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Abstract

An important measure of identification risk associated with the
release of microdata or large complex tables is the number or pro-
portion of population units that can be uniquely identified by some
set of characterizing attributes which partition the population into
subpopulations or cells. Various methods for estimating this quantity
based on sample data have been proposed in the literature by means
of superpopulation models. In the present paper the Poisson-inverse
Gaussian (PiG) distribution is proposed as a possible approach within
this context. Disclosure risk measures are discussed and derived under
the proposed model as are various methods of estimation. An example
on real data is given and the results indicate that the PiG model may
be a useful alternative to other models.

Keywords: statistical disclosure; uniqueness; inverse-Gaussian;
Poisson-mixture; superpopulation.

1 Introduction

A considerable amount of research has been done in the area of statistical
disclosure and different approaches to defining and assessing disclosure risk
are treated in depth by among others Dalenius (1977), Duncan and Pearson
(1991), Frank (1976,1988), Lambert (1993), Skinner et al. (1994), Willenborg
and de Waal, (1996, 2000). Recent publications include Doyle et al. (2001)
and Domingo-Ferrer (2002). A special case concerns the release of public-use
microdata files and so-called identity disclosure, see Duncan and Lambert
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(1989). It is well known that there remains the possibility that statistical
disclosure could occur even when such a file has been anonymized by the
removal of direct identifiers, see e.g. Block and Olsson (1976) and Dalenius
(1986), although Blien et al. (1993) demonstrated that it may be difficult
in practice. The main concern is to ensure that no record in a released
microdata set can be reliably associated with an identifiable individual.

For instance, a unique is defined as an entity that has a unique set of
values on a set of characterizing attributes or key attributes. A unit that is
unique in the population is referred to as a population unique whereas a unit
that is unique in a sample is referred to as a sample unique. If a population
unique is included in the sample it is necessarily also a sample unique but
the converse does not hold. Obviously a population unique is subjected to a
greater risk of being exposed relative to other non-unique units if included
in the released data. Furthermore, it could be argued that an intruder will
be more inclined to focus upon those records that are sample unique since it
is only these that can by definition be population uniques, see e.g. Skinner
et al. (1994) and Elliot et al. (1998). Thus, a possible indicator of the
identification risk associated with the release of microdata is the number or
proportion of population uniques included in the sample amongst the sample
uniques.

The objective is to estimate this proportion based on sample informa-
tion, e.g. a data set considered for release. Various methods for estimating
this quantity based on sample data have been proposed in the literature by
means of superpopulation models and especially compound Poisson mod-
els. Under a superpopulation model it is assumed that the population at
hand, as defined by the frequency structure of the key attributes, has been
generated by some appropriate distribution. The risk assessment, here in
terms of uniqueness, is then reduced to a matter of parameter estimation
and prediction. Bethlehem et al. (1990) were perhaps the first to adapt
a superpopulation approach and others include Chen and Keller-McNulty
(1998), Hoshino (2001), Samuels (1998), Skinner and Holmes (1993, 1998),
St-Cyr (1998) and Takemura (1999).

In the present paper we propose the Poisson-inverse Gaussian (PiG) dis-
tribution as a possible candidate. This distribution has appeared elsewhere
in the literature but we are not aware of it being applied to the disclosure
problem earlier. It was introduced by Holla (1966) in studies of repeated ac-
cidents and recurrent disease symptoms. Sichel (1971) developed the PiG to
a more general three-parameter family of distributions and applied it to den-
sity and size distributions of diamonds, sentence-length and word frequency
data and to model repeat-buying behavior, (Sichel, 1973, 1974, 1975, and
1982a). Ord and Whitmore (1986) evaluated the PiG as an alternative to
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other distributions for species abundance data and Willmot (1987) for mod-
elling insurance claim data. Chen and Keller-McNulty (1998) noted that, in
practice, the frequency distribution in disclosure applications tends to have
an inverse J-shape with heavy upper tail. St-Cyr (1998) also describes this
typical behavior. Since the PiG distribution is characterized by its positive
skewness and heavy upper tail it appears to be an appropriate distribution
for modeling frequency counts in disclosure applications. Furthermore, the
PiG distribution is expressed in closed form which gives it an advantage over
e.g. the lognormal which requires numerical integration.

Here we will limit the scope to a theoretical discussion of the PiG model
with a simple example on real data to illustrate the method. An evalua-
tion of the model with real-life data examples and its competitiveness with
alternative approaches is intended to appear in a separate report. In the
following section some basic notation is introduced and the superpopulation
model is specified. In section 3 the PiG distribution is reviewed and in section
4 its application to the problem of assessing disclosure risks, here in terms
of uniqueness, is discussed. Parameter estimation is described in section 5
and in section 6 the results of the empirical example are reported. Some
concluding remarks and directions for future research are given in section 7.

2 Specification of the Superpopulation Model

2.1 Basic notation

Consider a finite population U of size N from which a simple random sam-
ple s C U of size n < N is drawn. The sampling fraction is denoted
by ms = n/N. With each unit h € U is associated the values of a num-
ber of discrete variables, 71, ... ,Z, with C},... ,C, categories respectively.
The cross-classification of these variables define the discrete variable X with
[1C; = C' categories or cells and for simplicity we let the cells of X be labeled
as 1,2,...,C.

Following e.g. Bethlehem et al. (1990) the Z; are termed key variables,
X the key and the C' different categories of X, the key values. Thus, the key
divides the population into C' subpopulations U; C U and by F; we denote the
number of units belonging to subpopulation U;, i.e. the population frequency
or size of cell i. The sample counterpart is analogously defined and denoted
by fi.

Define T} and its sample counterpart ¢; as the number of cells of size j,



i.e.
C
T’]:ZIFZ:j:#(ZvE:])u j:0717"'7N
i=1
and
C
tj:ZIfi:j:#(i;fi:j> J=0,1,....n
i=1

respectively and where () denotes the usual indicator function. The T}
and ¢; are usually termed cell size indices or frequencies of frequencies and
correspond to the equivalence classes of Greenberg and Zayatz (1992). It is
clear that

N

C C n
ZFi:ZjTj:N7 Zfi:thj:n
i=1 =1

J=1 Jj=1

and
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Of these quantities, C, N and n are fixed in the design, the f; and t; are
observed and the F; and T} are assumed to be unknown. The goal is to model
and estimate the population frequency structure, i.e. the 7T; and especially
T, which is the number of unique individuals in the population, based on
sample information.

2.2 Superpopulation model

The frequency structure, {7}, is a function of the actual F; which are un-
known and therefore need to be estimated from the observed f; and ¢;. How-
ever, as St-Cyr (1998) commented, it is not possible for a sample to carry
all the information about the structure of a population and finite popula-
tion theory will give only unreliable estimates when the sampling fraction is
small. See also the discussion by Willenborg and de Waal (2000, p. 55). A
way out is to model the frequency structure and view the population of cell
frequencies as a realization of a superpopulation model.

As a starting point we therefore assume that the cell frequencies are
generated independently from Poisson distributions with individual rates \;,



¢t =1,...,C. The Poisson model is motivated by thinking of the N units in
the population as falling into the C' different cells with probability of the ith
cell denoted by 7;. Given the N, C' and the 7; the frequencies will follow a
multinomial distribution and if the number of cells is large enough each cell
frequency is approximately independently binomial with parameters N and
;. Since the population size is usually quite large and the 7; small due to
large C' the Poisson distribution is used to approximate the binomial with
)\i =Nm G-

To simplify the model further we view the ); as independent realiza-
tions of a continuous random variable A with a common probability density
function (pdf) g (). The number of cells C is usually quite large and this
assumption will significantly reduce the number of parameters that need to
be estimated. The simplification seems reasonable also in view of that we
are not conditioning on any of the characterizing variables defining the key.

The specification of the mixing distribution g (\) is the crucial step and
several different suggestions have been studied. Bethlehem et al. (1990)
proposed a gamma distribution which implies that the marginal distribution
of each F; is the negative-binomial. This model has however been noted to
provide a poor fit to real-life data. Skinner and Holmes (1993, 1998) argue
instead for the use of a lognormal distribution. Chen and Keller-McNulty
(1998) considered a shifted negative-binomial for the marginal distribution
of the F; and achieve better results compared to the Poisson-gamma. St-Cyr
(1998) proposed a mixture of a Pareto and a truncated lognormal distribution
based on his findings from studying the relationship between the conditional
probability of population uniqueness and the sampling fraction. Hoshino and
Takemura (1998) investigated the relationships between different models and
provide interesting results.

It is also obvious in many situations that certain combinations of the key
variables may be impossible, such as married 4-year-olds or male primiparas,
i.e. so-called structural zeroes. Skinner and Holmes (1993) specified their
superpopulation model to allow for individual rates to be zero with positive
probability. Following their idea we therefore assume that the distribution of
the \; is a mixture 6 of a discrete probability mass at zero and (1 — ) of a
continuous distribution with pdf g (\) on (0, 00), i.e. we specify the marginal
of the cell frequencies as

Pr(F, =j) =0li—+(1-6)P; (1)
where 0 < 0 < 1 and
00 )\je—)\
= [ e man @)
0 !



Note that with the Poisson assumption the total of the cell counts Y F;
is a random variable. Although it is true from the design that ¥ F; = N it
may suffice to check if X F (F;) = N rather than conditioning on the actual
population size, cf. Bethlehem et al. (1990). Denoting the expectation of
the distribution in (2) by p this requirement translates to

C(1—6)pu=N. (3)

3 The Poisson-Inverse Gaussian Distribution

We assume that the individual rates follow an inverse Gaussian (iG) dis-
tribution and using the same parameterization as Willmot (1987) the pdf
is

g(A|u,7)zWeXp<—%>, A >0, (4)

where > 0, 7 > 0. The mean and variance of the IG are y and ur respec-
tively. Folks and Chhikara (1978) provide a review of the iG distribution
with an extensive set of references. See also Johnson et al. (1994, chap-
ter 15). The inverse Gaussian distribution appears e.g. as the first passage
time distribution of Brownian motion with positive drift. It may also be de-
rived through an inversion relationship associated with cumulant generating
functions of the Gaussian and inverse Gaussian families, hence the name.

Integrating out A from (2) with g (A) replaced by (4) yields the probability
mass function (pmf) of the Poisson-inverse Gaussian (PiG), i.e.

._ﬂ 14 jKj—l/z(lm/T) -
=7 ( ) Koapum o 700 )

n

where n = /1 + 27 and K, (z) denotes a modified Bessel function of the
third kind (sometimes referred to as the second kind) of order v and with
argument z, see Abramowitz and Stegun, (1970, chapter 10). The mean and
variance of the PiG distribution are p and p (1 + 7) respectively.

The expression in (5) is not always practical due to the Bessel functions,
but by using that K_,/; (2) = K12 (2) = y/7/2zexp (—z) we note that the
first two probabilities are

Py = exp (é (1—- 77)) and P = %PO. (6)



Using also that K_., (2) = K, (2) and the recurrence relationship K, (2) =

(2v/2) K, (2) + K,_1 (2) , a more practical recurrence formula for calculating
the probabilities is given by

T2)—3 2

Py= =Pt

———PF;_ | =2,3,... 7
772 ] 1 772](]_1) -2y J 737 ()

3.1 Sampling From the Population

Assume that the population level cell frequencies are generated from a PiG
model. Under simple random sampling without replacement, the sampling
distribution of the cell frequencies of the PiG is hard to manipulate. We
therefore assume Bernoulli sampling, cf. e.g. Sdrndal et al. (1992, chapter
3), in which each unit is drawn independently from the population with equal
probability 7, = n/N as a convenient approximation. This yields

f1|)\1NP0(7Ts)\7,) and E_fz|)\zNP0(<1_7Ts))\z)
and

It is then easily seen that the marginal pmf for the sample cell frequencies f;
is defined by

Pr(fi=j)=0Lj=+ (1 —0)p; 9)

where

® (m,\)! e A—p)?
b - / (r e (-2 )
0 J! (2772%) 27\

00 )\j - \ — 2
= / i at 5 €Xp _QAz ) dA (10)
o I (2rm, %) / 27\

i.e. a PiG distribution where p, = wsu, 75 = 7,7 and defining n, = /1 + 274;
the second line in (10) is derived by simple variable substitution. This pro-
vides an easy transformation when we have a sample from the larger popula-
tion, i.e. given the sample we estimate the parameters u, and 74 and simply
multiply by 7. See also section 2 of Sichel (1982a) and the discussion con-
cerning sampling in Takemura (1999).




4 Risk assessment

The outline of the disclosure problem considered here is the same as that
of many authors, e.g. Bethlehem et al. (1990), Elliot et al. (1998), Paass
(1988) and Skinner and Holmes (1998). Consider an intruder who attempts
to disclose information about a set of identifiable units in the population
termed targets. The intruder is assumed to have prior information about
the key values of the targets and attempts to establish a link between these
and individual records in the released microdata file using the values of the
key attributes. Assume that the intruder finds that a specific record r in the
microdata file matches a target with respect to the key X. Now F; is the
number of units belonging to subpopulation U; and we let i (r) denote the
value of X for record r. If Fj,) was known the intruder could infer that the
probability of a correct link is Flzrl) and if Fj,) = 1 the link is correct with
absolute certainty:.

Usually the intruder will not know the true value of Fj(, since the micro-
data set contains only a sample but by introducing a superpopulation model
he may attach a probability distribution Pr (F; = j) to the cell frequencies.
Furthermore, it could be argued that an intruder will be more inclined to
focus upon those records that are sample unique since it is only these that
can by definition be population uniques. So equating disclosure risk with
uniqueness, a simple measure of the risk for a given sample is the proportion
of sample uniques that are also population uniques, i.e.

R # (records that are Pop.Uniques and SampleUniques)

11
# (records that are SampleUniques) (11)
Under simple random sampling or Bernoulli sampling the expected number
of population uniques to fall into the sample is 7,77 = n1y/N. Since T} is
assumed unknown, the ratio in (11) will have to be estimated. Under the
model (1) we have that the expected number of population uniques is

Thus, an obvious risk measure denoted by Ry, is defined as the proportion of
the observed number of sample uniques expected to be population uniques,
ie.

_E(M)/N 7, C(1-0)p

Ri=— e (Ea-n) (12)

where we have used (6). Again assuming Bernoulli sampling, an alternative
risk measure Ry follows naturally from the conditional pmf of F; given f;, i.e.
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from (5), (8) and (10) we have

Ry=Pr(F=1]|fi=1)= ﬂ;ljzj(f;zl)w - EE((Z;; 772[ (13)

which simplifies to the risk measure

Ms H
Ry =" exp (2 (n,—n)) (14)
i.e. the observed value of ¢; in (12) is replaced for its expectation under
the model. This is the approach discussed by Skinner and Holmes (1998).
Note that Ry — 1 as m; — 1 which is not necessarily the case with R;. The
risk measures R; and R, coincide if and only if a perfect fit of the model to
the observed number of sample uniques is obtained, i.e. E (t;) = t;. Either
choice, the disclosure risk is estimated by replacing the parameters by their
estimates into (12) or (14).

4.1 Extended Risk Measures

It should be noted that population uniqueness is neither a sufficient nor nec-
essary condition for re-identification or for disclosing additional information,
see e.g. Frank (1976) and Willenborg and de Waal (1996, pp. 19-20). It is
not a sufficient condition since, first of all, the unique unit must be included
in the sample and secondly, it must also be known to the intruder that the
unit is in fact unique. It is not necessary for several reasons. If for instance
a person in the population shares the same values on the key attributes with
say only one other person, they will both be able to re-identify and disclose
information about each other. In general, coalitions of respondents exchang-
ing information can be formed within small groups sharing the same scores
on the key attributes, in order to disclose information about an individual
within the same group but outside the coalition. Alternatively, if a group of
people share the same values on the key attributes, none of them are unique.
But if they in addition all share the same score on a certain sensitive attribute
provided in the released data, the sensitive information can be disclosed for
all the individuals in that group without re-identifying individual records.
Another possibility is response knowledge, i.e. knowledge that a specific in-
dividual participated in the survey and consequently that his or her data
must be included in the data. Identification and disclosure can then occur
if the person is unique in the sample and not necessarily in the population
(Bethlehem et al., 1990).

These issues will not be investigated further in the present paper, but
they do however motivate an extension of the risk measure in (13) to a more
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general measure defined by

. L= WM exp (A g (V) dA
PY(E_]“‘k”fz—])_E fOOOAjeXp(—WSA>g()\)d)\

forj=1,2,... and £k =0,1,... . Simple examples pertaining to some of the
situations just described may be e.g. j = 1 and k = 1 which after simplifying
yields

(pn +7)

Pr(fi=2]fi=1)=(1-m)—5

Ry

or j = 2 and k = 0 which yields

n2 (un +7)
52—R2
0% (pgns + 7s)

where R, is the risk measure defined in (14).

Pr(F,=2|f=2=n

5 Estimation

5.1 Moment Based Estimators

Let Sy denote the number of structural zeroes. If this number is known a
priori the parameter 6 is known and equals Sy/C. When this is the case and
especially when 6 = 0, the parameters p, and 7, can be estimated using
simple moment approaches. Simple moment estimators are given by the
sample mean and variance, i.e.

~ n
MS_C—SO

(15)
and
F F;ift—n —1
> IZLS (C - SO) ]:0 ’ °
with ty replaced for tg — Sp. The latter was however shown not to be very
efficient (cf. Sichel 1982b) and a more efficient and equally simple estimate

is obtained by matching the mean and the proportion of empty cells to those
of the underlying distribution, yielding

(16)



In practice it would however more often be the case that Sy is unknown and
that 6 needs to be considered in the estimation process. By employing a
zero-truncated approach where only the non-empty sample cell frequencies
are considered, this problem is circumvented and 6 is accordingly treated as
a nuisance parameter since

A=0p  _ _p
(0+(1—0)p) 1—po’

Zero-truncated estimation was described by Sichel (1975, 1982b) who ob-
tained an efficient estimator by matching the average cell size and the pro-
portion of uniques, both amongst the non-empty cells, to the underlying
distribution. The estimation procedure entails solving the equation

Prfi=jlfiz1)=1— j=1,2,... (17)

(1+g)lng— Ag+B=0 (18)
for g and where
2n n 2t n
A=———In— and B=-———+In—.
(C —to) t (C —tp) t

Equation (18) is easily solved by numerical iteration, e.g. Newton-Raphson,
and from the solution § we obtain estimates of  and 7 as

. 1+g an
L N 19
/l’s,ztr 2§ n (tl ) ( )
and
1— g
~sz r — = 20
Ts,zt 292 ( )

respectively. An initial estimate to start the iteration is given by the esti-
mates of 7 in (16) and then using (20).

5.2 Maximum Likelihood

Maximum likelihood (ML) estimation is fairly straightfoward for the PiG
model. When the number of structural zeroes is known a priori, the likelihood
is derived from (10) over the C'— Sy non-structural-zero cells. Willmot (1987)
gave the ML-estimates for the present parameterization and we include them
here for the sake of self-containment. The loglikelihood is

lML = th logpj

=0
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with tg replaced for tg — Sy and it is easily shown that the ML-estimate of
1, is simply the average cell size,
n

0= . 21
hs=e"g (21)
The ML-estimate of 7, is the solution to
h:thgoj—n:O (22)
§=0
with tg replaced for tg — Sy and where
o (J+1)pjn
J pj

The values of ¢; are conveniently computed from the following recursions
which are a direct consequence of (6) and (7):

Ts (25 — 1 1 ,
(poz& and (pj:< (‘72 )—i- )(p%, g=12...
Ns s Pi—1

Equation (22) is easily solved using e.g. Newton-Raphson iteration and the
required derivative of h with respect to 7 is

Oh 1—1—7'5

87_8 thgoj (pj—&-l 903 thgoj

7=0

with p, replaced by (21). An initial estimate to start the iteration is given
by the estimator in (16).

As mentioned in the preceding subsection it would more often be the case
that 6 is unknown and needs to be considered in the estimation process. By
employing a zero-truncated likelihood where only the non-empty sample cell
frequencies are considered, 6 is treated as a nuisance parameter as shown

n (17). This is the approach considered by Skinner and Holmes (1993)
designating it a conditional likelihood (CL). The loglikelihood of the f; for
those ¢ which f; > 1, is thus defined as

lor = th log ] —Jpo = th logp; — (C — to)log (1 — po) (23)
j=1 j=1

which yields the system of equations

s n
hy = — =0
! 1—p0 C—t[)

Zt]g&] n+n—:O

(24)

12



Estimates of u, and 7, are the solutions to (24) and may be obtained by nu-
merical iteration methods such as Newton-Raphson. The derivation of (24)
and the required derivatives are provided in the appendix. Small scale exper-
iments indicate however that the rate of convergence for the zero-truncated
approach may be slow and that some improvement of the numerical method
used may be called for. In our experience using (19) and (20) as initial
estimates will usually be a good choice.

5.3 Right-truncation

Skinner and Holmes (1993) also considered truncating the set of probabili-
ties in (17) above a threshold value m. The idea is that in applications to
disclosure control, a lack of fit in the right hand tail is not likely to be as
critical as the left hand tail which may be considered more crucial since only
cells belonging to ¢y and ¢; can by definition contain population uniques. A
further motivation for this approach is a possible reduction of computational
effort. Thus, the p; are assumed to be proportional to (10) for j =1,... ,m
and no assumptions are made about the p; for j > m + 1. Define

1 - Z;‘nzo Dj

g, =Pr(fi>m|fi>1) =

The right-truncated version of (23) is then expressed as

ltrCL = Z tj IOg (w) = Z tj lngj - tm logpm
=1

yielding the system of equations

mzzm@—ﬁzo

N o (25)
2 = ijl L0 — Ny — - (m + 1) pms1 + ﬁm =0
where
tfn:th, nfn:thj and p;kn:ij.
i=1 =1 j=1

Finding the solutions to (25) requires numerical iteration. E.g. Newton-
Raphson requires the derivatives of (25) and it is straightfoward to derive
these using the results in the appendix but the result is however not very
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elegant and convergence may be slow. A further problem indicated by small
scale experiments on simulated data seems to be that the truncated approach
is sensitive to the choice of starting values in combination with the selected
threshold value; depending on the choice the iteration may or may not con-
verge.

As an alternative one might consider the method proposed by Chen and
Keller-McNulty (1998) who fit their model to the observed values of ¢; and
to. Estimators based on their idea, which we will denote by PF12, are thus
defined as the solutions to the system of equations

D1 i

1—p, C—t
p2p0 f 0 (26)

1—]00:0—750

and is motivated by the same line of reasoning motivating the right-truncation
approach. Finding the solutions requires numerical iteration methods such
as Newton-Raphson iteration and the required derivatives are straightfoward
to derive using the results in the appendix.

5.4 Estimation of ¢

The zero-truncated approaches imply estimation of 6. From (9) we have
E (ty) = CO+ C (1 —6)po so once the estimates of p, and 7, are obtained
it is straightfoward to estimate 6 by replacing F (ty) for ¢y and po for its
estimate, i.e.

to — Cpo
C(1—po)

As a consequence we have f, = t,, that is, we obtain a perfect fit for the
number of empty cells in the sample. Furthermore the restriction in (3) is
automatically satisfied. For example using (24), the zero-truncated likelihood
method yields i, = n (1 —py) / (C —to) , and remembering that 1 = N, /n,
it is seen that

N (. to—Ch \N(1—p)
o(1-8)i=c(1-grpy) Temat =¥

In applications one should be aware of the possibility of obtaining negative
estimates of 6 which occurs if ¢t < Cpg. This implies that the number of
structural zeroes is negative and indicates that the estimation procedure is
over-adjusting to the data. In such cases or if 0 is close to zero one may
assume that 8 = 0 and use the ordinary ML procedure as described above.

0=
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6 An Empirical Example

6.1 Description of the Data

The data was provided by Statistics Sweden and originates from the 1990
census in Sweden. It consisted of frequency distributions, Tq, T, T5, ... for
N = 160, 536 individuals of ages 20-65 residing in Uppsala county. The fol-
lowing key variables were used: municipal (6), sex (2), age in one-year bands
(46), marital status (10), citizenship, Swedish or foreign, (2) and income in
10,000 SEK bands (176). The numbers in parenthesis indicate the number of
observed categories of the respective variables from which the total number
of combinations is given as C' = 1,943,040. Of these Ty = 1,903,218 were
found to be empty leaving a total of 39,822 observed combinations. The
number of population uniques 77 was 19,273 and the largest cell contained
140 units (one cell). Figure 1 displays the population cell size distribution
save T and we note the inverse J-shape and the heavy right tail. To illustrate
the inverse J-shape in more detail the first 30 cell sizes are also shown.

From the data set a simple random sample without replacement of size
n = 16,054 was drawn (m; = 0.1). The largest cell size of the 10,046 non-
empty cells in the sample was 18 (one cell). The observed number of sample
uniques was t; = 7,216 or approximately 45% of the sample. Of these 1,952
where found to be true population uniques which is the expected number
given the sampling fraction, i.e. approximately 10% of T7. Thus the ratio
(11) defining the risk measure is 0.2705 which is the quantity to be estimated.
The sample cell frequencies are provided in table 2.

6.2 Results

Four variations of the PiG-model and methods of estimation were fitted to
the data. Given the large number of empty cells it may seem natural to
consider only models that truncate at zero but for sake of illustration both
the ordinary and the zero-truncated PiG-models were fitted. In both cases we
used ML estimation using Newton-Raphson iteration and the moment based
estimators (15-16) and (19-20) respectively as starting values. The PF12
estimation procedure for the zero-truncated case was included in the study
as well. The equations in (26) were solved by Newton raphson iteration using
(19-20) as starting values. We also experimented with the right-truncation
method as described above trying various threshold values. Initially we used
Newton-Rapson iteration but it was found that better and faster results
for this data set were obtained by using the Matlab (2001) minimization
routine fminsearch which builds on a simplex direct search method. The
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Figure 1: Population cell size distributions of the example data set. Display
(a) shows the entire distribution and (b) shows the details of the left-hand-
side. The frequency of empty cells, i.e. Ty, is omitted in both cases.

routine may however result in local minima so some experimentation with
starting values may be required. Here we used the estimators (19-20) without
encountering any problems. Choosing the threshold m = 5 was found to
yield best results in terms of goodness-of-fit measures and when comparing
the estimated risk ratio to the true risk ratio.

For comparison two alternative models were considered for the data. The
first was Fisher’s logarithmic series distribution (LSD). Taking the mixing
distribution g (A) in (2) to be a gamma distribution results in the negative-
binomial (NB) distribution. In many cases it has however been noted that the
a parameter of the NB tends to be very small in disclosure applications. In
such cases it may be appropriate to consider instead the limiting distribution
of the zero-truncated NB as e — 0 which results to the LSD. The pdf of the
LSD is defined by

¢j
jlog(1—¢)’

where 0 < ¢ < 1. Assuming Bernoulli sampling the marginal distribution of
the cell sizes is also LSD with parameter

s
S T,
It can be shown that R, is simplified to
n_ (1-¢)log(l—¢,)
C - tO ¢s ‘

Pr(F;, = j) = i=1,2,...

Ry=—
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Table 1: Estimates of model parameters, number of population uniques 77,
and risk measure Ry and loglikelihood.

Model Parameters Loglikel. | T4 Ro
Logarith. series dist., ML ¢, = 0.583 -5169.0 | 10724 | 0.1601
Poisson-lognormal f,= | 6% = =

(1) z-tr, cens. m = 4, ML | -3.331 | 3.247 | 0.951 | -9253.7 | 16646 | 0.2306
(2) z-tr, r-tr, m = 5, ML | -3.622 | 3.657 | 0.945 | -8206.2 | 17366 | 0.2419

Poisson-inverse Gaussian | i, = | Ts= | 0 =

(1) ML 0.008 | 1.893 — -72972.4 | 25286 | 0.3448
(2) z-tr, ML 0.074 | 1.750 | 0.889 | -10058.7 | 21636 | 0.2999
(3) z-tr, PF12 0.117 | 1.552 | 0.931 | -10062.4 | 19629 | 0.2720
(4) z-tr, r-tr, m = 5, ML | 0.106 | 1.476 | 0.924 | -8207.9 | 20348 | 0.2793

The LSD model was fitted using ordinary ML estimation and Newton-Raphson
iteration.

The second alternative model was the zero-truncated Poisson-lognormal
(PLN) distribution proposed by Skinner and Holmes (1993, 1998). The model
is defined by choosing ¢ (A) in (2) to be distributed as lognormal with param-
eters u and 0% < 0. Assuming Bernoulli sampling the marginal distribution
of the cell sizes is also PLN with parameters p, = pu + logm, and 02 = o2
Unfortunately the PLN distribution is not available in closed form so numeric
integration is required to calculate the probabilities and the risk measure R,.
For this data set we experimented with various variable substitutions of the
lognormal kernel and different numeric integration techniques and settled for
the transformation A\ = (1 —¢) /¢ to obtain finite integration limits and the
Matlab (2001) quadl routine which uses an adaptive quadrature technique.
Skinner and Holmes suggested either censoring or truncating the loglikeli-
hood above a threshold value m. We tried both methods on the sample
data and found that choosing m = 4 for the censored version and m = 5
for the right-truncated version yielded best results in terms of goodness-
of-fit measures and in comparison to the true risk ratio. Maximizing the
censored and truncated loglikelihoods also required some experimentation
including Newton-Raphson and the Nelder-Mead method mentioned above.
Both methods were found to be sensitive to the choice of starting values and
the latter occasionally produced negative estimates of o2.

To compare the fit to the different models two conventional goodness-of-fit
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Table 2: Observed and fitted cell size frequencies and goodness-of-fit statis-
tics for sample data set. The (*) indicates collapsing of categories above and
including the corresponding cell size. The models are LSD: logarithmic se-
ries distribution and ML estimation, PLN: (1) zero-truncated and censored
likelihood, m = 4, (2) zero- and right-truncated likelihood, m = 5, PiG: (1),
full likelihood, € = 0, (2), zero-truncated likelihood, (3), zero-truncated and
the PF12 estimator, (4), zero- and right-truncated likelihood, m = 5.

Fitted t;
Size | Observ. | LSD PLN PiG

] t; (1) (2) (1) (2) (3) (4)
0 | 1932994 — — — | 1932993.2 — — —
1 7216 | 6697.2 | 7217.7 | 7220.3 7300.8 | 7216.5 | 7216 | 7218.3
2 1573 | 1951.7 | 1561.4 | 1550.4 1457.6 | 1529.5 | 1573 | 1540.0
3 533 | 758.3 | b555.7 | 562.7 576.5 | 596.3 | 598.8 | 578.6
4 272 | 331.5| 258.0 | 267.2 285.0 | 290.0 | 283.5 | 270.5
5 155 | 154.6 | 453.2* | 148.4 157.8 | 157.9 | 150.2 | 141.5
6 117 75.1 — — 93.6 92.1 | 85.2 —
7 70 37.5 — — 58.2 56.3 | 50.6 —
8 41 19.1 — — 37.4 35.6 31.1 —
9 36 9.9 — — 24.7 23.1 | 19.6 —
10 11 5.2 — — 16.6 15.2 12.6 —
11 8 2.8 — — 11.3 10.2 8.2 —
12 4 1.5 — — 7.8 7.0 5.5 —
13 5 1.7* — — 5.5 4.8 3.6 —
14 3 — — — 3.9 3.3 2.5 —
15 1 — — — 2.8 2.3 1.7 —
16 0 — — — 2.0* 5.8% | 3.8* —
17 0 — — — — — — —
18 1 - - - — — — —
19+ 0 — — — — — — —
Pearson x? | 396.74 1.78 2.28 39.39 | 34.96 | 47.46 5.60
LRT 2 | 338.84 1.78 2.30 42.38 | 36.07 | 43.58 5.65
d.f 11 2 2 14 13 13 2
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statistics, the Pearson statistic
SN2
=3 (% - t;)
and the likelihood-ratio statistic (LRT)

Xir =2 tjlog (t;/1;).
were calculated for each model. Both statistics were modified in the obvious
way when categories were collapsed. The results are summarized in tables 1
and 2.

Our first remark is that the LSD performs badly with this data set, both
in terms of fitting to the data as measured by the x? statistics and in pre-
dicting the risk ratio and the total number of population uniques. This is
not surprising as it agrees with the results of previous studies, e.g. Skinner et
al. (1994), Chen and Keller-McNulty (1998) and Hoshino (2001). The fitted
values of t; and t, show a poor fit to the observed values and the decay of
the right hand tail appears to rapid. The resulting estimates of Ry and T
are accordingly not satisfactory.

The PLN and the PiG models, save PiG (1), on the other hand both
appear to adapt better to the frequency structure. The poor results of the
PiG (1) is apparently a result of ignoring the large number of empty cells
and assuming that 6 = 0. It appears as if most of the effort in fitting to the
data is waisted on strectching out to ¢y, on the expense of the other cell size
frequencies. Even so, compared to the LSD even the PiG (1) model performs
surprisingly well. When the zero-truncated methods are used better results
are obtained both in fit to the data and in predicting Ry and T;. It is inter-
esting to note that the best results with respect to predicting Ry and T} are
obtained when the estimation procedure is focused on the small cell sizes as
in PiG (3) which is the PF12 estimation method. This seems to corroborate
with the results of Chen and Keller-McNulty (1998). Furthermore, as men-
tioned in the preceding subsection, the censoring and trunction thresholds of
the PLN (1) and (2) and the PiG (4) were opportunisticly chosen to produce
estimates close to the true value of R;. We found that higher thresholds
for the PLN increasingly underestimated Ry while for the PiG (4), Ry was
increasingly overestimated.

7 Remarks

Since the scope of this paper has been limited to a theoretical review with
only a small-scale example, it is necessarily difficult to evaluate how the
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PiG model fares in general and when compared to alternative approaches.
Before any conclusions can be made a more extensive evaluation is called for
including tests on real-life data and comparisons with other models. Such an
evaluation is intended to appear in a separate report. The PiG model does
however provide an analytically tractable alternative and calculations of the
disclosure risk along the lines discussed are easily computed.

In the present paper we have only considered the two-parameter version
of the more general three-parameter PiG, commonly known as the Sichel
distribution. It is defined by

P - n’ <H>J M
Toogt \n) Ky (w/T)

where —oo < 7 < co. This distribution was introduced by Sichel (1971) and
the distribution in (5) is obtained by setting v = —1/2. A short review of the
Sichel distribution is given e.g. in Johnson et al. (1992, pp. 455-457). This
three-parameter distribution is very powerful and a number of known distri-
bution functions such as the Poisson, negative binomial, geometric, Fisher’s
logarithmic series, are special or limiting forms of the Sichel. A problem
with the Sichel distribution is however that the derivative (0/07v) K, (2) is
not available in closed form and ML-estimation of v requires special atten-
tion, see Stein et al. (1987).

We note also that the risk measures in (12) and (14) provide only an
overall measure of disclosure risk pertaining to the sample as a whole. A per-
record measure of disclosure risk is perhaps more useful as it would provide
a means to identify sensitive (unique) records to which disclosure controlling
measures can be applied. From an intruders point of view it would be optimal
to utilize as much as possible of the information provided in the sample when
formulating a model. Methods which attempt to capture the underlying
probability structure inherent from the key variables defining X have been
suggested, see e.g. Fienberg and Makov (1998) and Skinner and Holmes
(1998). The latter considered a per-record measure based on their Poisson-
lognormal model and we note that similar regression methods are available
for PiG data based on a model of the form p, = exp (x'3) with 7 fixed, see
Dean et al. (1989) for details. Furthermore, as pointed out by an anonymous
referee, the problem can also be addressed from a Bayesian viewpoint. In
the Nordic European countries detailed population statistics are frequently
being published from registers and population uniques can either be inferred
or excluded directly from the published tables or the published tables can
be used as auxiliary information along with the sample data. In conclusion,
the possibility of extending the present model in these directions is certainly
worthy of future exploration.
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A Derivation of Likelihood Equations

In the following the index s on the parameters, indicating sample level, is
dropped for notational ease. The first derivatives of the log probabilities with
respect to the parameters are (see Willmot, 1987, for details)

dlogp; _ 1 25 7
gosbi _ 2 4 1T 27
o T 1 m% 27)
and
dlog p; p (0logp; Yz
Zef _ & L_ 28
or T ol + T T (28)

where o, = (j +1) ijpj’l from which it in turn is easy to derive that

8])]‘ 1 2 . 172

i = D + ;]pj (+1)pjn

_ E
and
Op; plopgy, L. 1.
= _ P& i — = 1) Dirn.
8’7' T 8# + T]pj T (] + )p]-i-l

Furthermore we need

0 1—n po
—log (1 — = — S
o og (1 — po) P —
and
0 wl+7—m po
= oo (1 — S .
or og (1 =) T 1™ 1—pp

For the second derivatives we will need also the derivatives of ¢, and it is
straightfoward using (27) and (28) to show that

dp; 2 7

En = ;%' - E%’ (%‘H - %‘)
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and

dp; 1 1+71
oy L + T2 % (90j+1 - %) :

In the following derivation of the likelihood equations we use the same line
of arguments as Willmot (1987) and as an example we consider the zero-
truncated conditional loglikelihood (CL) in (23); the other cases are analo-
gous. The first derivatives of (23) with respect to p and 7 are

8&% _ i ;, Olog; —(C—to)%u_p“) (292)
_ C;to 2_”__ W] —to)% (29b)
and
ag;L _ gtjalgipj —(C—to)w (30a)
_ _éitjalogp] ___Zt]% (30b)
p=
e

respectively. It is clear that the partials of (23) with respect to p and 7 are
identically zero when the likelihood is maximized, i.e. at the CL-estimates [
and 7. Thus from (29a) we have that

—, Ologp, dlog (1 —
ooy BB (o) 2R (31)
=1 P p=pr=s © !
and it follows from setting (30b) equal to zero and using (31) that
1 (C —to) Po
tig; =n— — — 32
Z J(pj n 1 —po (32)

where ¢;, 7) and py are the CL-estimates of ¢;, n and py respectively. Thus,
setting (29) and (30) equal to zero and using (32) in (29b) yields after sim-
plification the first likelihood equation h; in (24). The second equation hs
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is simply (32) with p replaced by n (1 —po) (C —t,)”" from the first equa-

tion.

It is straightfoward using the results above to show that the required

derivatives of h; and hy are

Ohy 1 pd-m) p
_ - + 5
op 1 — po T (1—po)
ohy (47 -m  po
or 727 (1—po)?
Ohy 2 & n? & n(1—mn)po
2 = 2Nt —LSto (o, —p)— —~ 11
on u; iP5 M; 305 (@41 = ¢5) -
Ohy 1 & 1+7 & npo (p(A+7—n) 1
or = rnbet T Zue )+ P
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