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Abstract

With the release of public-use microdata …les it is important to
assess the risk of disclosing individual information. A measure of
disclosure risk often considered in the literature is the proportion of
unique records in the …le that are also unique in the population. Vari-
ous methods based on superpopulation models have been proposed for
estimating this quantity using sample data. An empirical comparison
of a selection of models applied to three real-life data sets is presented.
The general conclusion is that no one model is uniformly best with
respect to the risk measure used and that performance varies greatly
between di¤erent types of data.
Keywords: Method evaluation; Statistical disclosure control; Su-

perpopulation; Uniqueness.

1 Introduction
A provider of statistical microdata, typically a national statistical agency,
must consider the rights of the respondents, both individuals and organiza-
tions, when releasing statistical data such as e.g. public-use microdata …les
or large complex tables. These rights, often prescribed by law, include the
protection against unnecessary exposure, i.e. disclosure of con…dential in-
formation about the respondents. It is therefore essential that the provider
can assess the disclosure risk involved with the release of detailed data. Up
to date a wide variety of methods of assessing statistical disclosure risk by
means of the so-called uniqueness concept have been proposed, many based
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on superpopulation assumptions although non-parametric approaches have
also been considered e.g. in Greenberg and Zayatz (1993) and more recently
in Elliot (2002) and Skinner and Elliot (2002).
This paper is a …rst small scale investigation of the performance of super-

population models for disclosure risk assessment and aims at providing some
further empirical results, which may generally be of guidance in comparing
di¤erent methods. In evaluating the various methods it is important to apply
them to data with varying properties and compare each method on the same
appropriate criterion. The focus here is on disclosure risk on the …le-level,
i.e. measures of disclosure risk that pertain to the …le or sample as a whole
in contrast to per-record measures of risk. The risk measures are de…ned as
the number of unique units in the population and as the proportion of unique
records in a microdata …le that are unique in the population. A selection of
model-based methods are compared by means of simulation studies on three
real-life data sets. The simulation study entails drawing samples of varying
size from the data sets and for each sample computing an estimate of the risk
measure de…ned. Similar comparative studies have been reported in among
others Skinner and Holmes (1993), Chen and Keller-McNulty (1998), and
Hoshino (2001).
This paper is organized as follows. The following section introduces some

basic notation and describes the problem at hand. In section 3 we brie‡y
discuss statistical disclosure risk as it is often de…ned in terms of uniqueness.
The methods included in this study are described in section 4 and the data
sets used are described in section 5. The results of the study are reported in
section 6 and section 7 …nalizes the paper with some concluding remarks.

2 Preliminaries
Consider a …nite population U of sizeN from which a random sample without
replacement s µ U of size n 6 N is drawn. With each unit in U is associated
the values of a number of discrete variables, X1; : : : ; Xq with C1; : : : ; Cq
categories respectively. The cross-classi…cation of these variables de…nes the
discrete variable X with ¦Ci = C categories or cells and for simplicity we
let the cells of X be labeled as 1; 2; : : : ; C. The sample can be viewed as
the public-use microdata …le being considered for release containing records
corresponding to individual respondents. It is well known that there remains
the possibility that statistical disclosure could occur even when such a …le has
been anonymized by the removal of direct identi…ers such as names, addresses
and identity numbers, see e.g. Block and Olsson (1976) and Dalenius (1986).
Respondents with a unique set of scores on the attributes are obviously at
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greater risk of being spotted in a re-identi…cation process relative to other
non-unique respondents.
Following e.g. Bethlehem et al. (1990) the Xi are termed key variables,

X the key and the C di¤erent categories of X; the key values. Thus, the key
divides the population into C subpopulations Ui µ U and by Fi we denote the
number of units belonging to subpopulation Ui, i.e. the population frequency
or size of cell i for i = 1; : : : ; C. The sample counterpart is denoted by fi.
De…ne Tj and its sample counterpart tj as the number of cells of size j, i.e.

Tj = #(i; Fi = j) ; j = 0; 1; : : : ; N

and

tj = #(i; fi = j) j = 0; 1; : : : ; n

respectively. The Tj and tj are usually termed cell size indices or frequencies
of frequencies and correspond to the equivalence classes of Greenberg and
Zayatz (1992). Of these quantities, C; N and n are usually …xed in the
design, the fi and tj are observed from the sample and the Fi and Tj are
assumed to be unknown.
Employing a superpopulation model implies that the individual popula-

tion cell frequencies are realizations of a random variable from some suitable
distribution, Pr (Fi = j) = Pj; j = 0; 1; 2 : : : . The goal is to model and
estimate the population frequency structure, i.e. the Tj, based on sample
information. If the distribution is well chosen and the parameters reliably
estimated, it is then possible to reliably predict the number of cells of a
certain size j in the population.
As the number of combinations of key variable values may be very large,

it is inevitable that a signi…cant number of cells will be empty simply by
chance or because they are rare combinations. A further consideration deals
with the fact that certain combinations may be logically impossible, such as
married 4-year olds. Let S0 denote the number of these so-called structural
zeroes. If this number is known a priori it su¢ces to consider the non-
structural zero cells in the modelling process. If S0 is unknown or di¢cult
to assess, a solution is to consider models which take on only positive valued
integers, j = 1; 2; 3 : : : disregarding all empty cells. Alternatively the model
can be extended to allow for a proportion of the cells to be zero with unit
probability, as suggested by Skinner and Holmes (1993) and used in Carlson
(2002a). The marginal distribution of the cell frequencies would then be
given by

Pr (Fi = j) = µIj=0 + (1¡ µ)Pj: (1)
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where I(¢) is the usual indicator function, µ is an additional parameter such
that 0 6 µ < 1 and Pj denotes a probability function.
An important issue is also the marginal distribution of the sample level

cell frequencies, i.e. the distribution of the fi under the sampling design and
the assumed distribution of the population cell frequencies. Often the model
and sampling designs considered result in sample distributions of the same
form as the population level model, i.e. if Pr (Fi = j) = g (j; µ) where g is a
probability function and where µ is a set of parameters, then Pr (fi = j) =
g (j; µs) where µs is some transformation of µ determined by the sampling
design. Thus, the parameter µs is estimated from the sample data and then
transformed to obtain an estimate of µ which in turn is used to predict the
number of cells of size j in the population. See e.g. the discussion concerning
sampling in Takemura (1999) and Hoshino (2001).

3 Risk assessment
The basic framework considered here is the same as presented by many au-
thors, see e.g. Bethlehem et al. (1990), Paass (1988), Fienberg and Makov
(1998), Skinner and Holmes (1998) and Skinner and Elliot (2002). Here we
will only brie‡y review the basic ideas of assessing disclosure risk that build
on the concept of uniqueness.
A unique is de…ned as an entity that has a unique set of values on the

key variables. A unit that is unique in the population is referred to as a
population unique whereas a unit that is unique in the sample is referred
to as a sample unique. If a population unique is included in the sample
it is necessarily also a sample unique but the converse does not hold; the
occurrence of a sample unique does not imply that it is also a population
unique. A population unique is obviously subjected to a greater risk of being
exposed if it is included in the released data relative to other non-unique
records.
A …rst measure of risk is the proportion or equivalently the number of

population uniques, T1. The idea is that if a perceived intruder could use the
key to link an identi…able unit in the population to a record in the …le and
in addition knew that the unit was unique in the population then he could
deduce that the link is correct. The proportion T1=N is interpreted as the
probability that a unit drawn at random from the population is population
unique, assuming equal sampling probabilities across units.
However, it could be argued that an intruder will be more inclined to

focus upon those records that are sample unique since it is only these that
can by de…nition be population uniques. An alternative measure is thus the
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proportion of sample uniques that are also population uniques, i.e.

R =
#(records that are Pop.Uniques and SampleUniques)

# (records that are SampleUniques)
: (2)

This proportion is interpreted as the probability that a sample unique is
population unique. The intruder is thought of as drawing one sample unique
at random from the set of sample uniques and then search through the pop-
ulation units at random until a matching population unit is found, see e.g.
Skinner and Elliot (2002).
Let t1;1 denote the nominator of (2). Under simple random sample with-

out replacement or Bernoulli sampling with inclusion probability denoted by
¼s = n=N , a …rst result is given by the expectation of t1;1 given the value of
T1 which is

E (t1;1) = ¼sT1 (3)

since each population unique is equally likely to be included in the sample.
Secondly, as shown by Greenberg and Zayatz (1992), the expected number
of sample uniques t1 given the sample size n and the Tj, is derived from

E (t1 j n; T1; T2; : : : ) =
N¡n+1X
j=1

¡
N¡j
n¡1
¢¡

N
n

¢ jTj : (4)

So, given that a unit is unique in the sample, the expected conditional prob-
ability that it is also unique in the population is approximately given by the
ratio

Risk = E (R j n; T1; T2; : : : ) ¼ T1=N

E (t1 j T1; T2; : : : ) =n (5)

which can be used as a risk measure of any given data set. Usually it is
assumed that the intruder will not know the true value of the Fi, and hence
the Tj, since the microdata contains only a sample. By introducing a su-
perpopulation model and viewing the population level cell frequencies as a
realization of this generating model he may attach a probability distribution
g(j) = Pr(Fi = j) to the Fi, preferably de…ned through some parametric
family and the conditional probability under the model would be given by

Risk = Pr (Fi = 1 j fi = 1) : (6)

By replacing the parameters for their estimates in (6) the matter of risk
assessment is reduced to a matter of parameter estimation and prediction.
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As a method of comparing di¤erent keys on the population level we con-
sider also the so-called identifying force of the key. The resolution of a key,
proposed by Block and Olsson (1976) and Bethlehem et al. (1990), is de…ned
by

R (X) =

"
CX
i=1

µ
Fi
N

¶2#¡1
and equals the reciprocal of the probabilities that two random units selected
with replacement from the population have the same key value. The reso-
lution is compared to the size of the population; if all units are unique the
resolution equals N . The identifying force is also expressible as the entropy
of the key. The entropy of a random variable is de…ned as ¡E (pX log pX),
where px is the probability function; for an introduction to information the-
ory see e.g. Cover and Thomas (1991). Information theory and entropy
measures have been adapted as a means of assessing disclosure risk in e.g.
Frank (1978, 1983, 1988) Greenberg and Zayatz (1992) and Carlson (2002b).
Given no knowledge of the key for a randomly selected unit from the popula-
tion, the uncertainty of a correct link measured in terms of entropy is given
by log (N). The reduction of the initial uncertainty after gaining knowledge
of the key, is the entropy of the key, de…ned by

H (X) = ¡
CX
i=1

Fi
N
log

Fi
N
:

Both the entropy and the resolution of the key provide measures of the iden-
tifying force of the key. Large values of entropy and resolution indicate that
the key should be considered as dangerous. Note also that the identifying
force indicates the average risk over all possible key values.

4 Superpopulation Models
In this section we give brief descriptions of the various superpopulation mod-
els that are included in the study. Three of the models are compound Poisson
models, the negative binomial (NB), the Poisson-lognormal (PLN) and the
Poisson-inverse Gaussian (PiG), where the cell frequencies are assumed to be
generated independently from Poisson distributions with individual rates ¸i;
i = 1; : : : ; C: The Poisson model is motivated by thinking of the N units in
the population as falling into the C di¤erent cells with probability of the ith
cell denoted by ¼i. Given the N , C and the ¼i the frequencies will follow a
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multinomial distribution and if the number of cells is large enough each cell
frequency is approximately independently binomial with parameters N and
¼i. Since the population size is usually quite large and the ¼i small due to
large C the Poisson distribution is used to approximate the binomial with
¸i = N¼i: To simplify the model further the ¸i are viewed as independent
realizations of a continuous random variable ¤ with a common probability
density function (pdf) g (¸) : The number of cells C is usually quite large
and this assumption will signi…cantly reduce the number of parameters that
need to be estimated. The speci…cation of the mixing distribution g (¸) is the
crucial step and several di¤erent suggestions have been studied. The other
two models are the logarithmic series distribution (LSD) and the Pitman’s
sampling formula. The LSD can be derived as a limiting case of the NB.
The Pitman’s model is a generalization of Ewen’s sampling formula which
is a conditional model of the LSD where the population size is …xed, see
e.g. Hoshino and Takemura (1998). For more detailed descriptions of the
respective models we refer to the references cited.

4.1 Negative Binomial (NB)

This negative binomial, or Poisson-gamma, was proposed in Bethlehem et
al. (1990) as a possible model for disclosure risk assessment and was perhaps
the …rst approach towards a superpopulation model. The probability mass
function (pmf) of the cell frequencies is de…ned by

Pj =
¡ (®+ j)

¡ (®) ¡ (j + 1)

µ
1

¯ + 1

¶®µ
¯

¯ + 1

¶j
for j = 0; 1; 2; : : : and where ®; ¯ > 0 under the constraint that ® =
N=¯ (C ¡ S0). Assuming Bernoulli sampling, the cell sizes are also dis-
tributed as NB with parameters ® and ¯s = ¼s¯ . This model has been
noted to provide a poor …t to real-life data sets, see e.g. Skinner et al.
(1994), and Chen and Keller-McNulty (1998). We included it in our inves-
tigation for purposes of comparison. Furthermore, we used an alternative
moment based estimator that utilizes the sample mean and the proportion
of uniques amongst the non-empty cells, described in e.g. Johnson et al.
(1992, p. 226) and added the extra parameter µ as in (1). The expected
number of population uniques under this model is given by

E (T1) = C (1¡ µ)®
µ

1

¯ + 1

¶®µ
¯

¯ + 1

¶
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and the risk measure in (6) simpli…es to

Risk =

µ
¼s¯ + 1

¯ + 1

¶®+1
:

A variant of the NB model was proposed by Chen and Keller-McNulty (1998)
who proposed a shifted negative binomial distribution based on their …ndings
of typical cell size distributions in real-life data.

4.2 Logarithmic series distribution (LSD)

In many cases it has been noted that the ® parameter of the NB-model
tends to be very small in disclosure applications. In such cases it may be
appropriate to consider instead the limiting distribution of a (zero-truncated)
NB as ®! 0 which results to Fisher’s logarithmic series distribution, see e.g.
the presentation given by Skinner and Holmes (1993). Writing ¯ = Á= (1¡ Á)
the pmf is de…ned as

Pr (Fi = j) = ¡ Áj

j log (1¡ Á)
for j = 1; 2; : : : and where 0 < Á < 1. Assuming Bernoulli sampling results
in the sample distribution also being LSD with parameter

Ás =
¼sÁ

1¡ Á (1¡ ¼s) :

The risk measure (5) is reduced to

Risk = 1¡ Á+ ¼sÁ

and the expected number of population uniques is given by

E (T1) = N (1¡ Á)

The parameter Ás was estimated using ordinary maximum likelihood (ML)
methods, see Skinner and Holmes (1993) for details.

4.3 Pitman’s sampling formula

Hoshino (2001) proposed the Pitman sampling formula which is de…ned in
terms of the cell size indices, i.e. the Tj. For each pair of real parameters ®
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and µ such that either 0 6 ® < 1 and µ > ¡®, or ® < 0 and µ = ¡m® for
some natural number m the Pitman model is de…ned by

P (T1; : : : ; TN) = N !
µ[U :®]

µ[N ]

NY
j=0

"
(1¡ ®)[j¡1]

j!

#Tj
1

Tj!
(7)

where U = C ¡ T0, the number of non-empty cells in the population,
µ[N ] = µ (µ + 1) (µ + 2) ¢ ¢ ¢ (µ + (N ¡ 1))

and

µ[U :®] = µ (µ + ®) (µ + 2®) ¢ ¢ ¢ (µ + (U ¡ 1)®) :
If ® equals zero, (7) amounts to the Ewen’s model, studied by Samuels (1998).
Assuming that ® < 0, and letting µ = ¡C® it can be shown that (7) amounts
to the multinomial-Dirichlet model investigated by e.g. Takemura (1999) and
Hoshino and Takemura (1998). Note that the number of empty cells is not
de…ned under this model. The sampling distribution under simple random
sampling is also de…ned by (7) with N and U replaced by n and u = C ¡ t0,
respectively. Using equation 26 in Hoshino (2001), we …nd that under the
model, the expected number of population uniques is given by

E (T1) =
N¡ (µ + ®+N ¡ 1) ¡ (µ + 1)

¡ (µ +N) ¡ (µ + ®)

The sample counterpart t1 is estimated using n instead of N . The risk
measure (5) is easily seen to simplify to

Risk =
¡ (µ + ®+N ¡ 1) ¡ (µ + n)
¡ (µ + ®+ n¡ 1) ¡ (µ +N)

although Hoshino proposes using the observed number of sample uniques
rather then the predicted value. Using the predicted ensures that it is con-
sistent insofar that if the entire population is sampled, the measure equals 1.
In this study we consider ML estimation, see Hoshino (2001) for details.

4.4 Poisson-lognormal (PLN)

Skinner and Holmes (1993) proposed the Poisson-lognormal distribution and
also provide some heuristic justi…cation for this model. The pmf of the
population cell frequencies is de…ned by

Pj =

Z 1

0

¸je¡¸

j!

1p
2¼¾2

exp

Ã
¡(log ¸¡ ¹)

2

2¾2

!
d¸;
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for j = 1; 2; : : : and where ¾2 > 0. The distribution of the sample cell
frequencies under Bernoulli sampling is also PLN with parameters ¹s =
¹ + log ¼s and ¾2. In our study we used the zero-truncated approach as
described by Skinner and Holmes, using the extra parameter µ as in (1). As
the lognormal distribution is not expressible in closed form, the calculation of
the probabilities, and hence the risk measure (6), requires numerical integra-
tion methods. Estimation may result in a heavy computational burden but
some e¤ort is spared by censoring or truncating the likelihood above some
suitable threshold value as discussed by Skinner and Holmes and by Bulmer
(1974). In our study we tested di¤erent values for truncation as reported in
the following sections. The numeric integration procedure used is described
in Carlson (2002) and checked against the values tabulated in Grundy (1951).

4.5 Poisson-inverse Gaussian (PiG)

This model was suggested as a possible model for assessing disclosure risk in
Carlson (2002a). The pmf of the PiG takes the form

Pj =

p
´

j!

µ
¹

´

¶j Kj¡1=2 (¹´=¿)
K¡1=2 (¹=¿)

for j = 0; 1; : : : , ¹; ¿ > 0 and where ´ =
p
1 + 2¿ . K° (z) denotes a modi…ed

Bessel function of the third kind of order ° and argument z, see e.g. Carlson
(2002) for details and references. In our study we used the zero-truncated
approach as described previously, using the extra parameter µ as in (1). It is
easily seen that under Bernoulli sampling the fi are distributed as PiG with
parameters ¹s = ¼s¹ and ¿ s = ¼s¿ , observing that ´s =

p
1 + 2¿ s. The risk

measure (6) simpli…es to

Risk =
´s
´
exp

h¹
¿
(´s ¡ ´)

i
and the expected number of population uniques is given by

E (T1) = C (1¡ µ) ¹
´
exp

h¹
¿
(1¡ ´)

i
Various estimation methods are described in Carlson (2002a) of which two
are considered in this study: ML and …tting the conditional probabilities
Pr (fi = 1 j fi > 0) and Pr (fi = 2 j fi > 0) to the observed values of t1 and
t2 relative the number of non-empty cells in the sample. I.e. one …nds the
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solution to the pair of equations8><>:
t1

C ¡ t0 = Pr (fi = 1 j fi > 0)
t2

C ¡ t0 = Pr (fi = 2 j fi > 0)

This is the method of estimation proposed by Chen and Keller-McNulty
(1998) for their model and we will denote it in the following by PF12. Some
further notes on this method of estimation are given in the appendix.

5 The Data Sets
A population consisting of individuals aged 18-65 residing in three coun-
ties in the southern part of Sweden was compiled from the Store database
(Riksförsäkringsverket, 2002), managed by the Swedish National Social In-
surance Board. After removing individuals for which the marital status was
unknown (code = 8), the total population size was N = 268; 607. Two sets
of key variables were used as listed in Table 1 where the number of levels
of each variable are given. The data sets corresponding to the two sets of
key variables are denoted RFV5 and RFV7, respectively1. The smaller set
RFV5, with …ve key variables, is a subset of those in RFV7.
A second population was compiled by Statistics Sweden, consisting of

N = 160; 536 individuals aged 20-65 living in one county in the central part
of Sweden. The data for this set, which we denote by SCB7 originates from
the 1990 Swedish census. The variablemarital status has since been rede…ned
which explains the change in number of levels as compared to the RFV sets.
Furthermore, the variable income is in 50,000 SEK bands for the RFV data,
the highest level also being the topcode, whereas for the SCB7 set, income
is given in 10,000 SEK bands. For the RFV sets, the variable citizenship has
three levels (Swedish, EU or Other) whereas for the SCB7 set, it takes on
only two (Swedish or Foreign).
Some basic characteristics of the three data sets are given in table 1 and

the cell size distributions of each set are plotted in Figure 1. We note the
following di¤erences between the sets: (a) the number combinations on the
key variables ranges from small to large compared to the respective popula-
tion size (b) the number of non-empty cells ranges from approximately 2 to
18 percent of the total number of cells, (c) the number of population uniques

1It was later discovered that a few individuals in the RFV data were deceased or had
emigrated but for insurance reasons were still in the system. For our purposes this should
however be of little or no consequence as we are mainly illustrating the methodology.
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Table 1: Description of the data sets and the key variables used in each.

RFV5 RFV7 SCB7
Age 48 48 46
Sex 2 2 2
Marital status 7 7 10
Children 2 2 2
County - 3 (1)
Municipality - - 6
Income 20 20 176
Citizenship - 3 2
Total no. of cells, C 26,880 241,920 1,943,040
Non-empty cells, C-T0 4,921 15,290 39,822
Population uniques, T1 934 5,055 19,273
Largest cell size 2,741 1,389 140
Population size, N 268,607 268,607 160,536
Key resolution, R(X) 549.0 1410 8506
Key entropy, H(X) 7.150 12.50 9.802

ranges from approximately 0.3 to 12 percent of the population size, and from
18 to 48 percent of the number of non-empty cells, and (d) the right-hand
tails of the RFV sets appear longer and heavier than the SCB7 set. This is
further indicated by the largest observed cell sizes of each set.
The identifying forces of the respective keys, as measured by resolution

and entropy, were calculated and we note that, not surprisingly, the SCB7
set possesses the most dangerous key. The number of occupied key values for
this set is more than 2.5 times that of the RFV7 set and more than 8 times
that of RFV5. Although the number of possible key values di¤ers even more
this will have no e¤ect per se on the respective measures, as the contribution
from empty cells is nil. The measures should be compared to N and log(N)
respectively.
Given the population frequency structure it is possible to calculate the

disclosure risk as measured by (5). This was done for the three sets and
the results are shown in Figure 2 which shows the relationship between (5)
and the sampling fraction ¼s. When ¼s = 1, then the risk is obviously 1.
As previously discussed by St-Cyr (1998) we note that the relationship is
concave and that the concavity increases with the number of key variables as
seen when we compare RFV5 and RFV7. The set SCB7 is the most concave
of the three which agrees with the measurements of identifying force above.
The expectations of the number of population uniques in the sample, the
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number of sample uniques and the risk ratio as de…ned in (3), (4) and (5)
are given in Table 2 for the sample fractions used in the simulation study.
The goal is to obtain a risk measure that mimics this behavior.

6 Results of the Simulation Study
To evaluate the models a simulation study was conducted. Samples were
drawn from each data set by simple random sampling without replacement,
using varying sampling fractions, ¼s. For the RFV sets ¼s = 1, 2, 5 and
10% samples were drawn, and for the SCB7 set ¼s = 2:5, 5 , 10 and 25 _%.
The reason for using a di¤erent set of sampling fractions for the SCB7 set
was governed by the di¤erences in the frequency structure compared to the
RFV sets. E.g. the largest cell size in the SCB7 set is 140, compared to the
2,741 and 1,389 respectively for the RFV sets, and it is easily seen that the
expected frequency structure of a 1% sample from the SCB7 set would hold
only very small cell sizes leading to considerable di¢culties when estimating
model parameters.
For each sample drawn the parameters of each model were estimated as

described in the preceding section. From the estimates the number of popu-
lation uniques, T1, and the risk measure as de…ned in (6), were predicted as
well. Furthermore, for each sample the number of sample uniques, t1, and
the number of population uniques falling in the sample, t1;1, were recorded
for reference. From these we calculated for each sample the true ratio de-
…ned in (2). The means and standard deviations of these observed ratios
are given in Table 2 together with the theoretically derived expected ratios,
as described in the preceding section. It is clearly seen that the observed
and the theoretically derived ratios agree. This is the risk measure that the
model based approaches intend to predict. The means and standard devia-
tions of the predicted risk measures and number of population uniques from
estimating the models are given in Tables 3 and 4 for each simulation setting
(data set and sampling fraction). The means and standard deviations of the
model parameters are given Tables 5-10.
The NB model consistently underestimates the risk indicators in all sim-

ulation settings. A …rst indicator of the performance is that all the predicted
values of the risk ratio lie below the corresponding sampling fraction and do
not exhibit the concave which the concavity behavior seen in Figure 2. The
extension of the model by including the mixture parameter µ as de…ned in (1)
and the alternative zero-truncated moment estimators seem not to improve
the results of this model, comparing the results with previous studies.
The LSD model yields a better performance compared to the NB; the
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Figure 1: Population cell size distributions of the example data sets. The
displays to the left show the entire distributions and the displays to the right
show the details of the left-hand-side of the respective distributions. The
frequencies of empty cells, i.e. T0, are omitted in all cases.
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Figure 2: Theoretically derived expected risk measures for the example data.
The solid line is for reference.

risk ratio and number of population for this model exhibits the concave be-
havior although they are slightly underestimating the true values as are the
estimates of T1. A possible reason is that the LSD is a single parameter
distribution and may be less sensitive to model misspeci…cation. We note
also that both the NB and LSD models are quite stable yielding the lowest
levels of variation.
Pitman’s sampling formula is the only model that consistently overesti-

mates the risk measure and the number of population uniques for these data
sets, although the results improve with increasing sampling fraction. Also,
the measures are not as stable as for the NB or LSD, showing a larger degree
of variation. Overestimation is not as severe a problem as underestimation
with respect to disclosure risk assessment, as it provides conservative indica-
tions of the risks. On the other hand if the indicators lead us to believe that
a data material is too unsafe, we may apply disclosure limiting techniques to
the data, and thereby unnecessarily reduce its analytical value.
As mentioned above we used the right-truncated approach for estimating

the PLN model parameters, i.e. the likelihood was right-truncated and all
values above a threshold value m were disregarded in the estimation process.
As it is di¢cult to assess suitable threshold values a priori, we simply esti-
mated the models for a small selection of values in each con…guration and
oppoturnisticly chose the value exhibiting the best performance with respect
to bias in the risk indicators. Unfortunately the thresholds selected varied
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between the con…gurations, (5, 10, 20) or (10, 20, 30), and the results are
therefore perhaps not always comparable. However, it was found that the
best results were obtained with the lowest threshold values, save the SCB7
25 percent setting were m = 10 was superior to m = 5. With PLN model
the risk indicators are underestimated for the RFV5 set, improved with the
RFV7 set and with the SCB7 set the PLN performs among the better. We
note also that the PLN failed to converge in 42 cases in the SCB7 2.5% set-
ting. The results show that the PLN does not perform well with the RFV5
sets with estimated means on average lying between the NB and LSD. The
results are improved for the RFV7 set although still underestimating the
true values. For the SCB set on the other hand the performance is among
the better, only slightly underestimating the true values, and with standard
errors comparable to those of the Pitman and PiG.
There appears to be some problems with the PiG model and the methods

of estimation used. For the RFV5 set the PiGmodel seriously underestimates
both the risk measure and the number of populations uniques. For the RFV7
set the PiG model still underestimates these indicators although the results
are improved but with the SCB7 set the PiG model is among the better,
especially for the PF12 estimator with respect to bias, and standard errors
comparable to the PLN and Pitman models. However, the PiG model did
not converge in any of the cases when 2.5 and 5 percent samples were drawn
from this set. Also in the RFV5 10% setting did the PF12 procedure fail to
produce estimates. If the problem depends on a poor model or simply on the
numerical procedures used in the study remains to be investigated however.
We note also that the PiG failed to converge in 8, 8 and 36 cases for the
RFV5 5%, RFV7 1% and SCB7 10% settings respectively.

7 Remarks
The scale of the present study comprised only three data sets of which two
originate from the same source, and it is di¢cult to draw any general conclu-
sions as to which models yields the best result. However, for these particular
data sets we may conclude from the results that none of the models perform
uniformly best and that the performance varies greatly between the di¤erent
sets of data. The …rst observation is that apparently none of the models, ex-
cept the LSD model, adapt well to the RFV5. For the RFV7 set the overall
performance of all models is improved although none are quite satisfactory.
With the SCB7 set the performance of the Pitman, PLN and PiG appear
satisfactory at least for sample fractions at 10 and 25 percent.
A future prospect is to extend the present study with above all the in-
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clusion of more diverse data sets. The three data sets used in the present
study do not cover the entire range of diversity that might be encountered
in practice. The studies should include sets from larger populations, a wider
range of sampling fractions and a larger collection of keys. Other models
and alternative estimation procedures may also be included in future stud-
ies. This would hopefully enable us to draw more extensive conclusions as to
what type of models and estimation procedure is best suited for a particular
data set and how to determine from the characteristics of the data
It is interesting to note that for this set the two procedures using the least

amount of information from the sample, i.e. the right-truncated PLN and
the PiG PF12, show the best performance with respect to bias. This seems
to agree with the argument that in applications to disclosure control, a lack
of …t in the right hand tail is not likely to be as critical as the left hand tail
which may be considered more crucial since only cells belonging to t0 and t1
can by de…nition contain population uniques, see e.g. Skinner and Holmes
(1993) and Chen and Keller-McNulty (1998). On the other hand these two
models did not work at all for the RFV5 set which appears to agree with the
argument presented in Hoshino (2001, p. 509) that it is better to utilize the
whole information of the sample.
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A Tables

Table 2: Expected values (exp) of t1;1, t1 and R£100, simulated means and
their standard errors, based on 1,000 simulations.

t1;1 t1 t1;1=t1 £ 100
Set ¼s exp mean sd exp mean sd exp mean sd
RFV5 1% 9.34 9.16 (2.93) 632 633 (21.7) 1.48 1.45 (0.460)

2% 18.7 18.6 (4.14) 739 738 (22.7) 2.53 2.52 (0.554)
5% 46.7 46.4 (6.68) 823 823 (24.4) 5.68 5.63 (0.781)
10% 93.4 92.8 (8.93) 842 841 (23.2) 11.1 11.0 (0.992)

RFV7 1% 50.6 50.5 (7.11) 1205 1206 (29.3) 4.20 4.19 (0.571)
2% 101 101 (9.63) 1685 1685 (33.9) 6.00 6.01 (0.555)
5% 253 253 (15.1) 2374 2375 (42.2) 10.6 10.6 (0.607)
10% 506 506 (20.8) 2897 2893 (46.0) 17.4 17.5 (0.637)

SCB7 2.5% 482 481 (20.0) 2879 2877 (36.2) 16.7 16.7 (0.662)
5% 964 965 (28.5) 4693 4698 (52.2) 20.5 20.5 (0.555)
10% 1927 1926 (39.5) 7213 7214 (67.9) 26.7 26.7 (0.478)
25% 4818 4816 (57.2) 11563 11563 (84.1) 41.7 41.6 (0.381)
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Table 3: Predicted risk measures under the di¤erent models, simulated
means and their standard errors, based on 1,000 simulations, save PLN SCB
2.5% where 42 cases failed to converge, and PiG pf12, RFV5 5%, RFV7
1% and SCB7 10% where 8, 8 and 36 cases failed to converge. The right-
truncation threshold for the PLN models were chosen as indicated..

R̂£ 100
Set ¼s NegBin LSD Pitman
RFV5 1% 0.393 (0.0320) 1.28 (0.00943) 3.37 (0.559)

2% 0.953 (0.0416) 2.29 (0.00618) 4.19 (0.399)
5% 3.05 (0.0546) 5.29 (0.00402) 7.22 (0.327)
10% 7.11 (0.0590) 10.3 (0.00299) 12.12 (0.286)

RFV7 1% 0.459 (0.0361) 1.72 (0.0286) 8.94 (1.32)
2% 1.08 (0.0428) 2.77 (0.0188) 9.78 (0.804)
5% 3.35 (0.0517) 5.85 (0.0121) 13.8 (0.525)
10% 7.65 (0.0536) 10.9 (0.00898) 19.8 (0.392)

SCB7 2.5% 1.16 (0.0844) 8.07 (0.233) 18.9 (3.04)
5% 3.02 (0.0946) 10.8 (0.139) 24.6 (1.60)
10% 7.26 (0.0876) 16.0 (0.0860) 32.6 (0.854)
25% 21.3 (0.0668) 30.8 (0.0425) 47.7 (0.385)

Set ¼s PLN PiG, ML PiG, pf12
RFV5 1% 0.594 (0.759) 5 0.0727 (0.0530) 0.107 (0.169)

2% 1.33 (1.07) 5 0.108 (0.0401) 0.242 (0.212)
5% 3.40 (1.01) 10 0.414 (0.0684) 1.12 (0.442)
10% 7.38 (1.38) 10 1.39 (0.117) - -

RFV7 1 0.998 (0.737) 5 3.95 (1.99) 1.97 (1.68)
2 1.66 (0.519) 10 3.15 (0.862) 2.58 (1.32)
5 6.58 (1.04) 10 4.88 (0.568) 5.32 (1.21)
10 12.89 (1.18) 10 8.61 (0.493) 10.7 (1.28)

SCB7 2.5 8.36 (2.30) 5 - - - -
5 17.0 (2.30) 5 - - - -
10 26.1 (2.48) 5 30.7 (1.53) 30.2 (1.94)
25 40.8 (0.737) 10 44.3 (0.630) 41.4 (1.05)
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Table 4: Predicted no. of population uniques, T1, under the di¤erent models,
simulated means and their standard errors, based on 1,000 simulations, save
PLN SCB 2.5% where 42 cases failed to converge, and PiG pf12, RFV5 5%,
RFV7 1% and SCB7 10% where 8, 8 and 36 cases failed to converge. The
right-truncation threshold for the PLN models were chosen as indicated.

T̂1

Set ¼s NegBin LSD Pitman
RFV5 1% 141 (11.5) 765 (25.6) 2181 (416)

2% 201 (9.79) 794 (16.9) 1594 (188)
5% 292 (7.58) 823 (11.4) 1237 (83.1)
10% 361 (6.13) 834 (8.93) 1074 (46.4)

RFV7 1% 305 (21.8) 1940 (77.5) 10871 (1777)
2% 486 (18.4) 2124 (51.6) 8331 (803)
5% 808 (15.2) 2396 (34.2) 6666 (347)
10% 1102 (13.2) 2613 (26.8) 5877 (191)

SCB7 2.5% 809 (53.6) 9164 (383) 21806 (3610)
5% 1662 (47.7) 9775 (235) 23077 (1648)
10% 2897 (38.8) 10677 (153) 23486 (778)
25% 5026 (32.0) 12368 (90.9) 22241 (313)

Set ¼s PLN PiG, ML PiG, pf12
RFV5 1% 323 (357) 5 46.9 (35.8) 68.9 (112)

2% 396 (264) 5 40.1 (16.0) 90.6 (82.1)
5v 492 (125) 10 66.6 (12.8) 186 (77.3)
10% 531 (67.5) 10 110 (12.0) - -

RFV7 1% 1199 (887) 5 4807 (2505) 2396 (2074)
2% 1391 (444) 10 2668 (769) 2182 (1147)
5% 3024 (487) 10 2322 (306) 2533 (607)
10% 3539 (313) 10 2479 (177) 3102 (405)

SCB7 2.5% 9600 (2676) 5 - - - -
5% 15761 (2170) 5 - - - -
10% 18515 (1729) 5 22161 (1247) 21793 (1501)
25% 18722 (411) 10 20530 (417) 19140 (576)
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Table 5: Parameter estimates for zero-truncated negative binomial model,
moment estimator, simulated means and standard errors, based on 1,000
simulations.

Set ¼s ®̂ ^̄
s µ̂

RFV5 1% 0.236 (0.0208) 7.88 (0.637) 0.893 (0.00547)
2% 0.211 (0.0125) 13.66 (0.744) 0.860 (0.00525)
5% 0.177 (0.00643) 30.32 (0.992) 0.808 (0.00491)
10% 0.156 (0.00379) 57.04 (1.22) 0.768 (0.00450)

RFV7 1% 0.22189 (0.0222) 4.569 (0.404) 0.978 (0.00122)
2% 0.19436 (0.0125) 7.4709 (0.443) 0.967 (0.00123)
5% 0.15661 (0.00601) 15.7523 (0.557) 0.947 (0.00136)
10% 0.13121 (0.00342) 28.8085 (0.676) 0.927 (0.00143)

SCB7 2.5% 0.37075 (0.0319) 1.761 (0.117) 0.994 (0.000219)
5% 0.30315 (0.0173) 2.581 (0.120) 0.990 (0.000271)
10% 0.24114 (0.00853) 4.2302 (0.129) 0.984 (0.000310)
25% 0.18275 (0.00346) 8.7751 (0.148) 0.972 (0.000341)

Table 6: Parameter estimates for logarithmic series distribution, ML-
estimation, simulated means and standard errors, based on 1,000 simulations.

Set ¼s Á̂s
RFV5 1% 0.778 (0.00580)

2% 0.871 (0.00241)
5% 0.942 (0.000755)
10% 0.970 (0.000315)

RFV7 1% 0.579 (0.00978)
2% 0.715 (0.00498)
5% 0.847 (0.00186)
10% 0.911 (0.000844)

SCB7 2.5% 0.293 (0.00913)
5% 0.435 (0.00630)
10% 0.584 (0.00374)
25% 0.750 (0.00149)
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Table 7: Parameter estimates for Pitman’s sampling formula model, ML-
estimation, simulated means and standard errors, based on 1,000 simulations.

Set ¼s ®̂ µ̂
RFV5 1% 0.233 (0.0400) 496 (43.4)

2% 0.167 (0.0260) 565 (32.1)
5% 0.109 (0.0157) 639 (22.2)
10% 0.0743 (0.0106) 690 (16.5)

RFV7 1% 0.440 (0.0370) 856 (88.4)
2% 0.378 (0.0236) 1004 (65.5)
5% 0.321 (0.0137) 1168 (44.0)
10% 0.284 (0.00905) 1291 (33.2)

SCB7 2.5% 0.419 (0.0744) 5186 (837)
5% 0.449 (0.0311) 4874 (384)
10% 0.458 (0.0146) 4746 (200)
25% 0.429 (0.00693) 5185 (112)

Table 8: Parameter estimates for zero- and right-truncated Poisson-
lognormal model, ML-estimation,simulated means and standard errors, based
on 1,000 simulations save SCB7 2.5% where 42 cases failed to converge prop-
erly. Right-trunction threshold as indicated.

Set ¼s Trunc ¹̂ ¾̂2 µ̂
RFV5 1% 5 -2.22 (2.37) 4.5354 (5.89) 0.795 (0.361)

2% 5 -2.44 (4.65) 8.298 (17.4) 0.789 (0.203)
5% 10 -1.15 (2.51) 7.6426 (13.2) 0.797 (0.0458)
10% 10 -0.632 (2.86) 10.2222 (30.2) 0.784 (0.0344)

RFV7 1% 5 -2.67 (0.626) 2.5288 (0.793) 0.951 (0.0172)
2% 10 -2.18 (0.311) 2.7774 (0.420) 0.948 (0.00772)
5% 10 -2.58 (0.480) 5.2128 (0.958) 0.912 (0.0164)
10% 10 -2.60 (0.519) 7.0794 (1.34) 0.890 (0.0177)

SCB7 2.5% 5 -3.38 (0.434) 1.8981 (0.390) 0.975 (0.00658)
5% 5 -3.98 (0.529) 3.2921 (0.593) 0.952 (0.0139)
10% 5 -4.31 (0.757) 4.6501 (1.02) 0.923 (0.0267)
25% 10 -3.34 (0.205) 4.5707 (0.302) 0.928 (0.00623)
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Table 9: Parameter estimates for zero-truncated Poisson-inverse Gaussian
model, ML-estimation, simulated means and standard errors, based on 1,000
simulations.

Set ¼s ¹̂s ¿̂ s µ̂
RFV5 1% 0.770 (0.0815) 3.520 (0.240) 0.869 (0.0145)

2% 1.54 (0.0857) 7.06 (0.333) 0.870 (0.00733)
5% 3.58 (0.105) 19.1 (0.591) 0.860 (0.00411)
10% 6.68 (0.124) 42.4 (0.956) 0.850 (0.00279)

RFV7 1% 0.119 (0.0486) 1.62 (0.112) 0.868 (0.143)
2% 0.330 (0.0506) 3.04 (0.146) 0.931 (0.0114)
5% 0.872 (0.0561) 7.45 (0.214) 0.936 (0.00419)
10% 1.69 (0.0612) 15.2 (0.310) 0.934 (0.00241)

SCB7 2.5% - - - - - -
5% - - - - - -
10% 0.0636 (0.0230) 1.78 (0.0528) 0.841 (0.105)
25% 0.242 (0.0207) 4.24 (0.0639) 0.914 (0.00748)

Table 10: Parameter estimates for zero-truncated Poisson-inverse Gaussian
model, PF12 etimation, simulated means and standard errors, based on 1,000
simulations save RFV5 5%, RFV7 1% and SCB7 10% where 8, 8 and 36 cases
respectively failed to converge.

Set ¼s ¹̂s ¿̂ s µ̂
RFV5 1% 0.780 (0.109) 3.59 (1.07) 0.868 (0.0272)

2% 1.57 (0.102) 10.3 (4.43) 0.859 (0.0177)
5% 6.48 (3.53) 185 (429) 0.842 (0.0112)
10% - - - - - -

RFV7 1% 0.190 (0.0679) 1.33 (0.218) 0.928 (0.0640)
2% 0.365 (0.0740) 2.77 (0.441) 0.937 (0.0208)
5% 0.860 (0.0720) 8.19 (1.50) 0.933 (0.00845)
10% 1.78 (0.0906) 25.5 (7.00) 0.926 (0.00598)

SCB7 2.5% - - - - - -
5% - - - - - -
10% 0.0712 (0.0296) 1.75 (0.105) 0.850 (0.108)
25% 0.323 (0.0297) 3.39 (0.200) 0.939 (0.00635)
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B The PF12 Estimator Under the PiGModel
The estimation procedure amounts to …nding the solution to the pair of
equations 8><>:

t1
C ¡ t0 = Pr (fi = 1 j fi > 0)
t2

C ¡ t0 = Pr (fi = 2 j fi > 0)

From the recurrence formula of the PiG (see Carlson, 2002a, for details) we
have

p0 = exp
³¹
¿
(1¡ ´)

´
; p1 =

¹

´
p0

and

p2 =
¹¿ + ¹2´

2´3
p0:

Dividing the second equation by the …rst yields

t2
t1
=

p2
1¡ p0

1¡ p0
p1

=
¿ + ¹´

2´2

which after solving for ¹ yields

¹ =
2t2´

2 ¡ t1¿
t1´

and the equations can be re-written as8>><>>:
h1 =

¿

´2
+

t1
C ¡ t0 exp

·
2t2´

2 ¡ t1¿
t1¿´

(´ ¡ 1)
¸
¡
µ
2t2
t1
+

t1
C ¡ t0

¶
= 0

h2 = ¹¡ 2t2´
2 ¡ t1¿
t1´

= 0

Thus, we …rst …nd the value ¿̂ that solves the …rst equation and then sub-
stitute this value for ¿ in the second to obtain an estimate for ¹. Finding ¿̂
requires numerical iteration methods.
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