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Abstract

When studying perception of interaction in the framework of Cog-
nitive Social Structures (Krackhardt 1987) one is often interested in
correlating bias on the part of the perceivers with exogenous attributes
of the perceivers (e.g. Bondonio 1998; Casciaro 1998; Casciaro, Carley
and Krackhardt, 1999). In this study we propose a Bayesian probit
model for explaining biases in perception in terms of known covariates.
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1 Introduction

In various situations we are interested in a relational structure among in-
dividuals described by graphs or digraphs. As an example the structure of
interest could be the co-offending of criminals in a criminal network, i.e. who
commits crimes with whom. If this can be directly observed our quest is at
an end but more often than not it can not be directly observed. If we only
had a number of ”independent” sources that reported on what the structure
looked like, we would hope that we could use the information in these reports
to estimate what the structure looked like. It turns out that given a few as-
sumptions about how these reports were generated we can not only estimate
the hidden structure - for example the probability that criminals A and B
commit crimes together - but also obtain a measure on the reliability of each
source vis-a-vis the hidden structure - given data there we can say that with
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95% confidence there is a 75% propensity that C reports that criminals A
and B commit crimes together when they actually do.

In a previous paper (Koskinen, 2002) a model for Bayesian Cognitive
Social Structures was investigated. Slightly modified, we used a model orig-
inally defined by Batchelder et al (1997) and modeled the prior belief in
different values on the informant accuracy by conjugate distributions. In the
present paper, we expand the model to include observable covariates so that
the accuracy of a perceiver is a function of the attributes of the perceiver
rather than that the accuracy depends on who the perceiver is.

Perhaps more important here than in the previous paper is to deal with
the problem of a model that is not identifiable. The solution is to employ
a proper subjective analysis of data, subjective in the sense that we need to
quantify our prior assumptions and beliefs with proper prior distributions.
Naturally, we are not limited to only one view, rather the opposite. By
specifying several models with different prior assumptions, we get an analysis
of data that reflects several different perspectives, and properly reported the
reader is given sufficient information to judge for himself what seems plausible
and not.

2 Model specification

Suppose that we are interested in a social network consisting of n actors and
that we have reports on this network from m informants. The informants
could also themselves be actors in this social network but they do not neces-
sarily have to. Although we in the following assume that the social structure
can be described by a directed graph with loops very little changes when the
structure is e.g. a loop-less graph.

For aset of actors V = {1,2,... ;n} and arelation R C V2 let Z = (2k); kev
be a matrix with elements z;, = 1 if (j,k) € R, and z;, = 0 otherwise for
j,k € V. (For an introduction to matrix algebra see e.g. Harville, 1997). Let
the set of informants be represented by Z = {1,... ,m}, and the matrix X;,
be the adjacency matrix for the relation R; C V2, which is the information
about R reported by ¢, for ¢ € Z. Now assume that for the elements X, in
each X,

Pr( X, =8| Zjr, = s5) = Mijk (s),

where s = 0,1. The n,;, (s)’s are in some respect the competencies of the
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informants in judging the presence and absence of ties in the social network.
Further assume that conditional on Z, X, ... , X,, are independent and their
elements are independent and satisfy

Pr (X”k = xijk| Z = Z) = Pr (ijk = xijkz| ij = ij;) . (1)

Therefore we can write the likelihood function of z and n as a product of
Bernoulli probability mass functions

r(xlzm) = TTTT T (e () G5 @)

1€ j,keV s€{0,1}
% (1 — N (S>)1(z]-k=s,xijk¢s> ’

where 7 is an array containing 7, (s), for i € Z, j,k € V and s = 0,1, and
where 1 (A) =1 if A is true and 0 otherwise.

3 The probit model

Let us assume that for each combination of informant and pair of actors
in the network, (i,7,k) € Z x V2, we have a covariate p X 1 vector w;;x
and two p x 1 vectors of unknown coeflicients 3, and 3,. We could then
let n;;, (1) = ® (W},3,), and 7,5 (0) = 1 — ® (W], 3,), where ® () is the
standard normal cumulative distribution function (cdf)'. Thus the model for
an observation could be written

P( Xk = x| Zj = 2, Wik, B1,00) = @ (ngﬁﬂm (3)
x (1= @ (whyo)) "
@ (whi) "
< (1— @ (w ijﬂo))(l 21— x)’

To facilitate estimation procedures, following an article by Albert and
Chib (1993), we introduce the n x n vector of latent variables Y; = (ysi),
that for each triple (4, j, k), are independently distributed

Yije ~ N (Wiefy,1) if Zy =1,

In order to interpret these probabilities in the theory of signal detection paradigm,
Batchelder et al (1997) used standard normal cdf’s to infer signal perceptibility and re-
sponse bias.



and
Yije ~ N (Wi, 1) if Zy, =0,

and let X;;;, = 1 if YV, > 0 and X5, = 0 if Vj;, < 0. Now collect
the vectorised reported adjacency matrices and their corresponding latent
variables in two n?m x 1 vectors X = ((vecXy)T,...,(vecX,,)")T, and
Y = ((vecYy)T, ..., (vecY,,)T)T. The vec-operator takes the columns of
the argument matrix left to right and stacks them beneath each other.
Let W = (Wr{, .., WI)T  where the n? x p matrix W; = (W11, Wiap, - - -
Win 1n, Winn) ! . Further, let Z* be an n? x n? diagonal matrix with vecZ on
the diagonal, and we have the following linear form

Y = [CWg, + SWj| + ¢, (4)
where € is a standard normal vector and where
S=Oz2,-1,0272"), C=(1,07Z),

in which ® is the Kronecker product and I, is the r x r identity matrix. Hence
we can use standard results for linear models in our estimation procedures.

4 Priors and full conditional posteriors

It is easy to see that the introduction of the latent variables ,Y;, retain the
structure of (3). Also, with suitably chosen priors, sampling from the exact
posteriors of the parameters is fairly straightforward. Full details about the
Gibbs sampling algorithm can for example be found in Gelfand and Smith
(1990).

To implement the Gibbs sampler we need the full conditional posteriors
of each of the parameters. When the parameters are a priori independent
the joint conditional distribution of the parameters and latent variables given
data is

7 (81, 80,2, y|x) o< 7 (By) 7 (By) 7 (2)
x I (>0 (@ =1)

(i,j,k)ETX V2
+1 (Yijr < 0) 1 (zi50 = 0)} ¢ (Yigr — wlip8,) ™"
X {1 (Yije > 0) 1 (i = 1)
1_ij

+1 (Vi < 0) 1 (256 = 0)} & (Vigr — wf}kﬁo) ;
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where ¢ () is the N (0,1) probability distribution function (pdf).

From the form of (4) we see that we can use standard results from linear
models. Let the prior on ; be N, (47,B}) and independently on f, be
N, (85, Bj) so that we have independently for s = 0, 1

ﬂs| Z,y ~ Np (Esvﬁ:)

where 3, = B: (B!t + WI'CY), and 3, = B} (B} ' 85 + WTSY). Fur-
ther, Bf = (Bi™! + W/'CW) ™", and B = (B! + W'SW) ",
For the latent variables Y we have that for each element if Z;, = s

Ytjki| X)/le[;()jz ~ N (ngﬂw 1) s

truncated to the left at 0 if z;;, = 1 and truncated to the right at 0 if z;;, = 0,
for s = 0,1. We can write the full conditional posterior of each Z;;, as

W(ij|X,ﬂ1,ﬂ0,y,z_jk) - { (1] z Z_jL H(I) zjkﬂl x”k (1— (ngﬂﬂ)l_’cijk

-1
m (O 0 [T (W)™ (1 - @ <w5kﬂo>>“”k}
x H (I) Uk/[; ij%k (1 - (W;jk/ﬁl))zjk(limijk)

X P (Wz'jk;ﬂo) (1=2ji )i (1 _ (ngﬁo))(l—zjk)(l—xijk)

X7 (2jk| 2 k)

where 7 (2| z_ji) is the prior on Zj; given the rest of the matrix being equal
to z_;;,. Using a vague prior on Z (i.e. the probability of a particular graph
is constant over all graphs with n nodes a priori) we get that independently
for each 7,k

1
Zoel Z1ims- -+ ZminsBrs By ~ Bernoulli
ik T1jky - - 5 TmjksB1s Bo ernoull (1+qjk>

j —H M o 1— (wlf,) 1-ijn
ik = S\ 2 (w],6) 1- @ (wlf,) .

where




By cycling through these conditional posteriors for a certain number of
steps we know that after a certain burn-in period the joint output is a sample
from the exact joint posterior of the parameters given data.

The reason why we have given the full conditional posteriors for the co-
efficients that involve a priori specified hyperparameters and not, as is usual,
the posteriors corresponding to vague priors is to counter non-identifiyability.
That the model is not identified means that several sets of values on the pa-
rameters give identical likelihoods. If one only use vague priors the posteriors
will have several modes with equal height. More explicitly, for £, w € R?,

P(X:X|Z:Z1/H1 :é.w[;O:w7W> :P(X:X|Z:ZC7/81 :w7ﬂ0:§7w>

where z¢ is the complement of z. This implies that with vague priors every-
where, i.e. 7z, mg,, and 7g, all constant,

78, 80z (& w, 2| X, W) =73, g,z (w, &, 2°]x, W),

obviously this is avoided when certain values a priori are deemed less likely
than others. The posteriors should, as always, be interpreted in relation to
the nature of the prior distributions.

5 Empirical example

To illustrate the procedures described in this paper we apply them on Krack-
hardts (1987) high-tech managers. Casciaro (1998) suggests that the accu-
racy of a perceiver with regards to an advice network is positively related to
his or her hierarchical level. One reasonable model would then be to have
one covariate, hierarchical level. Another suggestion as to how covariates
are related to the accuracy in perception is given in Bondonio (1998). The
accuracy of a perceiver i on the dyad (7, k) could be assumed to be positively
related to the closeness of i and j, and how similar 7 and j are in terms
of age and tenure. This would mean that we need to form a covariate out
of two exogenous covariates, age and tenure, and the positions of the per-
ceivers relative to the actors perceived. The dissimilarity could be measured
by squared euclidean distances.

We have specified the following covariates w; i, = (1, w;jk.1, Wijk,2), where
Wwjjk1 is equal to one if ¢ is a vice president of the firm or CEO, and nougth
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Figure 1: Posterior distributions of coefficients given data for Krackhardt’s
high tech managers.

otherwise; wj;r2 is the squared euclidean distance between 7 and j with
respect to length of tenure and age; the first constant corresponds to the
intercept.

The priors used are given in Table 1 and 2 along with the characteristics
of the posteriors. The covariances between coefficients was set to 0 a prior.
The posterior distributions of the parameters are given in Figure 1. The
uncertainty is relatively small and the origin would not be included in any
interval estimates with usual credibility levels for any of the coefficients.

Table 1. Prior and posterior expectations
Bro Bra B Boo  Boa  Bos
a priori 0 ) —.25 0 —-.5 .25
a posteriori —1.0164 .1281 —.0819 .2768 .2976 —.0897




Table 2. Prior and posterior variance and covariance

/81,0 ﬂl,l ﬂl,Q /80,0 ﬂO,l ﬂO,Q

a priori ) 5 5 ) ) )
a posteriori

B0 .0016 —.0011 —.0006 .0004 .0000 —.0000
P11 .0022 —.0001 —.0001 —.0001 .0000
B2 .0005 —.0001 .0000 .0000
Boo 0018 —.0012 —.0005
Bo1 .0031 —.0002
Bo.o .0006

6 Conclusions

We have here proposed a method for analysing the relation between the ”ac-
curacy” when perceiving social networks and covariates. Albert and Chib’s
(1993) approach in the analysis of binary data using the binary probit model,
of introducing latent variables, only needs a slight modification to be applica-
ble in the present context. This yields an easy to implement Gibbs sampling
scheme involving standard statistical distributions.

The natural next step to take is to investigate the performance of the
approach presented here when it comes to comparing different parameteri-
sations and testing hypothesis. The lack of natural "reference” priors might
seem a trifle inconvenient to some researchers and it would be interesting to
try to apply restrictions on the parameter space such that hyper parameters
do not have to be more specifically specified. An example of such an identi-
fiability constraint is suggested for a similar model in Salabasis and Villani
(2000). Regardless, interpretation of the parameters and their priors deserves
more attention and it is possible that one could find an effective procedure
for eduction of priors by comparative methods.

The restriction on the latent variables to have unity variance and zero
covariance is restrictive but on the other hand, relaxing this assumption
does not change the overall procedure considerably.
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