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Abstract

The paper demonstrates how various parametric models for du-
ration data such as the exponential, Weibull, and lognormal may be
embedded in a single framework, and how such competing models may
be assessed relative to a more comprehensive one. To illustrate the is-
sues addressed, the survival patterns of marriages among 1203 Swedish
men born 1936-1964 are studied by parametric and non-parametric
survival methods. In particular, we study the sensitivity of model-
choice with respect to level of aggregation of the time variable; and
of covariate-e¤ects with respect to the model chosen. In accordance
with previous works our empirical results indicate that the choice of a
parametric model for the duration variable is a¤ected by the level of
time aggregation. In contrast to previous results, however, our anal-
ysis shows that estimates of covariate e¤ects are not always robust to
distributional assumptions for the duration variable.

1 Introduction
Survival data typically contain information on the date a sample member
entered a social state such as marriage, employment, clinical trial; the date
the state was left, if at all left; and the value of the next state entered.
Further, the data usually contain information on some sociodemographic
covariates of the sample member.
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In analyzing data of this nature, interest focuses on examining the e¤ects
of covariates on the rate at which the event of interest occurs. Alternatively,
one may focus on the duration spent in a state and examine its relationship
to the covariates. In the present paper, we describe a number of models for
the analysis of right censored survival data. Models for the hazard rate as
well as for the duration to occurrence of an event are considered.
The paper has a number of purposes. First, it describes how a number

of the parametric models such as the exponential, Weibull, and lognormal
may be embedded in a single parametric framework, and how each com-
peting model may be assessed relative to a more comprehensive one. Cox’s
semi-parametric model whose estimation is based on partial likelihood is also
described and used as a standard for comparison of e¤ect estimates. A second
purpose is to analyze a real life data using various models and examine the
sensitivity of model choice to time aggregation, and of parameter estimates
to choice of a particular model. A comparison with previous similar works
is also attempted. We illustrate the issues addressed with data on divorce
among Swedish men with a view of describing the distributional shape of
marriage durations and examining its sociodemographic correlates.
Our empirical results with regard to the parametric family of models

shows that the number and type of models rejected in favor of a more com-
prehensive model depends on the level of time aggregation. More impor-
tantly, and in contrast to some previous works, it is demonstrated here that
parameter estimates and inference based on rejected models di¤er from those
based on relatively adequate models.
The rest of the paper is organized as follows. In Section 2, we introduce

the proportional hazards model for the rate of occurrence of an event of in-
terest. Section 3 is devoted to a discussion of accelerated-failure-time models
- models for the duration until the occurrence of the event. We describe
the Extended Generalized Gamma model and demonstrate how a number of
common parametric models may embedded within this parent model. The
models discussed in Sections 2 - 3 are …t to data on family dissolution among
Swedish men and the results are described in Section 4. The last section
summarizes the paper while our empirical …ndings are tabulated in an ap-
pendix.
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2 Hazard-Rate Models: Cox’s Proportional
Hazards Model

A central concept in the analysis of data representing times to occurrence
of some speci…ed event is the hazard function. Such a function, commonly
denoted by ¸(t), is de…ned as the instantaneous rate at which the event
occurs at a speci…c point t of a (non-negative) time variable T :

¸(t) = lim
¢t¡!0

P [t < T 6 t+¢tjT ¸ t]
¢t

(1)

Hazard rates can vary not only over time, but also among individuals
within a population. Thus, one objective in the analysis of time-to-event
data is to draw inferences about the in‡uence of covariates on the hazard
function.
In his in‡uential paper, Cox (1972) proposed a model where a vector of

covariates z a¤ects the hazard function in a multiplicative manner according
to

¸(tjz) = ¸0(t) exp [z¯] (2)

where ¸0(t) is an unspeci…ed base-line function of time and ¯ is an unknown
vector of parameters representing the e¤ect of the covariate z. The factor
exp(z¯) describes the hazard of failure for an individual with vector z rela-
tive to that of a standard (with z = 0). Details on estimation and tests on
¯ may be found in Cox (1975).

3 Accelerated Failure-Time Models

3.1 Introduction

A second class of models, more akin to ordinary linear regression, speci…es
the covariates to act multiplicatively on failure time itself (or linearly on
log-failure time) rather than on the hazard function (as in the proportional
hazards model above).
Thus, if T0 is the time (duration) associated with the baseline distribution

corresponding to zero values for the covariates (z = 0), then the accelerated
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failure time model speci…es that if the vector of covariates had been z (z 6= 0),
the event time (duration) would have been

T = T0exp(z¯) (3)

or equivalently, that

lnT = lnT0 + z¯ (4)

where, as before, T is the vector of failure times, z is a vector of covariates
or independent variables, ¯ is a vector of unknown regression parameters.
Since covariates alter, by a scale factor, the rate at which an individual
traverses the time axis, (3) may be referred to as the accelerated failure time
model. Thus, for proportional hazards model (2), the explanatory variables
act multiplicatively on the baseline hazard so that their e¤ect is to increase
or decrease the hazard relative to ¸0(t). For accelerated life models, on the
other hand, the explanatory variables act multiplicatively on time to the
event so that their e¤ect is to accelerate or decelerate time to failure relative
to T0.
The model in (4) is a linear model with lnT0 playing the role of an error

term with an underlying baseline distribution. Usually, an intercept term ®
and a scale parameter ± are allowed in the model to give

lnT = ®+ z¯ + ±lnT0 (5)

In terms of the original (untransformed) event times, the e¤ect of the in-
tercept term and the scale factor are to scale and power the event time,
respectively:

T = exp(®+ z¯ + ±lnT0) = T
±
0 exp(®)exp(z¯) (6)

In other words, the e¤ect of covariates in an accelerated failure-time model is
to change the scale, but not the location, of a baseline distribution of failure
times.
One point that is worth noting at this stage is that the parameterizations

in (2) and (3) are di¤erent. A positive coe¢cient in (2) implies an increased
hazard (shorter duration) while in (3) it implies longer duration (decreased
hazard) relative to that of the baseline (where covariates assume the value
of zero).

4



3.2 The Extended Generalized Gamma Model & its
Special Cases

3.2.1 The choice between alternative baseline models

As we saw above the model for the response variable (5) consists of a linear
e¤ect composed of the covariables together with a random disturbance term.
Such models may be rewritten more explicitly as

lnT = z¯¤ + ±² (7)

in which the intercept is incorporated in the coe¢cient vector ¯¤ and a more
conventional notation is used for the random error term. The distribution
of the random error term can be taken from a class of distributions that
includes the extreme-value, normal, and logistic distributions, and, by using
a log transformation, exponential, Weibull, lognormal, loglogistic and gamma
distributions. In general, the distribution may depend on additional shape
parameter k.
Embedding competing models in a single parametric framework allows

the methods of ordinary parametric inference to be used for discrimination
and leads to an assessment of each competing model relative to a more com-
prehensive one. Stacy (1962) showed that the generalized gamma model can
be useful in this regard.
The generalized-gamma model is the distribution of T such that lnT =

z¯¤ + ±², where the random error term ² has the density;

f(k; ²) =
1

¡(k)
exp [k²¡ exp(²)] ;¡1 < z¯¤ <1;¡1 < ² <1; ±; k > 0

(8)

Prentice (1974) showed that a transformation of the form w = k¡
1
2 (²¡ lnk)

leads to a standard normal distribution forw as k !1. Further, he extended
the generalized gamma model by setting q = k¡

1
2 and by allowing the error

density at ¡q to be a re‡ection, about the origin, of that of q. The parameter
q = k¡

1
2 was chosen as the unique power of k that leads to …nite, nonzero

likelihood derivatives at the lognormal model for T . The …nal model with
parameters ¡1 < z¯¤ < 1; q < 1; and ± > 0, can be written as lnT =
z¯¤ + ±² where the error density function f(q; ²) is
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f(q; ²) =

( jqj
¡(q¡2)(q

¡2)q
¡2
exp fq¡2 [q²¡ exp(q²)]g ; q 6= 0
1p
2¼
exp(¡ ²2

2
); q = 0

(9)

The distribution of T , when the error term has the density (9), will hence-
forth, be called the Extended Generalized Gamma (EGG) distribution.
As can be seen from the lower part of (9) the EGG model reduces to the

standard normal distribution for ² when the shape parameter q is equal to
zero. Accordingly, T will have a log-normal distribution. When the shape
parameter q equals 1, (9) reduces to

f(q; ²) = exp f²¡ exp(²)g ; ¡1 < ² <1 (10)

which is the standard (type 1) extreme-value distribution. As lnT is a linear
function of ², it has the same (extreme-value) distribution as ². Hence T =
exp(z¯¤+±²) will have a Weibull distribution. If q = 1 and ± = 1, then T has
the exponential distribution as a special case of the Weibull distribution. The
case of q = ¡1 corresponds to extreme maximum-value distribution for lnT .
This, in turn, corresponds to reciprocal-Weibull distribution for T . The case
of ± = 1 and q > 0 is also of interest. Farewell and Prentice (1977) argue that
this gives the ordinary gamma distribution for T , though, in accordance with
Bergström and Edin (1992) and Bergström, Engvall, and Wallerstedt(1994;
1997), this does not hold in our case illustration. Consequently, we shall label
this special case ( ± = 1, q > 0) the ’gamma’ distribution in our illustrative
example.
Thus, …ve models for T are included as special cases of the EGG model.

Another model of interest, though not a special case of the EGG model, is
the loglogistic model. A loglogistic distribution is the distribution of T such
that logT follows a logistic distribution. Description and applications of the
loglogistic model may be found in Bacon (1993), Diekmann (1992), Little,
Adams, and Anderson (1994), Nandram (1989), and Singh, Lee, and George
(1988).

3.2.2 Estimation

The practical estimation of (7) proceeds as follows. Consider survival times
of n individuals t1; t2; :::; tn and p covariates z1; z2; :::; zp. Let di take value
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0 if ti is a censoring time and value 1 if ti represents an event time. The
log-likelihood function ln(lnt; z¯¤; ±; q), assuming a noninformative censoring
mechanism, will then be proportional to

nX
i=1

di [ln f(q; ²)¡ ln ±] +
nX
i=1

(1¡ di) lnS(q; ²i) (11)

where f(²; q) is given by the EGG model (9), S(²; q) is the corresponding
survivor function, and ²i =

yi¡zi¯
±
:.

At each of several q¡values the maximum likelihood estimates
hb̄¤(q);b±(q)i

are obtained by using the Newton-Raphson method to solve the normal equa-
tions arising from (11). Standard errors of coe¢cients may be obtained from
the information matrix as usual.
Allison (1995) contains a discussion on how most of these models may be

estimated with the SAS software.

4 Illustration: The distributional shape of Mar-
riage Durations

The aim of the present illustration is to …t the various models discussed
above to a demographic data set in order to study the distributional shape
of marriage durations and discriminate between special-case models. Related
questions concern the dependence of inference on the regression coe¢cient
on the corresponding values of the shape and scale parameters in (9); and of
model choice on the level of time aggregation . For previous similar studies or
general discussion on the model, see, Farewell and Prentice (1977), Addison
and Portugal (1987, 1992), Corak (1993), Addison and Fox (1993), Bergström
and Edin (1992), Bergström, Engvall, Wallerstedt (1994; 1997), Swaim and
Podgursky (1992; 1994), Brannäs and Roonqvist (1994), Thomas (1996), and
Tahai and Meyer (1999).

4.1 The data

The data set providing the basis for the following analysis comes from the
1985 mail survey of Swedish men which was conducted by Statistics Sweden.
A simple random sample of men was drawn from each of the …ve-year cohorts

7



born in 1936-40, 1941-45, 1946-50, 1951-55, 1956-60 as well as from the four-
year cohort born in 1961-64.
From each man who responded the survey obtained retrospective infor-

mation on the community in which he grew up, his current occupation, ed-
ucation, leisure time and …nancial situation at the time of the survey, his
previous marital and cohabitational history, present family situation, and on
attitudes and future plans on fatherhood and children. A total of 3171 males
responded.
By the survey time (April 1985), 665 men were still single and had no

children; 132 men had one or more child outside a union; 648 had initiated
a family through formal marriage; while 1434 had initiated a family through
cohabitation. Some of the cohabitations had been legitimatized into formal
marriages before the survey time. Those who were never married before
the date of the survey were excluded. Further, some of the married men
were excluded from analysis because they either had incomplete information
on some important covariates or had little information to contribute to the
phenomenon being studied. This left us with 1203 usable records for our
particular purposes. These were men with complete information, and were
ever married before the time of the survey and were either divorced or still
in their …rst marriage at the time of the survey.
The dependent variable is the rate at which the event of marital disso-

lution occurs or the duration of marriage depending on whether the model
under consideration is a hazard-rate model or a duration model. In the latter
case, the duration measures the number of months from entry into …rst mar-
riage to the time of divorce or the survey date, whichever comes …rst. Apart
from the time variable, the following six categorical explanatory variables
were considered in the analyses:

z1 - Birth cohort (1936-1945, 1946-1960).
z2 - Disruption status of family of origin (Intact, Disrupted).
z3 - Age at marriage (< 25 yrs., > 25 yrs.).
z4 - Social class at survey time (Skill./Unsk., White C., Farm/Self Emp.).
z5 - Educational level at survey time (Prim., Sec., Univ.).
z6 - Mode of entry into marriage (Direct, After cohabiting).

These variables are among those considered to be correlated with the
event of family formation, family dissolution, or both in previous analyses of
the same data set. Summary statistics for the data is given in Table 1. Thus,
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the 1203 married men analyzed here consisted of 689 (57%) who married
after cohabiting for some period (at least one month) and 514 (43%) men
who married with no previous cohabitation. 699 (58%) were born between
1936 and 1945 while the rest 504 (42%) came from the younger cohort born
between 1946 and 1960. Similarly, 1028 (85%) came from intact parental
home while the rest 175 (15%) came from disrupted families.

4.2 Results

4.2.1 An overall view

By the time of the survey, 137 (11%) of the sample members had dissolved
families while the rest 1066 (89%) were still in union and were, therefore,
considered as censored. Of the 137 dissolved families 116 were preceded by
cohabitation while the rest 21 come from direct marriages. In other words
17% of the marriages preceded by cohabitation were dissolved by the time
of the survey while the corresponding …gure for marriages not preceded by
cohabitation was only 4%.

4.2.2 Covariate e¤ects

In Table 2 we report results of …tting models (2) and (9) to our original
data set (when duration variable was measured in months). The baseline
categories (not represented by a coe¢cient) were cohort born in 1936-1945,
from intact parental home, married below age 25, skilled or unskilled worker,
with primary education, and married with no previous cohabitation. The
estimated coe¢cients represent e¤ects of the respective levels of a factor
relative the corresponding baseline level (where covariates assume the value of
zero). Estimates given in the last column of the table (based on (2)) measure
the e¤ect of the covariates on the hazard of marriage dissolution, while those
on the other columns measure e¤ect of the covariates on marriage duration.
As we explained earlier, the two models follow di¤erent parameterizations.
A positive coe¢cient in the last column implies an increased hazard (shorter
duration) while according to (3) or (5) it implies longer duration (smaller
hazard) relative to that of the baseline.
According to Table 2, the factors that considerably increase the hazard

of dissolution (decrease the marriage duration) are coming from disrupted
parental family, having a university level education, and having cohabita-
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tional experience before marriage. Being a white collar employee has an ef-
fect to the opposite direction, while the rest of the factors have only marginal
e¤ects. The above results are reported by most models though the reciprocal
Weibull, lognormal, and loglogistic models di¤er in the direction of the e¤ects
of some (less signi…cant) factors. In section 4.2.3, we shall see that some of
these latter models are rejected in favor of a more comprehensive model.
Tables 3 and 4 report estimates of models (2) and (9) when the duration

variable was aggregated in years and …ve-years, respectively. The overall
picture with regard to parameter estimates is not much di¤erent from what
we reported for the data based on months. Di¤erences in scale and shape
parameters shall be addressed later.
In the Cox model (2) the relative hazards are obtained by exponentiating

the estimates reported in the table. Thus, if we had analyzed our original
(monthly) data with the Cox model (2), then the hazard of divorce of a
secondary-level educated man relative to that with only primary-level educa-
tion is (see last column of Table 2) given by exp(¡0:061) = 0:941. The cor-
responding …gure for a university-level educated man is exp(0:386) = 1:471.
High relative hazards are shown for some categories. The characteristics

that increase the hazard of marital dissolution by say more than 30% percent
of the baseline category are coming from a disrupted parental home, having a
university-level education and the experience of premarital cohabitation. The
strongest predictor of the fate of a marriage is whether or not a man cohabited
before marriage. A typical man from the former group is at a hazard of
dissolution which is about 6 times a man married without cohabiting. Such
a strong e¤ect has been consistently captured by all models we have …tted.

4.2.3 Discrimination among parametric models

Likelihood-Ratio statistics corresponding to various tests for special cases of
the EGG model (9) are presented on Table 5. These are used to test whether
the corresponding special-case model is adequate relative to the more com-
prehensive EGG model. Results corresponding to the monthly data of the
table show that the reciprocal Weibull and the lognormal models are rejected
in favor of the more general EGG model. On the contrary, the Weibull and
’gamma’ models are adequate enough compared to the EGG. This is in ac-
cordance with the estimated values of the shape and scale parameters under
the EGGmodel The estimates of the shape and scale parameters, as reported
in Table 2, are 1:141 and 0:946, respectively. These estimates are closer to
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the assertions of the Weibull (in which the shape parameter is …xed to 1
with a free scale parameter) and the ’gamma’ (in which the scale parameter
is …xed to 1 with a free shape parameter). The reciprocal Weibull and the
lognormal models, on the other hand, impose a shape parameter of -1 and 0,
respectively, with a free scale parameter.
When compared to the Weibull model, the exponential model is also

adequate. This is also indicated by the estimated scale parameter (in the
Weibull model) of 1:053, which is very close to 1, the value imposed by
the exponential model. A point that is worth noting in Table 2 is that
the two rejected models (lognormal and reciprocal Weibull) di¤er from the
other members of the family with regard to the signs of estimated e¤ects of
the Cohort, Age, and Farm/Self variables and the signi…cance of University
level education variable. This is in contrast to previous results by Bergström
and Edin (1992) where model rejection was not followed by any substantial
change in the estimated parameters.
When the time variable was aggregated in years, the reciprocal Weibull

model is, again, rejected in favor of the EGG model. The lognormal model
is now not rejected, though the evidence is marginal. The marginality of the
evidence is further strengthened by the fact that the model, together with
the (strongly) rejected reciprocal Weibull model, yields parameter estimates
for the Cohort, Age and Farm/Self variables that are in opposite direction
compared to those of the other models which are relatively adequate relative
to the EGG model. Furthermore, the estimated shape and scale parameters
in Table 3, again, are not in support of the two rejected models.
The exponential model is, again, not rejected (with yearly data) when

compared to the Weibull model as could also be inferred from the estimated
scale parameter of 0:927 in the Weibull model. The association between
the level of aggregation and the number and type of models rejected is in
accordance with previous works by Bergström and Edin (1992), though our
method and extent of time aggregation di¤ers from theirs.
A di¤erent situation arises when the time variable is aggregated at a

higher level. According to the last column of Table 5, the only model which
is rejected in favor to the EGG model is the Weibull model. Referring to
Table 4, the estimated shape parameter when time is aggregated in …ve-
years is ¡0:174. This is closer to either -1 or 0 than to 1. The results from
Tables 4 and 5 are, therefore, consistent. This rejected model again yields
estimates for the Cohort, Age and Farm/Self variables, that are in opposite
direction to those obtained from the relatively adequate models.
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More interesting is the fact that the exponential model is now rejected in
favor of the Weibull model. The estimated scale parameter of 0:725, which is
relatively far from 1, is again in support of the Weibull. Though our program
could not …t the ’gamma’ model when time was aggregated in …ve years, the
rejection of the exponential model in favor of the Weibull, together with the
estimated scale parameter of 1:491 (in the EGG model) which is reasonably
larger than 1, could provide evidence on the possible rejection of the ’gamma’
model when compared to the EGG model.

5 Summary and concluding remarks
A natural question arises as to which procedure to use when one is con-
fronted with a speci…c data-analysis problem. How does one choose among
alternative models? As with most statistical methods, it is rather di¢cult
to codify the procedures involved in choice of a model. There are many
factors that should legitimately enter the decision and none can be easily
quanti…ed. Invariably there is tension among mathematical convenience,
theoretical appropriateness, and empirical evidence. Given the wide range of
models currently available to the user, it is worth asking whether conclusions
are sensitive to the particular statistical model chosen. The answer to this
question is unknown until results obtained with one method have been com-
pared to results obtained by another method. Such comparisons have been
one of the objectives of the present paper. We, shall therefore, summarize
our results with reference to our objectives.
With models of the type we have just been discussing, the key di¤erenti-

ating factor is the way in which the hazard rate depends on time. The …rst
choice would, then be between the Cox regression model in which such de-
pendence is left to be arbitrary, and the other models which postulate some
form of dependence.
The exponential model which postulates a constant hazard rate over time,

is very attractive from a mathematical and computational point of view.
Substantive theory, on the other hand, will usually suggest many reasons
why the hazard should change with time. A piece-wise exponential model
which assumes a piecewise constant hazard rate, is a ‡exible alternative in
this situation. For this reason, it may be worth using the model as a …rst
approximation. When this fails, one has to resort to the other parametric
family of distributions.
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Our empirical …ndings on the parametric models both build on and con-
tradict with previous works in the area. Though our method and extent of
aggregation di¤ers from those of previous works, our …ndings indicate that
the choice of a particular model for the duration variable is dependent on the
level of aggregation used. More importantly, parameter estimates are not
always robust to distributional assumptions, and when the purpose of the
analysis is to make inferences about covariate e¤ects, failure to consider the
proper distribution may plague the purpose of the analysis.
The intent of our empirical analyses was just to demonstrate the potential

application of various techniques for censored life-time data to retrospectively
collected demographic survey data, and compare results obtained by di¤er-
ent models. As a result no attempt has been made to search for the most
parsimonious model representing family dissolution. Neither have we made
any e¤ort to address substantive sociological or demographic issues behind
our empirical …ndings. The analyses was also based on combining various
levels of many of the covariates with a view to minimize the number of binary
variables which are bound to result from larger number of levels. A more
thorough analyses could have bene…ted from including interaction e¤ects be-
tween selected factors, for instance, between the Cohort and Mode of Entry
factors. As we saw above, certain characteristics of men are associated with
high hazards than others. Consequently, groups who are in high-hazard cat-
egories on several dimensions can have extremely high hazard. In addition,
inclusion of time-varying covariates such as the number of children within a
family (parity), which was intentionally ignored in this analysis, could give
additional insight into the determinants of marital dissolution.
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A Tables of Empirical Results

Table 1: Summary statistics across covariats

Covariate Levels # of men Cases % Exposure Case/Exp Relative
(Dissol.) cases (months) Rates1 Hazards

Cohort 1936-45 699 88 12.59 148348 5.93 1.00
1946-60 504 49 9.72 53981 9.08 1.53

Family Intact 1028 111 10.80 173088 6.41 1.00
of Origin Disrupted 175 26 14.86 29241 8.89 1.39
Age at < 25 674 79 11.72 128669 6.14 1.00
marriage 25+ 529 58 10.96 73660 7.87 1.28
Social Ski/Uns. 423 49 11.58 69221 7.08 1.00
Class White C 618 70 11.33 103100 6.79 0.96

Farm/Self 162 18 11.11 30008 6.00 0.85
Educ. Prim. 451 52 11.53 84760 6.13 1.00

Second. 484 47 9.71 76840 6.12 1.00
Univ 268 38 14.18 40729 9.33 1.52

Mode Direct 514 21 4.09 108250 1.94 1.00
of entry After C. 689 116 16.84 94079 12.33 6.36

Total 1203 137 11.39 202329 6.77 -

1The Case/Exp. ratios are initial estimates of the baseline intensities when no account
is made of the other factors. They are expressed per 10000 exposure months. A rough es-
timate of the overall dissolution rate (before accounting for di¤erences across covariates) is
thus, 137/202329 = 6.77 dissolutions per every 10000 marriages per month, or equivalently
about 81 dissolutions per every 10000 marriages per year.
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Table 2: Estimated coe¢cients and standard errors (below each
coe¢cient) for various parametric models: monthly data2

Covariate EGG r. W. Logn Weibull ’Gamma’ Expon Logl. Cox
Intercept 6.308 6.680 6.731 6.342 6.328 6.250 6.164 -

0.475 0.631 0.558 0.468 0.457 0.422 0.481 -
Scale 0.946 3.340 2.181 1.053 1 1 0.998 -
Parameter 0.396 0.218 0.156 0.084 0 0 0.079 -
Shape 1.141 -1 0 1 1.070 1 - -
Parameter 0.555 0 0 0 0.104 0 - -
Cohort -0.034 0.283 0.135 -0.023 -0.028 -0.052 0.004 -0.090
(1946-60) 0.199 0.267 0.235 0.199 0.196 0.182 0.206 0.190
Family -0.298 -0.332 -0.372 -0.308 -0.303 -0.293 -0.337 0.297
(Disrupted) 0.230 0.328 0.284 0.232 0.229 0.219 0.245 0.219
Age at Mar. -0.095 0.340 0.118 -0.082 -0.089 -0.094 -0.045 0.016
(Older) 0.188 0.256 0.223 0.186 0.184 0.176 0.194 0.179
White C. 0.186 0.226 0.225 0.193 0.190 0.186 0.211 -0.187

0.240 0.302 0.273 0.241 0.240 0.229 0.246 0.229
Farm/Self. 0.051 -0.213 0.034 0.060 0.055 0.059 0.092 -0.057

0.293 0.386 0.348 0.296 0.295 0.282 0.309 0.282
Second. 0.056 0.032 0.055 0.056 0.057 0.050 0.056 -0.061

0.224 0.286 0.328 0.227 0.226 0.215 0.233 0.215
Univ. -0.394 -0.626 -0.555 -0.409 -0.402 -0.392 -0.454 0.386

0.282 0.370 0.328 0.281 0.279 0.266 0.292 0.266
Cohabited -1.900 -1.693 -1.823 -1.896 -1.902 -1.810 -1.892 1.760

0.292 0.296 0.278 0.289 0.291 0.241 0.283 0.242

2The abbreviations used for the models (in Tables 2-4) mean as follows: EGG : Ex-
tended Generalized Gamma; r.W.: reciprocal Weibull; Logn : Lognormal; ; Expon :
Exponential; logl : loglogistic.
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Table 3: Estimated coe¢cients and standard errors (below each
coe¢cient) for various parametric models: Yearly data

Covariate EGG r. W. Logn Weibull ’Gamma’ Expon Logl. Cox
Intercept 3.723 3.956 3.989 3.698 3.715 3.826 3.533 -

0.394 0.510 0.474 0.412 0.407 0.422 0.422 -
Scale 0.291 2.706 1.851 0.927 1 1 0.877 -
Parameter 0.024 0.181 0.132 0.074 0 0 0.069 -
Shape 3.377 -1 0 1 0.894 1 - -
Parameter 0.446 0 0 0 0.100 0 - -
Cohort -0.099 0.163 0.063 -0.068 -0.060 -0.028 -0.041 -0.123
(1946-60) 0.168 0.217 0.200 0.175 0.174 0.184 0.181 0.190
Family -0.242 -0.318 -0.336 -0.276 -0.282 -0.296 -0.303 0.294
(Disrupted) 0.189 0.265 0.240 0.204 0.206 0.219 0.216 0.219
Age at Mar. -0.135 0.231 0.066 -0.101 -0.091 -0.084 -0.067 -0.001
(Older) 0.155 0.208 0.190 0.164 0.164 0.176 0.171 0.178
White C. 0.151 0.198 0.196 0.169 0.173 0.179 0.185 -0.181

0.205 0.244 0.232 0.212 0.213 0.228 0.217 0.228
Farm/Self. 0.340 -0.002 0.072 0.057 0.063 0.057 0.083 -0.050

0.246 0.315 0.297 0.261 0.263 0.282 0.272 0.282
Second. 0.042 0.069 0.049 0.046 0.045 0.055 0.046 -0.063

0.193 0.232 0.220 0.200 0.201 0.215 0.204 0.215
Univ. -0.319 -0.511 -0.475 -0.360 -0.371 -0.385 -0.399 0.381

0.234 0.299 0.278 0.247 0.248 0.266 0.257 0.266
Cohabited -1.683 -1.462 -1.596 -1.684 -1.672 -1.804 -1.681 1.751

0.262 0.240 0.237 0.254 0.251 0.241 0.248 0.242
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Table 4: Estimated coe¢cients and standard errors (below each
coe¢cient) for various parametric models: …ve-year data3

Covariate EGG r. W. Logn Weibull Expon Logl. Cox
Intercept 2.104 1.965 2.105 1.976 2.469 1.832 -

0.356 0.361 0.353 0.320 0.421 0.328 -
Scale 1.491 1.908 1.379 0.725 1 0.682 -
Parameter 0.373 0.151 0.099 0.057 0 0.053 -
Shape -0.174 -1 0 1 1 - -
Parameter 0.574 0 0 0 0 - -
Cohort 0.030 0.084 0.015 -0.079 0.079 -0.057 -0.285
(1946-60) 0.157 0.152 0.149 0.137 0.184 0.141 0.188
Family -0.284 -0.293 -0.278 -0.220 -0.296 -0.245 0.288
(Disrupted) 0.181 0.186 0.178 0.159 0.219 0.168 0.219
Age at Mar. 0.345 0.124 0.012 -0.110 -0.041 -0.083 -0.091
(Older) 0.160 0.147 0.141 0.128 0.176 0.133 0.177
White C. 0.130 0.115 0.132 0.122 0.155 0.133 -0.144

0.173 0.171 0.173 0.166 0.229 0.170 0.228
Farm/Self. 0.070 0.065 0.070 0.044 0.045 0.061 -0.029

0.223 0.224 0.221 0.204 0.282 0.212 0.281
Second. 0.033 0.030 0.034 0.039 0.073 0.041 -0.085

0.165 0.163 0.164 0.157 0.216 0.160 0.215
Univ. -0.381 -0.416 -0.370 -0.279 -0.367 -0.308 0.354

0.211 0.210 0.207 0.194 0.266 0.201 0.266
Cohabited -1.216 -1.117 -1.236 -1.329 -1.781 -1.327 1.713

0.373 0.169 0.177 0.199 0.242 0.193 0.242

3When the data was aggregated in …ve-years the LIFEREG procedure in SAS could
not …t the ’gamma’ model. The error message ’Domain Error in log arg = 0.00E+00’ was
reported by SAS. It is worth noting that the factor ”Cohabited” has been reported as
signi…cant by all models at all levels of aggregation. The EDUC2 factor has been reported
as (marginally) signi…cant by the lognormal and reciprocal Weibull models, and for data
grouped in …ve years, also by the EGG model.
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Table 5: Hypotheses and corresponding likelihood ratio statistics
for testing special cases H0 against more general models
H1, within the parametric family of models

Hypothesis Model Model Likelihood Ratio
(H0) under H0 under H1 Monthly Yearly4 Five-year5

q = ¡1 Recip. Weibull EGG 31.42 14.22 1.44
q = 0 Lognormal EGG 11.48 2.74 0.10
q = 1 Weibull EGG 0.08 0.44 5.74
± = 1 given q > 0 ’Gamma’ EGG 0.02 0.09 -
± = 0 given q = 1 Exponential Weibull 0.42 0.88 14.84

4The test statistics corresponding to H0 : q = 1, and H0 : ± = 0 are Lagrange Multi-
pliers. Our program could not produce the corresponding likelihood ratio statistics. This
does not a¤ect our inference, however, since all tests lead to the same conclusions.

5As explained in footnote 3, our program could not …t the ’Gamma’ model when the
data was aggregated in …ve-years. We, therefore lack the corresponding test statistic in
the table.
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