ¡x � ¡ 2½xy + y �

2 (1¡ ½ � )
¶

exp
µ¡1

2v
�
¶

8

<

:

¡1 < x < 1¡1 < y < 1¡1 < v < x .
The conditional joint and marginal distributions and expectations of X and Y follow.

First, the joint distribution of (X; Y ) in the subset:

g (x; y) =
Z �

� �
2' � (x; y)' (v) dv

= 2' � (x; y) © (x) ,
6



where ©(¢) is the cumulative distribution function of the standard normal distribution.
The distribution of X in the subset:

g (x) =
Z �

� �
g (x; y) dy (4)

= 2
Z �

� �
' � (x; y)© (x) dy

= 2' (x) © (x)
Using the relation t' (t) = ¡' � (t), the expectation of X in the subset, E � (X), is then

obtained:

E� (X) = 2
Z �

� �
x' (x) © (x) dx (5)

= ¡2
Z �

� �
© (x) d' (x)

= 2
Z �

� �
' (x) d©(x)

= 2
Z �

� �
' (x) � dx

=
r 2

¼
Z �

	 �
'
³p2x

´

dx
= ¼ 
 �� .

The expectation E
 (X) is equal to ¼ �
�� , approximately :564, and this holds also for the

expectation of the mean of r, E ¡ ¹X�
¢, because r is a simple random sample from the

subset. The unadjusted r sample mean is thus biased in expectation as an estimator of
E (X) = E ¡ ¹X �

¢ = 0, with a bias of approximately :564.
To obtain the variance of X in the subset,
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E�
¡X � ¢ = 2

Z �

� �
x � ' (x) © (x) dx (6)

= ¡2
Z �

� �
x©(x) d' (x)

= ¡ [2x©(x)' (x)] �
� � + 2

Z �

� �
' (x) d [x©(x)]

= 2
Z �

� �
' (x) [x' (x) + © (x)] dx

= 2
Z �

� �
x' (x) � dx+

Z �

� �
d©(x) �

=
r 2

¼
Z �

� �
x'

³p2x
´

dx+ 1

= 1p2¼
Z �

� �
t' (t) dt+ 1

= 1,
from which,

V ar� (X) = E�
¡X � ¢¡ [E� (X)] � (7)

= 1¡ ¼ � � .
As the study variable Y , through its correlation with X, is not independent of Z =

I � 	 
 when ½ 6= 0, the distribution of Y in the subset is of interest. It is obtained as:

g (y) =
Z �

� �
g (x; y) dx (8)

= 2
Z �

� �
' � (x; y) © (x) dx

= 2' (y)
Z �

� �

1
p1¡ ½ � '

Ã

x¡ ½y
p1¡ ½ �

!

©(x) dx

= 2' (y)
Z �

� �
©(x) d©

Ã

x¡ ½y
p1¡ ½ �

!

= 2' (y)
"

1¡ Z 


� 

©
Ã

x¡ ½y
p1¡ ½ �

!

d©(x)
#

=
Z �

� �
¼ � � 1

p1¡ ½ � exp
µ¡1

2
x � ¡ 2xy½+ y �

1¡ ½ �

¶

© (x) dx.

The expected value of Y in the subset:
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E� (Y ) =
Z �

� �
yg (y) dy

= 2
Z �

� �

Z �

� �
y' � (x; y)© (x) dxdy

= 2
Z �

� �
' (x)© (x)

Z �

� �
y 1
p1¡ ½ � '

Ã

y ¡ ½x
p1¡ ½ �

!

dydx

= 2
Z �

� �
½x' (x)© (x) dx

= ½
Z �

� �
xd©(x) �

= ½E � (X)
= ½¼ � ��

and, using the derivation in (6), the variance of Y in the subset:

V ar � (Y ) = E�
£(Y ) �

¤¡ [E� (Y )] 	

= 2
Z 


� 


Z 


� 

y 	 ' � (x; y)© (x) dxdy ¡ ½ 	 ¼ � 


= 2
Z 


� 

' (x)© (x)

Z 


� 

y 	 1
p1¡ ½ 	 '

Ã

y ¡ ½x
p1¡ ½ 	

!

dydx¡ ½ 	 ¼ � 


= 2
Z 


� 

' (x)© (x) £1¡ ½ 	 + (½x) 	

¤ dx¡ ½ 	 ¼ � 


= 1¡ ½ 	 + ½ 	 ¡ ½ 	 ¼ � 


= 1¡ ½ 	 ¼ � 
 .
Finally, also using (6), we obtain the conditional covariance of X and Y :

Cov� (X;Y ) = E� (XY )¡ E� (X)E � (Y ) (9)
=

Z �

� �

Z �

� �
g (x; y) dydx¡ ¼ � �� £ ½¼ � ��

= 2
Z �

� �

Z �

� �
xy' � (x; y)© (x) dydx¡ ½¼ � �

= 2
Z �

� �
x' (x)© (x)

Z �

� �
y 1
p1¡ ½ � '

Ã

y ¡ ½x
p1¡ ½ �

!

dydx¡ ½¼ � �

= 2
Z �

� �
½x � ' (x)© (x) dx¡ ½¼ � �

= ½ ¡1¡ ¼ � � ¢

The expectation of Y in the subset, E� (Y )�equal to the expectation of the mean of
the simple random sample r from the subset, E ¡ ¹Y �

¢�is ½¼ � �� ¼ ½ £ :564. Thus, the
9



unadjusted mean of Y in the restricted sample r is biased as an estimator of E (Y ) =
E ¡¹Y �

¢ = 0 whenever ½ 6= 0. Its absolute bias is directly proportional to the magnitude
of the correlation coe¢cient, attaining its maximum at :564 when ½ = §1.

The remainder of this text gives a demonstration of the reduction of the bias of the
two estimators by strati�cation: of ¹X � as an estimator of E (X) and of ¹Y � as an estimator
of E (Y ).

2 Reducing the bias of ¹Xr as an estimator of E (X)
by strati�cation on X

Based solely on the sample r, both the unadjusted ¹X � and ¹Y � are biased as the estimates
of E (X) and E (Y ) respectively. Rosenbaum and Rubin (1983) introduced a broad class
of scores termed �balancing scores�, whose de�ning property is:

(X ? Z) jb (X) . (10)
That is, a function of X is a balancing score, b (X), if conditioning on the function
results in a (conditional) independence of the auxiliary information and the treatment
assignment.

There are, in general, many functions of X that are balancing scores, the �nest,
�trivial� (Rosenbaum and Rubin, 1983) balancing score being X itself and the coarsest
being the propensity score, e (x) = Pr (Z = 1 j X = x). Here, coarsest denotes that there
exists no function of the propensity score (other than the identity function) that also
produces a balancing score.

As the simplest case of bias reduction by subclassi�cation (strati�cation), adjustment
of ¹X � using X itself�the �trivial� balancing score�is demonstrated �rst. The same
principle is later applied to adjusting ¹Y � using the propensity score.

From the exposition thus far, E� (X) = E ¡ ¹X �
¢ ¼ :564 while E (X) = E ¡ ¹X �

¢ = 0. In
this section, we adjust ¹X � in order to obtain a less biased estimator of ¹X � . An intuitive
description of the procedure is given �rst, followed by a more formal account.

The distribution of X in the restricted sample r is strati�ed into a number of sub-
classes, with cuto¤ points determined by the quantiles of the cumulative distribution
function (cdf ) of X in the population. (It is the use of the cdf of X in the population
that, implicitly, performs the role of the balancing score in the present example.) Usu-
ally, cuto¤ points equidistant in terms of quantiles are chosen, as this allows for easier
weighting into the �nal estimate. For each stratum l, the mean of X in the stratum is
calculated, ¹X � � � = ¡P

	 
 � X 	
¢ =k � . An adjusted estimate of E (X) is then built by suitably

weighting the stratum means; with equidistant quantile points, this amounts to taking
the arithmetic average of the stratum means.

With L strata, the lowest and the highest quantile points would be q � = 0 and q 
 = 1,
and, aiming at cuto¤ points equidistant in terms of quantiles, the remaining L¡ 1 points

q � = l £ L � � ; l = 1; 2; :::; L¡ 1.
To each of the quantile points corresponds a cuto¤ point, c � , determined by
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c � = © � � (q � ) , (11)
where © � � (¢) is the inverse of the cdf of the standard normal distribution.

Expectation of X in the restricted sample r at each level of X is determined using
the conditional density g (x) given in (4):

E� � � (X) = E ¡ ¹X � � � ¢ =
R � � � 	


 � xg (x) dx
R 
 � � 	


 � g (x) dx
=

R 
 � � 	

 � x' (x)© (x) dx
R 
 � � 	
 � ' (x) © (x) dx

=
R 
 � � 	
 � x' (x) © (x) dx�
 [© 
 (c � � � )¡ © 
 (c � )] ; l = 0; 1; :::; L¡ 1.

With equidistant quantile points, the expression in the denominator may be simpli�ed to
(2l + 1) =L 
 . It is not known how to further simplify the expression in the numerator�
integration must be performed instead. A numerical example with L = 5 is given later
on in this section. An estimate of E (X), based on the restricted sample r and adjusted
by strati�cation on X, is then obtained by

\E � (X) � � � � � =
P �� � � E� � � (X)

L =
P �

�
� � E ¡ ¹X � � � ¢

L .
The same weight is given here to each stratum because the quantiles of the cdf are
equidistant. So, the weights do not appear explicitly in the expression.

The above procedure relies on the assumption that with su¢ciently �ne strati�cation
on the balancing score, the conditional stratum expectations of X in the population,
E � � � (X), and in the subset, E� � � (X), will within each stratum get close enough to each
other; that is, that E� � � (X) will become a su¢ciently good proxy for E � � � (X). This is
expressed in the following derivation.

E (X) =
Z  

!  xf (x) dx (12)

=
� !

�
X

" # $
Z % & ' (

% & xf (x) dx

=
) * +
X

" # $
Z % & ' (

% &

R % & ' (
% & xf (x) dx
R % & ' (

% & f (x) dx f (x) dx

¼
) * +
X

" # $
Z % & ' (

% &

R % & ' (
% & xg (x) dx
R % & ' (

% & g (x) dx f (x) dx

= 1
L

) * +
X

" # $

R % & ' (
% & xg (x) dx
R % & ' (

% & g (x) dx
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Table 2: Adjustment of ¹x � by strati�cation on X: the strata means of X in the subset,
¹x � � ; l = 1; 2; :::5; are given equal weights.

Stratum E ¡ ¹X � � �
¢

1 ¡1:1496
2 ¡0:4995
3 0:0168
4 0:5458
5 1:427 6

Mean 0:0682

Approximation of E � � � (X) by E� � � (X) is performed on the fourth row. With known
f (x) and g (x), such as in the present demonstration, the quality of the approximation is
proportional to the number of subclasses into which the distributionG (x) = R 	 g (x) dx is
strati�ed. Justi�cation for the last row in (12) exists when the cuto¤ points are quantile-
equidistant.

An example with L = 5 follows.
The strata means are given in Table 2, as well as their mean. This mean of the strata

means is an adjusted estimate of E (X) based on X values in the sample r only. The
estimate, \E 
 (X) � � 
 � � = :068, is closer to the true value, E (¹x) = 0, than the unadjusted
estimate ¹x � ¼ :564. With L = 7 the adjusted estimate is 0:045, and with L = 10 it is
0:029. Using the measure percentage reduction in bias, µ, (Cochran and Rubin, 1973),
namely in this case

µ = 100
0

@1¡ \E � (X) � � � � � ¡ E (X)
E ¡ ¹X � ¢¡ E (X)

1

A ,

stratifying X into L = 5; 7 and 10 strata reduces the bias by 87:9, 92:0, and 94:9 percent,
respectively.

A note on the use of the unrestricted sample
In the above example, no use was made of the unrestricted sample, s. Coupling to the

population was done on the theoretical level in (11) in the form of using © � � (x). In many
cases, this will not be possible as more complicated functions than X itself will be used
as balancing scores. In practice, cuto¤ points in the population will be estimated from
the empirical distribution of the balancing score in the two samples taken together, for
which the availability of the explicitly drawn sample s from the population, in addition
to the sample r of elements from the subset, is essential.
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3 Reducing the bias of ¹Xr and ¹Yr as estimators of
E (X) and E (Y ), respectively, by strati�cation on
the propensity score

3.1 Reducing the bias of ¹X � as an estimator of E (X) by strati-
�cation on the propensity score

Now, for the chosen model, stratifying on X as demonstrated in the preceding section
coincides both in procedure and numerically with stratifying on the propensity score e (x),
where

e (x) =� � � � Pr (Z = 1jX = x) = Pr (V < XjX = x) = © (x) . (13)
In general, when the joint distribution of X and V is a bivariate normal and the

indicator for inclusion into the sample r is a linear expression of the form bV < cX, the
inclusion probabilities are determined by ©(b �

� cX).
The reason that here balancing on e (x) is the same as balancing on the �trivial�

balancing scoreX is that partitioning the distribution ofX into quantiles and partitioning
the distribution of e (x) = © (x) into quantiles give the same cuto¤ points on the X axis.
That is, the reason is the simpli�ed structure of the chosen example. With more complex
variable structures this would in general change�in particular when X is multivariate.

3.2 Reducing the bias of ¹Y � as an estimator of E (Y ) by strati�-
cation on the propensity score

When the goal, in addition to balancing for the di¤erences on the auxiliary variable X be-
tween the two samples, s and r, is to adjust an estimator of the study variable Y observed
only in r, a pair or requirements jointly known as strongly ignorable treatment assignment
(Rosenbaum and Rubin, 1983) need to hold for the estimate to be�in expectation and
with an in�nite number of strata�unbiased:

(a) 0 < e (X) < 1
(b) (Y ? Z) j X,

(14)

where ? denotes independence � .
The �rst assumption, that each unit�s propensity score need be positive and strictly

less than 1, mimics the requirement in experimental studies that each unit has a positive
chance to be placed into any of the experimental conditions. Intuitively, the requirement
says that on any level of e (X) there need be �comparable� units, �similar� to each other
on X. The second assumption expresses the need that all the information relevant for
treatment assignment be present amongst the observed auxiliary information�no further

	 
 � � 
 � � � � � � � � � � � � � � � � � � � � � � � � � �  � ! � " � #  $ � � % & % & ' ( " � # %  ) � # � � * ' � ' " ( ( + � , - . / 0 1 2 3 4 3 4 5 3 6 0 7 1 8 9
4 : ; 1 < = 7 3 8 6 3 0 3 < = 0 3 = = 1 < > ? @ A ? / 5 . 3 0 : 4 8 . 3 0 @ 6 ? 4 = 7 3 0 : 4 3 8 ? 8 / . : = 1 ? < 5 3 6 3 . : , 3 A = ? B C D E F G H I J K L K M
N O P Q K Q R K S T O U V N W X Y K S W P N M W Z [ P M K \ K Q K M W X P ] ] W N \ \ P ^ T ] N W N L K ^ S T R P R N \ N W Z W T P ^ ^ K P S N M _ ` a b c d d e a f d g h f i j
a b k l e f i m k n c f m k l k i a o g e p o d f a f q k r b e i r k g o m k e r b k s k l k i a a o e p p k e m f i e i h o g a b k d e l p s k d t
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information should there exist in Z, once X is observed; if it did, there might remain a
correlation between Y and Z that then could not be adjusted for by stratifying on e (X).

Veri�cation of the above two assumptions with respect to the arti�cial population and
the two samples from it gives that both are ful�lled. For,

(a) 0 < e (x) = © (x) < 1

(b) (X;Y ) ? V
Z = h (X;V )

¾ ! (Y ? Z) j X
Now, to perform the propensity score weighting: the procedure follows exactly the

steps of balancing G (x) = R g (x) dx, given above. E� (Y ) = E ¡¹Y � ¢ = ¼ � �� ½ ¼ :564£ ½
is biased with respect to E (Y ) = E ¡ ¹Y � ¢ = 0. So, G (y) is strati�ed into L classes using
the quantile points

q � = l £ L � �

for l = 0; 1; :::; L. Stratifying on e (x), the propensity score, where in (13) it was noted
that in the present model e (x) = © (x), we again �nd cuto¤ points corresponding to the
quantiles using © � � (¢), the inverse of the standard normal cdf, which in expectation is
the distribution of X in the sample s:

c � = © � � (q � ) ; l = 0; 1; :::; L.
Expectation of Y in the restricted sample r at each level of e (X) is thus determined,

using the conditional density g (y) in (8), by

E� � � (Y ) = E ¡ ¹Y � � � ¢ =
R 	 
 � �	 
 y R �

� � ' 
 (x; y)© (x) dxdy
R 	 
 � �	 
 R �

� � ' 
 (x; y)© (x) dxdy ; l = 0; 1; :::; L¡ 1.
Results of a numerical integration with L = 5 taken as an example are given im-

mediately. An estimate of E (Y ), based on the restricted sample r and adjusted by
strati�cation on the propensity score e (X), is then obtained by

\E � (Y ) � � � � � � =
P �� � � E� � � (Y )

L =
P �� � � E� � � ¡¹Y � � � ¢

L .
The same weight is given here to each stratum, as the quantiles of the cdf ©(x) are
equidistant.

The strata means, with L = 5 and ½ = :78, are given in Table 3, together with their
mean. This mean of the strata means, :0532, is an adjusted estimate of ¹y based on the
values of Y in the sample r only. This estimate, \E � (Y ) � � � � �  [read: an estimate of the
expected value of Y in the population, based on the restricted sample r and adjusted
using the propensity score as the balancing score], is closer to the true value than the
unadjusted estimate from (8), E ¡¹Y ! ¢ = ½¼ "

#$ ¼ :78 £ :564 ¼ :440, based on the same
sample. It is shown in the following section that regression of Y on X is linear in the
restricted subset R, with ½ as the regression coe¢cient, so we note that values in the table
above could have more easily been obtained by ¹Y ! % & = ½£ ¹X ! % & as well as the �nal adjusted
value by \E ' (Y ) ( ! % ) * + = ½ £ \E ' (X) ( ! % ) * + = ½ £ \E ' (X) ( ! % , + . Using this shortcut, with
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Table 3: Adjustment of ¹y � by strati�cation on X: the strata means of Y in the subset,
¹x � � ; l = 1; 2; :::5; are given equal weights.

Stratum E ¡ ¹Y � � �
¢

1 ¡0:8967
2 ¡0:3896
3 0:0131
4 0:4256
5 1:1135

Mean 0:0532

L = 7 the adjusted estimate is :0351, and with L = 10 it is :0226. Percentage reduction
in bias, µ, stratifying G (Y ) into L = 5; 7 and 10 strata, using

µ = 100
0

@1¡ \E � (Y ) � � � � � 	 ¡ E (Y )
E ¡¹Y �

¢¡ E (Y )

1

A ,

is the same as for \E � (X) � � � 
 	 with respect to E (X): 87:9, 92:0, and 94:9 percent, re-
spectively (which also follows from the linear relation of X and Y ).

4 The regression approach: a graphical illustration
In Cochran (1968) and Cochran and Rubin (1973), the regression function representation
is used in a situation that originally motivated the propensity score weighting, namely
that of estimating the average di¤erence between two populations, conditional on a con-
founding variable X. As that situation bears resemblance to the present one, and as
the regression approach allows for a nice graphical illustration which hopefully will en-
hance understanding, in the present section the regression approach is illustrated �rst for
the Cochran and Rubin�s case and then for the case of double samples from the same
population with one of the samples drawn from a subset of the population.

Cochran and Rubin (1973) consider estimating the treatment e¤ect, ¿ � ¡ ¿ � , which
is the di¤erence between the average e¤ects of two treatments on the same level of a
variable X. Both X and Z (the treatment assignment) and X and Y are known to be
correlated (cf. the seat belts example in the introduction). A simple random sample is
drawn from each of the two populations. The simple case where the regressions of Y on
X are linear and parallel in both populations, gives the model

Y 
 � = ¹ � � + ¯
³

X � � ¡ ¹ � �
´

+ e � � ; j = 1; 2,
where for a jointly normal pdf as in (2), ¯ � = ½ � � �

� � � = ½, and e� are here random residuals
with zero means and constant variance. Taking expectation over the residuals conditional
on X,
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Figure 1: Unadjusted di¤erence ¹ � � ¡ ¹ � � is biased as an estimator of the treatment
e¤ect ¿ � ¡ ¿ � , with the bias equal to ¯ (¹ � � ¡ ¹ � � ).

E � � � � � (y � ¡ y 	 jx � = x 	 )
= ¹ 
 � + ¯ (x¡ ¹ � � )¡ (¹ 
 	 + ¯ (x¡ ¹ � 	 ))
= ¹ 
 � ¡ ¹ 
 	 ¡ ¯ (¹ � � ¡ ¹ � 	 ) = ¿ � ¡ ¿ 	 ,

the magnitude of interest. But, not taking X into account, that is, taking unconditional
expectation over the sample gives

E � 
 � � � � (¹y � ¡ ¹y � ) = ¹ � � + ¯ (¹x � ¡ ¹ � � )¡ (¹ � � + ¯ (¹x � ¡ ¹ � � ))
= ¿ � ¡ ¿ � + ¯ (¹x � ¡ ¹x � ) ,

which di¤ers from ¿ � ¡¿ � by ¯ (¹x � ¡ ¹x � ), and is the bias of the unconditional expectation.
Cochran (1968) considers, amongst others, the normal density function, with ' � (x) 2

N (0; ¾ � ) and ' � (x) 2 N (µ; ¾ � ), whose regressions of Y on X are linear and parallel.
This is illustrated in Figure 1.

By subclassi�cation (strati�cation) on X, the bias ¯ (¹ � � ¡ ¹ � � ) of E (¹y � ¡ ¹y � ) with
respect to ¿ � ¡ ¿ � can be reduced as follows. A subclass indexed with l is formed by
selecting boundaries x � � � and x � . With ¹y� � denoting sample mean of Y in the l � � stratum
of the j � � population, E (¹y�  ) = ¹ ! " + ¯¹x�  , where

¹x�  =
R # $

# $ % & x'' (x) dx
R ( )

( ) % & '' (x) dx .

The bias due to x after adjustment (Figure 2) is
Xw * ¯ (¹x + * ¡ ¹x , * ) ,

where w * denotes weight assigned to class l.
16
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Figure 2: Stratum di¤erence of the means, ¹ � � � � ¡ ¹ � � � � is less biased as an estimator
of ¿ � ¡ ¿ � than the overall di¤erence of the means. The adjusted estimator is
built by averaging over the weighted strata means. Illustrated for l = 2 in the
�gure.

When subclassifying on X in the above mentioned case of two normals, Cochran
(ibid.) applies three levels of bias, µ=¾ = 1; �

� ; �
� and for 5 strata with equal weights

assigned to each stratum reports 89:1, 89:6, and 89:7 percent reduction in bias of ¹x � ¡ ¹x �
for the three µ=¾ ratios, respectively.

Now, Cochran�s (1968) and Cochran and Rubin�s (1973) situation is di¤erent in two
respects from the one considered in the present text, where the di¤erences balance each
other: there, responses, Y , are available for both samples, here, responses are available for
the r sample only; and on the other hand, there, a treatment e¤ect�conditional expec-
tation of the di¤erence in response between the two groups�is supposed to exist, while
here (for the present) no systematic di¤erence in the response caused by the measurement
method or otherwise between the samples is assumed to exist.

For a jointly normal pdf as in (2)�the case studied by Cochran (1968)� the regression
function model, with

¯ � = ½ ¾ 	 


¾ � 

= ½;

®� = E (Y� )¡ ¯ � E (X� )
is

Y� = ®� + ¯ � X� (15)
= E (Y� )¡ ¯ � E (X� ) + ¯ � X�

= E (Y� ) + ¯ � (X� ¡ E (X� )) ,
For the double samples procedure and the model in the present study, the regression

lines of the two samples, s and r, coincide:
17



� for the sample s:

¯ � = ½¾ �

¾ �

= ½£ 1
1= ½,

® � = E (Y )¡ ¯ � E (X)
= 0¡ ½£ 0
= 0,

Y = E (Y )¡ ¯ � (E (X)¡X)
= ½X;

� for the sample r, using the derivations in (7) and (9):

¯ � = ½�
¾ � �

¾ � �

= Cov� (X; Y )
¾ �

� �

= ½ (1¡ ¼ 	

 )

1¡ ¼ 	



= ½,

® � = E� (Y )¡ ¯ � E� (X)
= ¼ 	

�

 ½¡ ½¼ 	

�



= 0,

Y � = E� (Y )¡ ¯ � (E� (X)¡X� )
= ¼ 	

�

 ½¡ ½

³

¼ 	

�

 ¡XjZ´

= ½£X� .
With the same intercepts and slopes, the unconditional and conditional regression

lines of Y on X are the same. Thus, situation the researcher is facing is the one depicted
in Figure 3, but where there actually is no access to the response for the standard group,
j = 1, only its, possibly estimated, cuto¤ points on the stratifying variable, here X; so,
the situation the researcher really is facing is that in Figure 4.
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Figure 3: In a single population there is only one regression line. With the assumption
of no mode e¤ect, any expected di¤erence between the means indicates bias.

With a limited number of strata, the strati�cation technique results in a biased estima-
tor of the treatment e¤ect. But, provided that strongly ignorable treatment assignment
holds (see above, p. 13), the estimator becomes unbiased when the number of strata
approaches in�nity. The argument given here for this is intuitive, based on Figure 2; a
formal proof is given in Rosenbaum and Rubin (1983).

The bias arises because the lines connecting (¹ � � ; ¹ � � ) and (¹ � � ; ¹ � � ) in Figure 2 are
not vertical. They approach verticality with the increase in the number of strata: with
in�nitely many strata, the strata mean di¤erences coincide with the treatment e¤ects at
these levels of X, and an unbiased overall estimate of the treatment e¤ect is obtained
by averaging/integrating over strata means. With limited amount of data, many strata
would have none observations or observations for just one of the two samples, why re-
ducing the number of strata is a necessity. But, as shown, with even 5 to 7 strata, an
elimination of about 90% of the bias may already be achieved.

While strati�cation�with a limited number of strata� is inferior to regression ad-
justment in correcting bias in case of a linear relation between X and Y , there is little
reason to expect that a linear relation holds in real applications with multivariate auxil-
iary information or on a propensity score estimate based on this information. This latter
situation is illustrated in Figure 5, where a hypothetical population, indexed by 1, has
a peculiar distribution. The part completely observed, corresponding to our sample r, is
indexed by 2. The quantile cuto¤ points of the distribution of X in the population are, as
before, represented by solid vertical lines. Plugging the estimated overall expected value
of X into a linear model based on the data in r would result in an estimate ¹̂ � � � � , which
is considerably biased. But, using the means of Y in each of the propensity score de�ned
strata (diamonds in the �gure), and giving them weights proportional to the quantile
ranges of the strata, would result in an estimate with smaller bias.

Thus, strati�cation on the propensity score provides a way of adjusting the estimates
when regression of Y on the propensity score e (x) is not linear in the standard population.
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tion known for both samples, study variable known only for t sample.
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Figure 5: Adjusting the estimate of E (Y ) for a hypothetical population with the lo-
cation parameter (¹ � � ; ¹ � � ) based on a sample from the subspace with the
location parameter (¹ � � ; ¹ � � ): linear regression produces a biased estimate
¹̂ � � � � ; the propensity score adjusted estimate, which is the mean of the �ve
strata estimates (diamonds in the �gure�the mean itself is not depicted in the
�gure) can be seen to be far less biased.
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5 Conclusions
Like in estimating treatment e¤ects when sampling from two populations, the propensity
score weighting technique e¢ciently reduces bias when taking two samples from the same
population�one of the samples drawn from a subset of the population. In fact, in theory
the approach can give unbiased estimates provided that the strongly ignorable treatment
assignment assumptions hold. In practice, though, a limited amount of available data
leads to a limited number of propensity score strata, because observations from both
samples need to exist at each stratum level. As a consequence, the method can only
reduce bias rather than eliminate it; but, with even 5 to 7 strata, an elimination of about
90% of the bias may be achieved.

Concerning the present study, the following two remarks on its limitations seem to be
in place:

Model simplicity. The model introduced here is extraordinarily simple, the sole
purpose of its use was to enable simple and clear demonstration of the propensity score
weighting. Of course, in this univariate auxiliary variable case, balancing on X and
balancing on the propensity score result in the same cuto¤ points, that is, in the same
�nal estimates. With a multivariate auxiliary information, where the propensity score is
a function of more than a single variable, this is not longer the case (but is more di¢cult
to graph). The general principle, though, is the same in both the univariate and the
multivariate case.

No mode e¤ect. In this demonstration, no account was taken of an eventual ex-
istence of the mode e¤ect, that is, of the e¤ect of the data collection method on values
observed. In the survey context, it is known that a �warm�, socially intensive, method
like personal or telephone interview tends to have a systematic in�uence in direction of
social desirability and conformance, compared to �cold�, less socially intensive methods
that rely on self-administration, like web surveys. If a mode e¤ect is suspected to exist
with respect to some of the variables in the study, it needs to be estimated outside of the
propensity score weighting technique and added atop of the weighting results to produce
the �nal estimate.

In practice, the propensity score is estimated rather than known, in situations where
the underlying distributions of the variables included in the study are at best assumed.
(Usually, the logistic regression model is used.) Uncertainty regarding the resulting,
propensity score weighted, point estimate draws from two sources: propensity score was
estimated rather than known, and only samples from the population and its subset were
measured instead of the whole population. These, and the other topics like in�uence of the
covariance structure of the variables in a multivariate auxiliary information situation on
the estimate, choice of the estimation technique, e¤ects of violation of strongly ignorable
treatment assignment assumptions, etc., need to be illuminated, preferably through a
simulation study.
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