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BAYESIAN REFERENCE ANALYSIS OF COINTEGRATION

MATTIAS VILLANI

Abstract. A Bayesian reference analysis of the cointegrated vector autoregression is
presented based on a new prior distribution. Among other properties, it is shown that
this prior distribution distributes its probability mass uniformly over all cointegration
spaces for a given cointegration rank. A simple procedure based on the Gibbs sam-
pler is used to obtain the posterior distribution of both the number of cointegrating
relations and the form of those relations, together with accompanying error correcting
dynamics. Simulated data are used for illustration and for discussing the well-known
issue of local non-identification.

1. Introduction

Many macroeconomic time series behave in a random walk-like fashion and tend to
move around wildly. Typically, such variables move around together, striving to fulfill
one or several economic laws, or long run equilibria, which tie them together. A random
walk is often referred to as an integrated process, and integrated processes that move
around together have therefore been termed cointegrated(Engle and Granger, 1987).

The present work is concerned with estimation of both the number of equilibria, the
so called cointegration rank, and the form of the equilibria conditional on the rank.
Inferences regarding the error correcting coefficients and other short run dynamics are
also treated.

Several non-Bayesian statistical treatments of cointegration have been presented dur-
ing the last two decades, see e.g. Ahn and Reinsel (1990), Phillips (1991) and Stock and
Watson (1988). The likelihood-based approach of Søren Johansen is the most widely
used procedure, however; see e.g. Johansen (1991) or Johansen (1995) for a textbook
treatment.

More recently, a handful Bayesian analyses of cointegration have been presented, see
Bauwens and Giot (1998), Bauwens and Lubrano (1996), Geweke (1996), Kleibergen
and Paap (1998), Kleibergen and van Dijk (1994), Strachan (2000) and Villani (2000).
Philosophical issues aside, a Bayesian approach is advantageous for many reasons, e.g.
it produces whole probability distributions for each unknown parameter which are valid
for any sample size, it affords a straight-forward handling of the inferences for the
cointegration rank and tests of restrictions on the model parameters (Geweke, 1996;
Kleibergen and Paap, 1998; Strachan, 2000; Villani, 2000), and it makes a satisfactory
treatment of the prediction problem possible (Villani, 2001b).

The crucial step in a Bayesian analysis is the choice of prior distribution and in each
of the above mentioned papers a new prior distribution has been introduced. The degree
of motivation of the priors has varied, but the authors seem to have been more or less
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focused on vague priors which add only a small amount of information into the analysis,
i.e. priors largely dominated by data.

This paper will be less concerned with whether or not the prior is ’non-informative’.
The aim here is to propose a Bayesian analysis based on a sound prior which appeals
to practitioners. Such a prior must consider several partially conflicting aspects of
actual econometric practise: Firstly, the number of parameters in cointegration models
is usually very large and it is not realistic to demand a detailed subjective specification
of priors on such high-dimensional spaces, at least not at the current state of elicitation
techniques for multivariate distributions. A prior with relatively few hyperparameters,
each with a clear interpretation, is thus mandatory. Secondly, priors will not, or at
least should not, be used by practitioners unless they are transparent in the sense that
one can easily understand the kind of information they convey. Thirdly, the prior must
lead to straight-forward posterior calculations which can be performed on a routine
basis without necessary fine tuning in each new application. Finally, the posterior
distribution of the cointegration rank can only be obtained if some parameter matrices
are given proper, integrable, priors. A prior which fulfills these objectives will probably
not coincide with the investigators actual prior beliefs, but should nevertheless be useful
as point of reference, or an agreed standard, and is called a reference prior accordingly.

2. The model

Let {xt}T
t=1 be a vector-valued process with p components. The most widely used

model for non-stationary time series is the Error Correction (EC) model

(2.1) ∆xt = Πxt−1 +
k−1∑
i=1

Γi∆xt−i + Φdt + εt,

where ∆xt−i = xt−i − xt−i−1, Π (p × p) is the matrix of long-run multipliers and Γi

(p× p), for i = 1, ..., k− 1, govern the short run dynamics of the process. dt (w× 1) is a
vector of trend, seasonal dummies or other exogenous variables with coefficient matrix
Φ (p × w). εt (p × 1) contains the unexplained errors at time t which are assumed to
follow the Np(0,Σ) distribution with independence across time periods. The number of
lagged differences, k − 1, will be assumed known or determined before the analysis, see
Villani (2001a) for a Bayesian approach.

The stochastic part of a process is integrated of order zero, denoted xt ∼ I(0), if it is
stationary while its cumulative sum is not (see Johansen, 1995, p.35 for a more precise
definition). Furthermore, xt ∼ I(h) if ∆hxt ∼ I(0), i. e. xt is integrated of order h if the
hth difference of the process is integrated of order zero.

Even if all p time series in xt are I(1), it can be shown that the condition rank(Π) =
r < p implies that r linear combinations of the time series are stationary, see Engle and
Granger (1987) and Johansen (1995, p.49); the time series are then cointegrated. Coin-
tegration is thus equivalent to the existence of r long run equilibria between otherwise
drifting series. If rank(Π) = r, then Π can be written as a product of two p× r full rank
matrices α and β, and the model in (2.1) can be written

(2.2) ∆xt = αβ′xt−1 +
k−1∑
i=1

Γi∆xt−i + Φdt + εt,
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where β′xt−1 − E(β′xt−1) are the deviations from the r equilibria and α contains the
adjustment coefficients governing the dynamics back to equilibrium after a disturbance.
The ith column of β contains the coefficients of the ith equilibrium and is called a
cointegration vector accordingly.

It is well known that only the space spanned by the cointegration vectors (sp β),
the cointegration space, is identified, i.e. β is only determined up to arbitrary linear
combinations of its columns. We will follow the traditional route in Bayesian analyses
of cointegration by using a linear normalization

(2.3) β =
(

Ir

B

)
to settle this indeterminacy, where B is a (p−r)×r matrix of fully identified parameters.
When β is used as an argument in density functions it must remembered that some of
its elements are known with probability one as a result of the normalization.

The linear normalization is very convenient for computational reasons (see Sections
4 and 5) but has the limitation that the existence of B depends on the invertibility of
the matrix formed by the r first rows in β. Put differently, the linear normalization
implicitly assumes that each of the r first components of xt enter at least one of the r
cointegrating relations, see Strachan (2000) for a thorough discussion.

The linear normalization may blur the interpretation of the estimated cointegration
vectors, but this is easily remedied by a simple transformation of the posterior results,
see Section 4.

3. The prior distribution

The prior distribution is conveniently decomposed as

p(α, β, Γ,Σ, r) = p(α, β, Γ,Σ|r)p(r),

where p(r) is any probability distribution over the possible cointegration ranks, r =
0,1, ..., p.

The essential conceptual difficulty in a Bayesian approach to cointegration is the prior
distribution of α and β. Early contributions include Kleibergen and van Dijk (1994) who
suggested the Jeffreys prior, Bauwens and Lubrano (1996) with a uniform prior on α
and student t priors on the cointegration vectors and Geweke’s (1996) normal shrinkage
priors. The Jeffreys prior is complicated, student t priors are used for convenience in the
posterior calculation and the normal shrinkage prior is used to assure the convergence
of the algorithm for evaluating the posterior distribution.

Recently, Kleibergen and Paap (1998) proposed a reference prior on α and β which is
essentially a prior on Π in the full rank EC model projected down to the subspace where
rank(Π) = r; Strachan (2000) extended this idea to more general identifying restrictions.
It is an approach which is rather common and well understood in linear models, but its
implications in non-linear models, such as the EC model with reduced rank in (2.2), are
not as transparent, see also Section 6.

The approach taken here differs from the above mentioned works by focusing directly
on the structure of the parameter space of β, which is non-standard as a result of the
identification problem pointed out in Section 2. We introduce the proposed reference
prior now and spend the rest of this section motivating its particular form. Let Γ =
(Γ1, ...,Γk−1,Φ)′ and etr(H) = exp(−1

2 trH), for any square matrix H. The prior can
then be written
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(3.1) p(α, β, Γ,Σ|r) = cr |Σ|−(p+r+q+1)/2 etr[Σ−1(A + vαβ′βα′)],

where v > 0, q ≥ p and A, an p×p positive definite matrix, are the three hyperparameters
to be specified by the investigator. The normalizing constant is

cr = |A|q/2 Γr(p)
Γp(q)Γr(r)

2−qp/2π−p(p−1)/4

(2π/v)pr/2π(p−r)r/2
,

where Γb(a) =
∏b−1

i=0 Γ[(a− i)/2], for positive integers a and b satisfying a ≥ b− 1.
Note that Γ is uniformly distributed over R(p−1)k+w, which makes the overall prior

p(α, β, Γ,Σ|r) improper. The prior on α, β and Σ conditional on Γ is proper, how-
ever. The uniform prior for Γ is used here for simplicity, but a general multivariate
normal prior on vec Γ (e.g. a structured shrinkage prior as in Litterman, 1986) leads to
essentially the same posterior computations.

Implicit in (3.1) is the assumption of common A, q and v for all r; the ensuing analysis
proceeds in the same manner in the general case with varying A, q and v.

3.1. Marginal and conditional distributions. Throughout this section, we will as-
sume that k = 1 and w = 0, for notational convenience. The results will still be valid
for k > 1 and w > 0 as long as prior independence between (Γ1, ...,Γk−1,Φ) and the
other parameter matrices is assumed. All probability distributions in this section will be
conditional on a given cointegration rank, though this will not be written out explicitly.

In order to derive the relevant marginal and conditional distributions a few definitions
and lemmas are needed.

Definition 3.1. The Grassman manifold, Gp,r, is the space of all r-dimensional sub-
spaces of Rp.

As only the space spanned by the columns of β is unique, β ∈ Gp,r. The usual way to
define the uniform distribution over Gp,r is given in the next definition.

Definition 3.2. The uniform distribution on Gp,r is the Haar invariant distribution
under the group of orthonormal transformations.

It can be shown that this uniform distribution on Gp,r is unique, see James (1954) for
a proof and more details regarding distributions on the Grassman manifold.

Definition 3.3. A m× s matrix A follows the matrix normal distribution,
A ∼ Nm×s(µ,Ω1,Ω2), if and only if vec A ∼ Nms(vec µ,Ω1 ⊗ Ω2), where vec A is the
ms-dimensional vector obtained by stacking the s columns below each other and ⊗ is
the Kronecker product.

Definition 3.4. A m×s matrix D follows the matrix t distribution, D ∼ tm×s(µ,Υ,Θ, g),
if its density is given by

Γs(g + m + s− 1)

Γs(g + s− 1)πms/2 |Υ|s/2 |Θ|m/2

∣∣Is + Θ−1(D − µ)′Υ−1(D − µ)
∣∣−(g+m+s−1)/2

.

See Box and Tiao (1973) and Bauwens et al (1999) for properties of the matrix t
distribution.

Lemma 3.5. If β = (Ir B′)′ and B ∼ t(p−r)×r(0, Ip−r, Ir, 1), then β is uniformly dis-
tributed over Gp,r.
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Proof. See Villani (2000). �

With the preceding definitions and lemmas out of the way, we are now prepared to
state an important characterization of the distribution in (3.1).

Theorem 3.6. β is marginally uniformly distributed over Gp,r.

Proof. See the appendix. �

Thus, the prior in (3.1) assigns equal probability to every possible cointegration space
of dimension r. This should be a sensible reference prior given that only the cointegration
space is identified.

Theorem 3.7. The marginal prior of Σ is

Σ ∼ IW (A, q),

where IW denotes the inverted Wishart distribution (Zellner, 1971).

Proof. Follows directly from the proof of Theorem 3.6. �

It is easily shown that (see the proof of Theorem 3.8 below)

(3.2) α|β, Σ ∼ Np×r[0, (β′β)−1, v−1Σ].

The linear normalization of β makes α difficult to interpret, however, and the conditional
prior in (3.2) may not shed much light on the prior in (3.1). Consider instead the prior
of α conditional on β and Σ when β is orthonormal. Restricting β to be orthonormal
is not sufficient to identify the model, however, as any orthonormal version of β can be
rotated to a new one by postmultiplying it with an r×r orthonormal matrix. This need
not concerns us here as β only enters p(α|β, Σ) in the form β′β and p(α|β, Σ) is therefore
invariant under these rotations. Define β̃ = β(β′β)−1/2 and note that β̃ is orthonormal.
In order for Π = αβ′ to remain unchanged by the transformation β → β̃, we must make
the corresponding transformation of the adjustment matrix from α to α̃ = α(β′β)1/2.
In the following theorem, let α̃i denote the ith column of α̃ and note that α̃i describes
how the p response variables are affected by the ith cointegrating relation under the
orthonormal normalization.

Theorem 3.8. α̃i|Σ
iid∼ Np(0, v−1Σ), i = 1, 2, ..., r.

Proof. See the appendix. �

The rather restrictive form of the prior in Theorem 3.8 must be motivated. First,
the restriction to conditional normal priors on α (and thereby also on α̃) is necessary
for an efficient numerical evaluation of the posterior based on Gibbs sampling, see Sec-
tion 4. Second, non-identical priors on the columns of α̃ do not make sense unless
over-identifying restrictions on the columns of β are used to give a unique meaning to
each cointegration vector, i.e. it is not reasonable to express different beliefs about the
columns of α̃ without knowing which cointegration vector each α̃i refers to. Another
way to see this is that within the class of matrix normal priors α̃|β̃, Σ ∼ Np×r(µ,Ω1,Ω2),
only the priors with µ = 0, Ω1 = Ir are invariant to rotations of β̃. Third, the reason
for centering the conditional prior over zero is motivated by the invariance requirement
just stated. It has the effect of centering the prior over Π = 0, which is often a good
starting point in an analysis, see the discussion of the ’sum of coefficients’ prior in Doan
et al (1984) and the section on prior stability below. Finally, the scale matrix in the con-
ditional prior could be any positive definite matrix, the posterior computations remain
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almost exactly the same. By making the conditional covariance matrix proportional to Σ
we incorporate the belief that the uncertainty of a variables error-correcting coefficients
is proportional to size of the unexplained component of that variable.

Further clarification of the hyperparameters A, q and v is obtained from the marginal
prior of α̃. By multiplying p(α̃|Σ) with the marginal inverted Wishart prior of Σ and
integrating with respect to Σ we obtain

α̃ ∼ tp×r(0, v−1A, Ir, q − p + 1).
Results in Box and Tiao (1973, p. 446-7) then give

E(α̃) = 0 and Cov(vec α̃) = Ir ⊗ v−1E(Σ),
where E(Σ) = A/(q − p− 1) is the expected value of Σ a priori, see e.g. Bauwens et al
(1999, p. 306).

A is determined from E(Σ) and q and the investigator thus faces subjective speci-
fication of: 1) the expected value of Σ, 2) the degree of certainty regarding Σ (large
values of q imply large certainty) and 3) the tightness around the point zero for α̃ (large
values of v give high concentration of probability mass around zero). Note that whether
a value for v is large or not depends on E(Σ), which should therefore be specified before
v.

The main difficulty for the investigator is likely to be the specification of E(Σ). If
interest only centers on the posterior of α, β, Γ,Σ conditional on a given cointegration
rank, then A may be set equal to the zero matrix and q = 0. This corresponds to
using the usual improper prior p(Σ) ∝ |Σ|−(p+1)/2. If we also aim at analyzing the
cointegration rank, but are either unable or unwilling to state our beliefs about Σ, then
A = Σ̂ and q = p + 2 may be used, where Σ̂ is the ML estimate of Σ in the full
rank model; note that this implies that E(Σ) = Σ̂. This suggestion is of course not a
proper Bayesian solution as the prior then becomes dependent on the observed data.
The consequences of this side-step are minimized by the choice of the smallest possible
q (maximum uncertainty) subject to a finite expected value of Σ.

3.2. Invariance. The choice of normalizing variables may be somewhat arbitrary and
it is therefore desirable to have a posterior distribution which is invariant to this choice.
The likelihood function is well-known to have this property and the posterior distribution
is therefore invariant if and only if the prior distribution is. Let N1 = {i1, ..., ir} denote
the set of indices for the r variables used to normalize β. Consider the change in
normalization N1 → N2, where N2 equals N1 with jth variable in the normalized set
replaced by the kth variable in the non-normalized set. This change in normalizing
variables is accomplished by the transformation (α, β, Σ) → (ᾱ, β̄, Σ), where ᾱ = αU ′,
β̄ = βU−1 and U is an r× r transformation matrix whose elements are functions of the
kth row of B. The exact form of U need not concern us for the moment, it is sufficient
to note that such a matrix always exist if the variables in the new normalizing set enter
at least one of the cointegration vectors (see Section 2) and that U then is unique. It is
important to note that Π = αβ′ is unchanged by the transformation.

The next definition formalizes the idea that the prior distribution (and therefore also
the posterior distribution) should be the same whether we i) work directly with N1 or
ii) start with N2 and then transform to N1.
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Definition 3.9. A distribution on α, β and Σ is normalization invariant if, for any U
corresponding to a change in normalizing variables,

p(α, β, Σ) = p(ᾱ, β̄, Σ)J(ᾱ, β̄, Σ → α, β, Σ),
where ᾱ = αU ′, β̄ = βU−1 and J(ᾱ, β̄, Σ → α, β, Σ) is the Jacobian of the transforma-
tion from ᾱ, β̄, Σ to α, β, Σ.

Lemma 3.10. J(ᾱ, β̄, Σ → α, β, Σ) = 1.

Proof. See the appendix. �

Theorem 3.11. The prior in (3.1) is normalization invariant.

Proof.

p(ᾱ, β̄, Σ) = cr |Σ|−(p+r+q+1)/2 etr[Σ−1(A + vαU ′U−1′β′βU−1Uα′)]
= p(α, β, Σ),

which, using Lemma 3.10, proves the theorem. �

3.3. Prior stability. Define

ΠC =


Ip + αβ′ + Γ1 Γ2 − Γ1 · · · Γk−1 − Γk−2 −Γk−1

Ip 0 · · · 0 0
0 Ip 0 0
...

. . .
...

...
0 0 · · · Ip 0


The assumption of rank(Π) = r implies that r of the eigenvalues of ΠC are equal to

one. A cointegrated process is stable if all the remaining eigenvalues of ΠC are smaller
than one in modulus. It is clearly of interest to know what prior probability is implicitly
being placed on the set of stable processes if the prior in (3.1) is used. This could be
investigated either by analytical approximation or by simulation methods for different
models, i.e. by varying p, r and k. We shall here be content with simulating the special
case p = 2 and r = k = 1. Table I displays the prior probability that the process
is stable for A = I2 as a function of q and σ = v−1/2 (note that σ is on a standard
deviation scale). Experiments with other choices of A with strong positive and negative
correlation structure did not have a large impact on the probability. Note also that it
is unnecessary to increase the magnitude of the diagonal elements in A as this has the
same effect as increasing σ.

Table I

Implied Prior Probability that the Process is Stable

σ
0.01 0.1 0.25 0.5 0.75 1 5 10 50 100

q = 2 0.48 0.46 0.40 0.35 0.30 0.26 0.08 0.04 0.01 0.00
q = 4 0.49 0.49 0.47 0.46 0.42 0.40 0.15 0.08 0.02 0.01
q = 10 0.50 0.50 0.49 0.48 0.47 0.45 0.26 0.14 0.03 0.02
q = 20 0.50 0.49 0.49 0.48 0.47 0.47 0.33 0.19 0.05 0.02
Note: A = I2.
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INSERT FIGURE HERE

Figure 1. Implied prior distribution on the unrestricted eigenvalue.
A = I2 and q = 4.

Densities of the unrestricted eigenvalue (λ) are displayed in Figure 1 for different
values of σ. The densities are symmetric around the modal value λ = 1. A non-
symmetric density for λ which places more mass to the left of λ = 1 than to the
right of this point would perhaps better represent actual beliefs. The gain from a non-
symmetric prior is probably less than the loss in computational efficiency in the posterior
calculations, however.

A crude way to obtain a non-symmetric prior is to simply exclude explosive processes a
priori (or ’too explosive’ processes, e.g. with eigenvalues larger than 1.1 in modulus) by
restricting the domain of the prior in (3.1) to the space of α, β and Γ where the process is
stable. This is neatly handled in the posterior calculations for a given cointegration rank
by simply rejecting the draws from the posterior corresponding to non-stable processes,
see Section 4. Note that the latter region will be small if the process actually is stable
and data informative, and most draws will then be accepted. The posterior distribution
of the rank will require heavier numerical computations, however.

4. The posterior distribution conditional on the rank

4.1. Preliminaries. Let us write the cointegrated EC model (2.2) in the following
compact form

(4.1) Y = Xβα′ + ZΓ + E,

where Y = (∆xT , ...,∆x1)′, X = (xT−1, ..., x0)′, Z = (∆X−1, ...,∆X−k+1, D), ∆X−i =
(∆xT−i, ...,∆x−i+1)′, D = (dT , ..., d1)′, Γ = (Γ1, ...,Γk−1,Φ)′ and E = (εT , ..., ε1)′. D =
{Y, X,Z} will be used as a short hand for the available data and d = (p − 1)k + w
denotes the number of columns in Z. Further, define

(4.2) MH = Im −H(H ′H)−1H ′,

for any m× s matrix H.
The following two lemmas will be used in some of the proofs later on.

Lemma 4.1.

p(α, β|D, r) ∝
∣∣(Y −Xβα′)′MZ(Y −Xβα′) + A + vαβ′βα′

∣∣−(T+q+r−d)/2
.

Proof. See the appendix. �

Lemma 4.2. For any non-singular m× s matrix H∫ ∞

−∞

∣∣A + (H −M)′B(H −M)
∣∣−h/2

dH = πms/2 Γs(h−m)
Γs(h)

|A|−(h−m)/2 |B|−s/2 ,

where A (s× s) and B (m×m) are positive definite matrices, and M (m× s) is of full
rank.

Proof. The integrand is the kernel of a matrix t and the lemma is proved by using the
fact that a density integrates to one. �
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4.2. Marginal posterior distribution of β. The next result gives the marginal pos-
terior of the cointegration vectors.

Theorem 4.3. The marginal posterior distribution of β is

p(β|D, r) ∝ |β′C1β|(T+q−d−p)/2

|β′C2β|(T+q−d)/2
,

where C1 = X ′MZX + vIp, C2 = vIp + X ′Q[IT − Z(Z ′QZ)−1Z ′Q]X and Q = IT −
Y (A + Y ′Y )−1Y ′.

Proof. See the appendix. �

p(β|D, r) in Theorem 4.3 is thus a ratio of two matrix t kernels and could therefore
be termed a matrix 1-1 poly-t density, see Bauwens et al (1999) for a discussion of
multivariate poly-t densities. Contrary to the multivariate case, no properties have
been derived for matrix poly-t densities and Theorem 4.3 is therefore of little practical
interest, in general.

In the special case r = 1, the posterior distribution of B is a (vector-valued) 1-1
poly-t density and it can be been shown (Bauwens and Lubrano, 1996) that p(B|D, r)
is integrable but has no finite moments. The non-existence of integer moments is not a
consequence of the prior distribution in (3.1), but rather of the linear normalization of
β, where each element of B is a ratio with the first element of β in the denominator.

4.3. Conditional posteriors and Gibbs sampling. An alternative route to calculate
the posterior distribution of α, B, Γ and Σ using Gibbs sampling (see e.g. Smith and
Roberts, 1993, for a good introduction) was pioneered by Geweke (1996).

The Gibbs sampler is an easily implemented iterative method for generating obser-
vations from complex multidimensional densities by sampling from the so called full
conditional posterior distributions. The full conditional posterior distribution of a sub-
set of parameters in a model is the posterior distribution of the subset conditional on
all other parameters. A frequently encountered situation is that the overall posterior
distribution is too complex to generate samples from while the full conditional posteri-
ors are all easily sampled. The Gibbs sampler exploits this fact and produces a sample
from the posterior by iteratively generating parameter values from the full conditional
posteriors.

The sampled parameter values are not independent, but following can be shown to
hold under certain conditions which are satisfied here (Geweke, 1996)

θ(i) d→ p(θ|D),

N−1
N∑

i=1

f(θ(i)) a.s.→ Eθ|D[f(θ)],

where θ is a parameter vector of interest, θ(i) is the sampled value of θ at the ith Gibbs
iteration, d→ and a.s.→ denote convergence in distribution and convergence almost surely,
respectively, and p(θ|D) is the posterior distribution of θ conditional on data D. f(·)
is any well-behaved function with finite posterior expectation and Eθ|D(·) denotes the
posterior expectation.

Initial values for all parameters are needed to start up the Gibbs sampler. The
maximum likelihood estimates in Johansen (1995) are natural candidates.
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Theorem 4.4.

• The full conditional posterior of Σ

Σ|α, β, Γ,D, r ∼ IWp(E′E + A + vαβ′βα′, T + q + r),

where E = Y −Xβα′ − ZΓ.
• The full conditional posterior of Γ

Γ|α, β, Σ,D, r ∼ Nd×p[µΓ,Σ, (Z ′Z)−1],

where µΓ = (Z ′Z)−1Z ′(Y −Xβα′).
• The full conditional posterior of α

α|β, Γ,Σ,D, r ∼ Np×r

{
µα, [β′(X ′X + vIp)β]−1,Σ

}
,

• The full conditional posterior of B

B|α, Γ,Σ,D, r ∼ N(p−r)×r[µB, (α′Σ−1α)−1, (X ′
2X2 + vIp−r)−1],

where µB = (X ′
2X2 + vIp−r)−1X ′

2(Y −X1α
′−ZΓ)Σ−1α(α′Σ−1α)−1, X1 denotes

the r first columns of X and X2 the p− r last ones.

Proof. See the appendix. �

It is often the case that α and β is the focus of attention, whereas Γ and Σ are consid-
ered nuisance parameters, or at least parameters of lesser interest. Furthermore, most
of the model parameters are located in Γ and Σ and the Gibbs updating steps for these
two matrices usually dominates the total computing time. The time to convergence of
the Gibbs sampler also increases as the dimensions of Γ and Σ grow. The next theorem
gives the conditional posteriors necessary to perform a (marginal) Gibbs sampler to gen-
erate samples directly from p(α, B|D, r). The marginal Gibbs sampler in the following
theorem is also used in Section 5 to calculate the posterior distribution of the rank.

Theorem 4.5.

• The posterior of α conditional on β and r

α|β,D, r ∼ tp×r[α̂, A + Y ′MZ(Y −Xβα̂′), (β′C1β)−1, T + q − (d + p) + 1]

where α̂ = Y ′MZXβ(β′C1β)−1.
• The posterior of B conditional on α and r

B|α,D, r ∼ t(p−r)×r[B̂,G3 −G′
2G

−1
1 G2, C3, T + q + r − (d + p) + 1],

where β̂ = Π̂′S−1α(α′S−1α)−1, Π̂ = Y ′MZXC−1
1 , S = A + Y ′MZY − Π̂C1Π̂′,

β̂1 contains the r first rows of β̂ and β̂2 the p− r remaining ones, and

C−1
1 + Π̂′S−1Π̂− β̂α′S−1αβ̂′ =

 G1
r×r

G2
r×(p−r)

G′
2

(p−r)×r

G3
(p−r)×(p−r)


is decomposed conformably, C3 = (Ir − β̂1)′G−1

1 (Ir − β̂1) + (α′S−1α)−1 and B̂ =
β̂2 + G′

2G
−1
1 (Ir − β̂1).

Proof. See the appendix. �
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The marginal analysis in Theorem 4.5 provides no inferences for Γ and Σ, but the
posterior mean and covariance matrix of Γ can be obtained from the marginal Gibbs
sampler as follows. Note first that

E(Γ|D, r) = Eα,β|D,r[E(Γ|α, β,D, r)](4.3)

C(Γ|D, r) = Eα,β|D,r[C(Γ|α, β,D, r)] + Cα,β|D,r[E(Γ|α, β,D, r)],(4.4)

where Eα,β|D,r and Cα,β|D,r denotes the expectation and covariance with respect to the
posterior distribution p(α, B|D, r). By integrating the full posterior distribution with
respect to Σ, it is easily shown that

Γ|α, β,D, r ∼ td×p[µΓ, (Z ′Z)−1,W ′MZW + A + vαβ′βα′, T + q + r − (d + p) + 1],

with µΓ as defined in Theorem 4.4. Thus, using results in Box and Tiao (1973, p. 446-7),
we have

E(Γ|α, β,D, r) = µΓ(4.5)

C(Γ|α, β,D, r) =
(W ′MZW + A + vαβ′βα′)⊗ (Z ′Z)−1

T + q + r − (d + p + 1)
.(4.6)

The expectation and covariance with respect to p(α, B|D, r) in (4.3) and (4.4) are
easily computed by averaging the conditional expectation and covariance in (4.5) and
(4.6) over the Gibbs samples obtained from the marginal Gibbs sampler in Theorem 4.5.
Note that the possibly high-dimensional inverse, (Z ′Z)−1, is fixed in each step of the
marginal Gibbs sampler.

It is also straight-forward to show that Σ|α, β,D, r ∼ IW (W ′MZW +A+vαβ′βα′, T +
q + r− d). The marginal moments of Σ can be obtained in the same way as for Γ, using
the expressions for the mean and covariance matrix of the inverted Wishart distribution.

It should be noted, however, that the marginal posteriors of Γ and Σ under reason-
ably vague priors seem to be well approximated by the asymptotic distributions of the
maximum likelihood estimators of Γ and Σ in Johansen (1995).

We conclude this section with a note on the linear normalization of β. The main ad-
vantages of this simple normalization are that the prior which assigns the same probabil-
ity to every cointegration space is of rather simple form and that an easily implemented
Gibbs sampler can be used to compute the posterior results. Note also that we are free
to transform the posterior distribution of α and β as long as the space spanned by the
columns of β and the matrix of long run multipliers Π = αβ′ remain unchanged, i.e.
the class of allowable transformations are (α, β) → (αU ′, βU−1), for any invertible r× r
matrix U . This transformation is conveniently performed directly on the sampled α’s
and β’s after the final iteration of the Gibbs sampler. Thus, the restriction to a linear
normalization is in this sense no restriction at all as the final results may be transformed
to any desired normalization. The question of existence mentioned in Section 2 is of
course still relevant.
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5. The posterior distribution of the cointegration rank

The posterior distribution of the cointegration rank is

(5.1) p(r|D) =
p(D|r)p(r)∑p

r=0 p(D|r)p(r)
,

where p(r) is the prior probability of r cointegrating relations and

(5.2) p(D|r) =
∫ ∫ ∫ ∫

p(D|α, β, Γ,Σ, r)p(α, β, Γ,Σ|r)dΣdΓdαdβ

is the marginal likelihood of the data given rank(Π) = r.
At least one of the integrals in (5.2) must be computed numerically, perhaps by

importance sampling (Geweke, 1989; Kloek and van Dijk, 1978). This approach is likely
to be imprecise, at least when p and r are large, and will not be pursued here.

Chib (1995) proposed a simple way to compute marginal likelihoods from the output
of the Gibbs sampler in a general setting. The ideal setting for Chib’s approach is when
the Gibbs sampler consist of only two updating steps, i.e. when the full set of parameters
in a given model can be partitioned into two blocks with easily sampled full conditional
posteriors. This is exactly our case here as the parameter dependent on the rank can
be sampled by the two-block marginal Gibbs sampler in Theorem 4.5.

Assume that a Gibbs sample of size n has been generated from p(α, B|D, r) using
the two conditional posteriors p(α|B,D, r) and p(B|α,D, r) in Theorem 4.5. By a slight
rearrangement of Bayes’ theorem we obtain

(5.3) p(D|r) =
p(D|α, B, r)p(α, B|r)

p(α, B|D, r)
=

p(D|α, B, r)p(α, B|r)
p(B|α,D, r)p(α|D, r)

.

The expression for p(D|r) in (5.3) clearly holds for any α and B. Let (α, B) = (α̃, B̃)
be the point where p(D|r) is evaluated. As we will see below (α̃, B̃) should be a point
of high posterior density; natural candidates are the posterior mode or median (the
posterior mean does not exist, at least not when r = 1, see Section 4). The next result
gives the expression for the numerator of (5.3) up to a multiplicative constant which
does not depend on r.

Theorem 5.1.

p(D|α, B, r)p(α, B|r) ∝ Γp(T + q + r − d)Γr(p)
Γr(r)π(2pr−r2)/2v−pr/2

∣∣A + vαβ′βα′ + W ′MZW
∣∣−(T+q+r−d)/2 ,

where W = Y −Xβα′.

Proof. See the appendix. �

We still need to calculate p(B|α,D, r) and p(α|D, r) in (5.3). p(B|α,D, r) is given in
the second part of Theorem 4.5. The final term p(α|D, r) is not available in closed form,
but its value in the point α = α̃, which is all we need, can be computed from the Gibbs
sample by

p̂(α̃‖D, r) =
1
n

n∑
i=1

p(α̃|B(i),D, r),

where B(i) is the generated B in the ith Gibbs cycle and p(α|BD, r) is given in the first
part of Theorem 4.5.
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In order to calculate the marginal likelihoods for r = 0 and r = p, we must choose a
prior for the relevant parameter matrices. It is possible to use the prior in (3.1) even in
these extreme cases. This distribution agrees with our earlier prior in the reduced rank
case and has the added benefit of giving tractable integrals. In addition, no new prior
hyperparameters needs to be specified by the investigator. If r = 0, then α = β = 0 and
the prior in (3.1) becomes

(5.4) p(Γ,Σ|r) = c0 |Σ|−(p+q+1)/2 etr(Σ−1A),

which is a IW (A, q) prior on Σ and p(Γ) ∝ c. For r = p, Π = αβ′ is of full rank and

(5.5) p(Π,Γ,Σ|r) = cp |Σ|−(2p+q+1)/2 etr[Σ−1(A + vΠΠ′)],

which implies Σ ∼ IW (A, q), vec Π|Σ ∼ Np2(0, Ip ⊗ v−1Σ). The Kronecker structure on
the prior covariance matrix of Π may be too restrictive for some applications, but it is
possible to use a general normal-Wishart prior on Π. Some of the integrals in p(D|r = p)
then become intractable, but can be computed from the Gibbs output via Chib’s device,
see e.g. Kadiyala and Karlsson (1997) for a simple Gibbs sampler.

The marginal likelihoods for r = 0 and r = p are given in the next theorem.

Theorem 5.2. For the priors in (5.4) and (5.5)

p(D|r = 0) ∝ Γp(T + q − d)
∣∣A + Y ′MZY

∣∣−(T+q−d)/2

p(D|r = p) ∝ Γp(T + q − d)vp2/2 |S|−(T+q−d)/2 |C1|−p/2 ,

where S is defined in Theorem 4.5 and C1 is given in Theorem 4.3.

Proof. See the appendix. �

In summary, a complete analysis consist of the following steps:
• Generate a sample from each of the p− 1 marginal posteriors p(α, B|D, r), r =

1, 2, ..., p− 1, using the marginal Gibbs sampler in Theorem 4.5 and compute α̃
and B̃ in each sample.

• Compute p(D|r = 0) and p(D|r = p) using the formulas in Theorem 5.2 and
p(D|r) for r = 1, 2, ..., p − 1 from the previously generated Gibbs samples as
described above. Use (5.1) to compute the posterior distribution of the cointe-
gration rank.

• Select the cointegration ranks of interest and summaries the posterior distribu-
tion of α and B (possibly transformed to a more interpretable normalization)
conditional on these ranks using the already available Gibbs samples.

If inferences about Σ and Γ are wanted for the selected cointegration ranks, and the
ML estimates with standard errors cannot be used for approximate inference, the full
Gibbs sampler in Theorem 4.4 should be used. If the first two posterior moments of Σ
and Γ are sufficient, the approach based on the marginal Gibbs sampler described in
Section 4 is preferred.

Note that p − 1 is typically a rather small number (ranging from 1 to 4 in many
applications) and that the marginal Gibbs sampler in Theorem 4.5 operates on rather
small-dimensional spaces, at least compared to the dimension of the whole parameter
space.
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6. An numerical illustration

A single data set of length T = 100 was simulated from a bivariate model, without
short-run dynamics and constant term, with parameters α = (0, 0.1), β = (1,−1) and
Σ = I2. Note that α is close to the zero vector and the model is thus close to the
zero rank model. This difficult setup has been chosen in order to accentuate some
features of the posterior distribution in cointegration models which were initially raised
by Kleibergen and van Dijk (1994). The simulated time series are displayed in panel a)
of Figure 2.

Table II shows the posterior distribution of the cointegration rank for three different
values of σ = v−1/2, together with the likelihood trace and maximal eigenvalue tests
(Johansen, 1995). A uniform distribution on the ranks was used a priori. q was set to
4 and the ML estimate

Σ̂ =
(

0.83 -0.10
-0.10 1.02,

)

was used for A; other choices of A with larger positive and negative off-diagonal elements
had only minor effects on the results. Note that as Σ̂ ≈ I2, σ corresponds roughly to
the standard deviation of the adjustment coefficients for an orthonormal β, conditional
on Σ, see Theorem 3.8.

The results in Table II are based on 25.000 iterations of the Gibbs sampler (after 1.000
burn-in iterations); convergence was reached at a much smaller number of iterations,
however. From Table II it is seen that the trace test favors the full rank model whereas
the maximal eigenvalue test prefers r = 0. For the two larger σ, r = 0 has the largest
posterior probability. With σ = 0.25, the unit rank model is most probable a posteriori.
The inconclusive evidence regarding the cointegration rank is of course expected as we
purposely simulated data from a very difficult parametric setup. Panel b) of Figure 2
displays an estimate of the cointegrating relation which does not appear stationary.

It should be noted that the large uncertainty in the rank inference can, and should,
be incorporated in the subsequent analysis by averaging these final inferences over the
posterior distribution of r.

Table II

Inferences on the cointegration rank

Hypothesis LRtrace LRmax σ = 0.25 σ = 0.5 σ = 1
r = 0 17.41∗ 12.43 0.263 0.622 0.874
r = 1 4.98∗ 4.98* 0.504 0.337 0.122
r = 2 − − 0.233 0.041 0.004

Note: ** and * denotes significant at the 1 and 5 percent level, respectively.

To discuss the issue of local non-identification the simulated data set is analyzed
conditional on r = 1. Table III and the first three panels of Figure 3 display the
inferences for α1, α2 and B. The striking point in Table III is how insensitive the
inferences are to changes in σ; the choice of loss function (which determines the measure
of posterior centrality) is more important.
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INSERT FIGURE HERE.

Figure 2. a) The two simulated time series. b) Estimated cointegration
relation, β′xt, with β = (1,−1.15)′.

INSERT FIGURE HERE

Figure 3. The posterior distribution of α and β for σ = 0.5 conditional
on r = 1. θ = arctan(B) is the angle of the cointegration vector in
the orthonormal normalization. 2% of the draws from each tails of the
posterior distribution of B were excluded in the histogram construction.

INSERT FIGURE HERE

Figure 4. Sample points from the joint posterior distribution of α and
β for σ = 0.5 conditional on r = 1.

Table III

Posterior distribution of α and β conditional on r = 1

Posterior mode Posterior median
ML σ = 0.25 σ = 0.5 σ = 1 σ = 0.25 σ = 0.5 σ = 1

α1 0.016 0.015 0.012 0.015 0.010 0.010 0.011
α2 0.096 0.079 0.089 0.091 0.080 0.083 0.083
B −1.171 −1.063 −1.061 −1.031 −1.151 −1.137 −1.150
Note: All estimates are based on 25.000 Gibbs iterations (excluding burn-in).

The extra local mode in the marginal posterior of α2 = 0 in Figure 3 is an effect of
the local non-identification discussed in Kleibergen and van Dijk (1994). They pointed
out that when α = (0, 0)′, β drops out of the likelihood function and the likelihood
is then constant along the B-axis (which has infinite length) and all values for B are
observationally equivalent; B is said to be locally non-identified when α = (0, 0)′. The
posterior distribution based on the prior in (3.1) has the same property as it is flat in
the direction of B when α is the zero vector. This is illustrated in Figure 4, where the
sample points from p(α1, B|D, r = 1) and p(α2, B|D, r = 1) are displayed. Note how the
conditional variance of B grows as α → 0. The posterior variance of B given α = 0 is
actually infinite as can be seen from the second part of Theorem 4.5. This of course as
it should be: if the processes do not react at all to past deviations from the equilibrium,
then the data are necessarily uninformative regarding the cointegration vector.

Kleibergen and van Dijk (1994) argue that this local non-identification causes prob-
lems for a Bayesian analysis with uniform, improper, priors on α and B. Their argu-
ment is as follows: the marginal posterior of α is obtained by integrating the posterior
p(α, B|D) with respect to B. As the posterior under a uniform prior is flat along the
B-axis when α = (0, 0)′, the marginal posterior density of α in the point α = (0, 0)′ is
proportional to the integral of a constant over an unbounded region (−∞ < B < ∞),
i.e. infinity. The marginal posterior of α is thus expected to have an asymptote in the
point (0, 0)′ which is entirely created by the local non-identification. This conclusion is
given without formal proof, but a numerical example is used to support the argument.

Kleibergen and van Dijk suggests the Jeffreys prior to counter-attack the unwanted
asymptote as this prior is zero in the locally non-identified points. The prior in Kleiber-
gen and Paap (1998) has the same property. In the case of unit rank their prior reduces
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to
p(α, β) ∝ (‖α‖ ‖β‖)(p−1)/2 ,

where ‖·‖ is the usual Euclidean length.
Our view on the local non-identification problem is best illustrated by transforming

the posterior results so that β is restricted to a half-circle with unit radius, i.e.

(6.1) β̃ =
(

cos θ
sin θ

)
, −π

2
≤ θ <

π

2
,

where θ is the angle of the cointegration vector. This change in normalization is accom-
plished by the transformation θ = arctanB and α̃ = α(1+B2)1/2; note that the product
αβ′ is unchanged. The last three panels of Figure 3 display the marginal posteriors in
the new normalization. Note that the local mode in the posterior of α̃2 has disappeared,
or at least is very small, after the transformation.

To explain this effect, note that B is a ratio of the two elements of β and that the tails
in the marginal posterior of B are therefore heavy. Heavy tails in p(B|D, r) correspond
to very small values for α, in the sense that a large β must be matched by a small α
to keep the product Π = αβ′ at a reasonable magnitude. When we transform to the
more natural orthonormal normalization we are multiplying α with (1 + B2)1/2, which
is large if B is drawn far out in the tails of p(B|D, r) and has the effect of spreading out
the extra mode at α = (0, 0)′ and thereby producing a more well-behaved surface.

It should be noted that the argument of Kleibergen and van Dijk (1994) breaks
down if the space of the free parameters in β is bounded. This exactly the case if the
normalization of β in (6.1) is used as θ is bounded. More generally, the Grassman
manifold is bounded.

Theorems 3.6 and 3.8 show that the prior on β̃, the orthonormal matrix of cointegra-
tion vectors, is uniformly distributed over the Grassman manifold independently of α̃.
This means that the prior on β̃ conditional on α̃ = 0 is still uniform over the Grassman
manifold. Thus, given the information that α̃ = 0, the prior in (3.1) represents the belief
that every possible cointegration space of dimension r has the same probability a priori.
This seems sensible.

7. Concluding remarks

This paper has introduced a practicable Bayesian analysis of cointegration based on
prior which is convenient both in elicitation and computation and could serve as a
standard for inference reporting. The posterior distribution of both the cointegration
rank and the model parameters conditional on the rank are obtained from the same
Gibbs sampler.

Interesting topics for future research within the proposed framework include the test-
ing of restrictions on the model parameters, extensions to more general structures on
the model disturbances and regime switching parameters.
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Appendix A. Proofs

A.1. Proof of Theorem 3.6. To obtain the marginal distribution of β, we first derive the marginal
distribution of B. The joint prior of B and Σ is

p(B, Σ) =

∫
p(α, B, Σ)dα = cr |Σ|−(p+r+q+1)/2

∫
etr[Σ−1(A + vαβ′βα′)]dα

= cr |Σ|−(p+r+q+1)/2 etr(Σ−1A)

∫
etr(Σ−1vαβ′βα′)dα.

By Theorem 16.2.2 in Harville

tr(Σ−1vαβ′βα′) = vec(α)′(β′β ⊗ vΣ−1) vec(α).

Thus, using properties of the normal distribution,

p(B, Σ) = cr |Σ|−(p+r+q+1)/2 etr(Σ−1A)

∫
exp

{
−1

2
vec(α)′[β′β ⊗ vΣ−1] vec(α)

}
d vec α

= cr |Σ|−(p+r+q+1)/2 etr(Σ−1A)(2π)pr/2
∣∣β′β ⊗ vΣ−1

∣∣−1/2

= cr(2π/v)pr/2 |Σ|−(p+q+1)/2 etr(Σ−1A)
∣∣Ir + B′B

∣∣−p/2
.

This shows that B and Σ are independent and marginally B ∼ t(p−r)×r(0, Ip−r, Ir, 1). Thus, using
Lemma 3.5, β is uniformly distributed over Gp,r.

A.2. Proof of Theorem 3.8. First we derive the distribution of α conditional on β and Σ

p(α|β, Σ) =
p(α, β, Σ)

p(β, Σ)
=

cr |Σ|−(p+r+q+1)/2 etr[Σ−1(A + vαβ′βα′)]

cr(2π/v)pr/2 |Σ|−(p+q+1)/2 etr(Σ−1A) |Ir + B′B|−p/2

= (2π)−pr/2
∣∣(β′β)−1 ⊗ v−1Σ

∣∣−1/2
exp

{
−1

2
(vec α)′(β′β ⊗ vΣ−1)(vec α)

}
.

Thus,

α|β, Σ ∼ Np×r[0, (β′β)−1, v−1Σ].

As α̃ = α(β′β)1/2 we have (see e.g. Bauwens et al 1999, p. 302)

α̃|β̃, Σ ∼ Np×r(0, Ir, v
−1Σ).

The density p(α̃|β̃, Σ) is not a function of β̃ and we may write α̃|Σ ∼ Np×r(0, Ir, v
−1Σ). The statement of

the theorem now follows from the usual independence property of the multivariate normal distribution.

A.3. Proof of Lemma 3.10. Let N1 denote that β is normalized on the r first variables and N2 that
β is normalized on variables 1, 2, ..., r − 1 and r + 1, i.e. the change in normalizing variables from N1

to N2 is accomplished by replacing the last variable of the normalizing set with the first variable in the
non-normalizing set. It will be evident that the lemma holds generally under any change in normalizing
variables. Let

B =


b1,1 b1,2 · · · b1,r

b2,1 b2,2 · · · b2,r

...
...

. . .
...

bp−r,1 bp−r,2 · · · bp−r,r

 ,

denote the matrix of free coefficients in β under N1. The transformation matrix in this case is

U =

(
J

b1,1, b1,2, ..., b1,r

)
, if r > 1 and U = b1,1 if r = 1,
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where J denotes the r − 1 first rows of Ir. To see that U actually produces the intended change in
normalization note that

β̄ =

(
Ir

B

)
U−1 =



J
−b1,1b

−1
1,r −b1,2b

−1
1,r · · · b−1

1,r

0 0 · · · 1
b2,1 − b2,rb1,1b

−1
1,r b2,2 − b2,rb1,2b

−1
1,r · · · b2,rb

−1
1,r

...
...

. . .
...

bp−r,1 − bp−r,rb1,1b
−1
1,r bp−r,2 − bp−r,2b1,2b

−1
1,r · · · bp−r,rb

−1
1,r


as can be verified by direct calculation. It is easy to see that |U | = b1,r and

U−1 =

(
J

−b1,1b
−1
1,r,−b1,2b

−1
1,r, ..., b

−1
1,r

)
, if r > 1 and U−1 = b−1

1,1 if r = 1,

The matrix of free coefficients under N2 is

(A.1) B̄ =


−b1,1b

−1
1,r −b1,2b

−1
1,r · · · b−1

1,r

b2,1 − b2,rb1,1b
−1
1,r b2,2 − b2,rb1,2b

−1
1,r · · · b2,rb

−1
1,r

...
...

. . .
...

bp−r,1 − bp−r,rb1,1b
−1
1,r bp−r,2 − bp−r,rb1,2b

−1
1,r · · · bp−r,rb

−1
1,r

 .

The change in normalization from N2 to N1 is thus given by the transformation ᾱ, B̄, Σ → α, B, Σ,
where ᾱ = αU ′. The Jacobian of this transformation is

(A.2) J(ᾱ, β̄, Σ → α, β, Σ) =

∣∣∣∣∣
d vec(ᾱ)
d vec(α)′

d vec(ᾱ)
d vec(B)′

d vec(B̄)
d vec(α)′

d vec(B̄)
d vec(B)′

∣∣∣∣∣ = |U |p
∣∣∣∣ d vec(B̄)

d vec(B)′

∣∣∣∣ ,

as Σ is unaffected by the transformation, d vec(B̄)
d vec(α)′ = 0 and d vec(ᾱ)

d vec(α)′ = U ⊗ Ip. From the definition of the
vec-operator,

∣∣∣∣ d vec(B̄)

d vec(B)′

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

db̄1
db1

db̄1
db2

· · · db̄1
dbr

db̄2
db1

db̄2
db2

· · · db̄2
dbr

...
...

. . .
...

db̄r
db1

db̄r
db2

· · · db̄r
dbr

∣∣∣∣∣∣∣∣∣∣
,

where bi and b̄i are the ith column of B and B̄, respectively. It is easily seen from (A.1) that db̄i
dbj

= 0

for i > j, and thus

(A.3)

∣∣∣∣ d vec(B̄)

d vec(B)′

∣∣∣∣ =

∣∣∣∣db̄1

db1

∣∣∣∣ ∣∣∣∣db̄2

db2

∣∣∣∣ · · · ∣∣∣∣db̄r

dbr

∣∣∣∣ ,

where

(A.4)
db̄i

dbi
=

(
−b−1

1,r 0
· Ip−r−1

)
, for i = 1, ..., r − 1, and

db̄r

dbr
=

db̄1

db1
b−1
1,r,

and the dot replaces an expression which is unnecessary to calculate. Thus, from (A.2), (A.3) and (A.4)

J(ᾱ, β̄, Σ → α, β, Σ) = |U |p
∣∣∣∣db̄1

db1

∣∣∣∣ ∣∣∣∣db̄2

db2

∣∣∣∣ · · · ∣∣∣∣db̄r

dbr

∣∣∣∣ = bp
1,r(b

−1
1,r)

r(b−1
1,r)

p−r = 1.

A.4. Proof of Lemma 4.1. The joint posterior of α, β, Γ, Σ is

p(α, β, Γ, Σ|D, r) ∝ p(D|α, β, Γ, Σ, r)p(α, β, Γ, Σ|r)
∝ |Σ|−(T+p+r+q+1)/2 etr[Σ−1(E′E + A + vαβ′βα′)],

where E = Y −Xβα′ − ZΓ. Using properties of the inverted Wishart density (Zellner, 1971),

p(α, β, Γ|D, r) ∝
∣∣E′E + A + vαβ′βα′∣∣−(T+q+r)/2

.

Let W = Y −Xβα′. We have

E′E = (W − ZΓ)′(W − ZΓ) = W ′MZW + (Γ− Γ̂)′Z′Z(Γ− Γ̂),
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where Γ̂ = (Z′Z)−1Z′W . Thus, by Lemma 4.2

p(α, β|D, r) ∝
∫ ∣∣∣W ′MZW + A + vαβ′βα′ + (Γ− Γ̂)′Z′Z(Γ− Γ̂)

∣∣∣−(T+q+r)/2

dΓ

∝
∣∣(Y −Xβα′)′MZ(Y −Xβα′) + A + vαβ′βα′∣∣−(T+q+r−d)/2

.

A.5. Proof of Theorem 4.3. The following proof follows closely the proof of Theorem 3.1 in Bauwens
and Lubrano (1996). From the proof of Lemma 4.1

(A.5) p(α, β, Γ|D) ∝
∣∣E′E + A + ∆′F∆

∣∣−(T+q+r)/2

where

∆
(r+d)×p

=

(
α′

Γ

)
, F =

(
vβ′β 0

0 0

)
E = Y −W∆ and W = (Xβ, Z). The equality

(A.6) E′E + A + ∆′F∆ = C + (∆− ∆̃)′(W ′W + F )(∆− ∆̃),

where ∆̃ = (W ′W + F )−1W ′Y and C = A + Y ′Y − Y ′W (W ′W + F )−1W ′Y , can be verified by direct
calculation. Inserting (A.6) in (A.5) and integrating out ∆ using Lemma 4.2 gives

p(β|D) ∝
∫ ∣∣∣C + (∆− ∆̃)′(W ′W + F )(∆− ∆̃)

∣∣∣−(T+q+r)/2

d∆

∝ |C|−(T+q−d)/2
∣∣W ′W + F

∣∣−p/2
.

Using the result ∣∣D4 −D3D
−1
1 D2

∣∣ = |D1|−1 |D4|
∣∣D1 −D2D

−1
4 D3

∣∣ ,

which holds for any conformable matrices D1, D2, D3 and D4, we can write

|C| =
∣∣A + Y ′Y − Y ′W (W ′W + F )−1W ′Y

∣∣ =
∣∣W ′W + F

∣∣−1 ∣∣A + Y ′Y
∣∣ ∣∣F + W ′QW

∣∣ ,

where Q = IT − Y (A + Y ′Y )−1Y ′. Thus,

(A.7) p(β|D) ∝
∣∣F + W ′QW

∣∣−(T+q−d)/2 ∣∣W ′W + F
∣∣(T+q−d−p)/2

,

where ∣∣W ′W + F
∣∣ =

∣∣∣∣ β′(X ′X + vIp)β β′X ′Z
Z′Xβ Z′Z

∣∣∣∣
=

∣∣Z′Z
∣∣ ∣∣β′ {vIp + X ′[IT − Z(Z′Z)−1Z′]X

}
β
∣∣ ,(A.8)

and ∣∣F + W ′QW
∣∣ =

∣∣∣∣ β′(X ′QX + vIp)β β′X ′QZ
Z′QXβ Z′QZ

∣∣∣∣
=

∣∣Z′QZ
∣∣ ∣∣β′ {vIp + X ′Q[IT − Z(Z′QZ)−1Z′Q]X

}
β
∣∣ .(A.9)

Inserting (A.8) and (A.9) in (A.7) proves the result.

A.6. Proof of Theorem 4.4. All full conditional posteriors are proportional to the likelihood function
multiplied with the prior in (3.1), i.e. proportional to

(A.10) |Σ|−(T+p+r+q+1)/2 etr[Σ−1(E′E + A + vαβ′βα′)],

where E = Y −Xβα′ − ZΓ.
It follows directly from (A.10) that the full conditional posterior of Σ is the IWp(E′E + A +

vαβ′βα′, T + q + r) density.
The full conditional posterior of Γ follows from the treatment of the multivariate regression in Zellner

(1971); see also Geweke (1996).
To obtain the full conditional posterior of B, let X = (X1, X2), where X1 contains the r first columns

of X and X2 contains the p−r remaining ones, and W = Y −X1α
′−ZΓ. The full conditional likelihood

of B is then
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p(D|α, β, Γ, Σ, r) ∝ etr[Σ−1(W −X2Bα′)′(W −X2Bα′)]

= etr[(WΣ−1/2 −X2Bα′Σ−1/2)′(WΣ−1/2 −X2Bα′Σ−1/2)]

= exp

{
−1

2

[
vec(WΣ−1/2)−H vec B

]′ [
vec(WΣ−1/2)−H vec B

]}
,

where H = (Σ−1/2α⊗X2). Thus,

(A.11) p(D|α, β, Γ, Σ, r) ∝ exp

{
−1

2
(vec B − vec B̂)′(α′Σ−1α⊗X ′

2X2)(vec B − vec B̂)

}
,

where

vec B̂ =
[
(α′Σ−1α)−1 ⊗ (X ′

2X2)
−1] (α′Σ−1/2 ⊗X ′

2) vec(WΣ−1/2)

= vec
[
(X ′

2X2)
−1X ′

2WΣ−1α(α′Σ−1α)−1] .

The prior in (3.1) can be rewritten as

p(α, B, Σ, Γ|r) ∝ etr(Σ−1vαα′) etr(Σ−1vαB′Bα′)

∝ exp

{
−1

2
(vec B)′(α′Σ−1α⊗ vIp−r)(vec B)

}
.(A.12)

By multiplying (A.11) by p(α, B, Σ, Γ|r) in (A.12) and completing the square in the exponential (see
Lemma 1 in Box and Tiao, 1973, p. 418), it is seen that

p(B|α, Γ, Σ,D, r) ∝ exp

{
−1

2
(vec B − vec µB)′Ω−1

B (vec B − vec µB)

}
,

where Ω−1
B = α′Σ−1α⊗ (X ′

2X2 + vIp−r) and

vec µB = ΩB(α′Σ−1α⊗X ′
2X2) vec B̂ = vec[(X ′

2X2 + vIp−r)
−1X ′

2WΣ−1α(α′Σ−1α)−1].

Thus, B|α, Γ, Σ, D ∼ N(p−r)×r[µB , (α′Σ−1α)−1, (X ′
2X2 + vIp−r)

−1].
To derive the full conditional posterior of α, let Q = Y − ZΓ. The full conditional likelihood of α is

p(D|α, β, Γ, Σ, r) ∝ etr[Σ−1(Q−Xβα′)′(Q−Xβα′)]

= etr[(QΣ−1/2 −Xβα′Σ−1/2)′(QΣ−1/2 −Xβα′Σ−1/2)]

∝ exp

{
−1

2

[
vec(α′)− vec(α̂′)

]′ (
Σ−1 ⊗ β′X ′Xβ

) [
vec(α′)− vec(α̂′)

]}
= exp

{
−1

2
(vec α− vec α̂)′

(
β′X ′Xβ ⊗ Σ−1) (vec α− vec α̂)

}
where

vec(α̂′) =
[
Σ⊗ (β′X ′Xβ)−1] (Σ−1/2 ⊗ β′X ′) vec(QΣ−1/2)

= vec
[
(β′X ′Xβ)−1β′X ′Q

]
.

Thus,

α̂ = Q′Xβ(β′X ′Xβ)−1.

By multiplying the conditional likelihood of α with

p(α, β, Σ, Γ|r) ∝ exp

{
−1

2
(vec α)′(β′β ⊗ vΣ−1)(vec α)

}
we obtain (see Lemma 1 in Box and Tiao, 1973, p. 418)

p(α|β, Σ, Γ,D, r) ∝ exp

{
−1

2
(vec α− vec µα)′ Ω−1

α (vec α− vec µα)

}
,

where Ω−1
α = β′(X ′X + vIp)β ⊗ Σ−1 and

vec µα = Ωα(β′X ′Xβ ⊗ Σ−1) vec α̂ = vec
(
Q′Xβ[β′(X ′X + vIp)β]−1) .



22 MATTIAS VILLANI

A.7. Proof of Theorem 4.5. From Lemma 4.1, we have

p(α|β,D, r) ∝
∣∣(Y −Xβα′)′MZ(Y −Xβα′) + A + vαβ′βα′∣∣−(T+q+r−d)/2

=
∣∣A + Y ′MZ(Y −Xβα̂′) + (α′ − α̂′)′(β′C1β)(α′ − α̂′)

∣∣−(T+q+r−d)/2
.

where α̂′ = (β′C1β)−1β′X ′MZY . Thus, α′ ∼ tr×p[α̂′, (β′C1β)−1, A+Y ′MZ(Y −Xβα̂′), T+q−(d+p)+1].
From Box and Tiao (1973, p. 442), α ∼ tp×r[α̂, A + Y ′MZ(Y −Xβα̂′), (β′C1β)−1, T + q − (d + p) + 1].

Since Π = αβ′, the posterior of β conditional on α can be written

p(β|α,D, r) ∝
∣∣(Y −XΠ′)′MZ(Y −XΠ′) + A + vΠΠ′∣∣−(T+q+r−d)/2

=
∣∣∣S + (Π− Π̂)C1(Π− Π̂)′

∣∣∣−(T+q+r−d)/2

,

where S = A + Y ′MZY − Π̂C1Π̂
′ and Π̂ = Y ′MZXC−1

1 . Thus,

p(β|α,D, r) ∝
∣∣∣C−1

1 + (αβ′ − Π̂)′S−1(αβ′ − Π̂)
∣∣∣−(T+q+r−d)/2

=
∣∣∣R + (β − β̂)(α′S−1α)(β − β̂)′

∣∣∣−(T+q+r−d)/2

∝
∣∣∣(α′S−1α)−1 + (β − β̂)′R−1(β − β̂)

∣∣∣−(T+q+r−d)/2

(A.13)

where β̂ = Π̂′S−1α(α′S−1α)−1 and R = C−1
1 + Π̂′S−1Π̂ − β̂(α′S−1α)β̂′. Let β̂ = (β̂′1, β̂

′
2)
′, where β̂1

contains the r first rows of β̂ and β̂2 the p− r remaining ones, and R is conformably decomposed as

R =

 G1
r×r

G2
r×(p−r)

G′
2

(p−r)×r

G3
(p−r)×(p−r)


By using the result (see e.g. Harville, 1997)

R−1 =

(
(G1 −G2G

−1
3 G′

2)
−1 −(G1 −G2G

−1
3 G′

2)
−1G2G

−1
3

−G−1
3 G′

2(G1 −G2G
−1
3 G′

2)
−1 (G3 −G′

2G
−1
1 G2)

−1

)
it is straight-forward to show that

(β − β̂)′R−1(β − β̂) = (Ir − β̂1)
′G−1

1 (Ir − β̂1) + (B − B̂)′(G3 −G′
2G

−1
1 G2)

−1(B − B̂),

where B̂ = β̂2 + G′
2G1(Ir − β̂1). From (A.13)

p(B|α,D, r) ∝
∣∣∣C3 + (B − B̂)′(G3 −G′

2G
−1
1 G2)

−1(B − B̂)
∣∣∣−(T+q+r−d)/2

,

where C3 = (Ir−β̂1)
′G−1

1 (Ir−β̂1)+(α′S−1α)−1. This is proportional to the matrix t density in Theorem
4.5.

A.8. Proof of Theorem 5.1. Using properties of the inverted Wishart density,

(A.14) p(α, B|r) =

∫
p(α, B, Σ|r)dΣ = cr2

p(q+r)/2πp(p−1)/4Γp(q + r)
∣∣A + vαβ′βα′∣∣−(q+r)/2

.

(A.15) p(D|α, B, r) =

∫∫
p(D|α, B, Γ, Σ, r)p(Γ, Σ|α, B, r)dΣdΓ,

where

p(Γ, Σ|α, B, r) =
p(α, B, Γ, Σ|r)

p(α, B|r) =
|Σ|−(p+r+q+1)/2 etr[Σ−1(A + vαβ′βα′)]

2p(q+r)/2πp(p−1)/4Γp(q + r) |A + vαβ′βα′|−(q+r)/2
.

Thus, from (A.15)

p(D|α, B, r) =

∫∫
(2π)−Tp/2 |Σ|−T/2 etr(Σ−1E′E)

|Σ|−(p+r+q+1)/2 etr[Σ−1(A + vαβ′βα′)]

2p(q+r)/2πp(p−1)/4Γp(q + r) |A + vαβ′βα′|−(q+r)/2
dΣdΓ

= k1

∫ ∣∣E′E + A + vαβ′βα′∣∣−(T+q+r)/2
dΓ,

where k1 = π−Tp/2 |A + vαβ′βα′|(q+r)/2
Γp(T + q + r)/Γp(q + r). Let W = Y −Xβα′. We have

E′E = (W − ZΓ)′(W − ZΓ) = W ′MZW + (Γ− Γ̂)′Z′Z(Γ− Γ̂),
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where Γ̂ = (Z′Z)−1Z′W . Thus, using Lemma 4.2

p(D|α, B, r) = k1

∫ ∣∣∣A + vαβ′βα′ + W ′MZW + (Γ− Γ̂)′Z′Z(Γ− Γ̂)
∣∣∣−(T+q+r)/2

dΓ

= k1π
pd/2 Γp(T + q + r − d)

Γp(T + q + r)

∣∣A + vαβ′βα′ + W ′MZW
∣∣−(T+q+r−d)/2 ∣∣Z′Z

∣∣−p/2
.

Multiplying p(D|α, B, r) with p(α, B|r) and simplifying gives

p(D|α, B, r)p(α, B|r) = k2
Γr(p)Γp(T + q + r − d)

Γr(r)π(2pr−r2)/2v−pr/2

∣∣A + vαβ′βα′ + W ′MZW
∣∣−(T+q+r−d)/2

,

where k2 =
|Z′Z|−p/2|A|q/2

πp(T−d)/2Γp(q)
also appears in the marginal likelihood of r = 0 and r = p (see the proof of

Theorem 5.2) and can therefore be discarded.

A.9. Proof of Theorem 5.2. If r = 0, Π = 0 and, using the prior in (5.4) on Γ and Σ, we have

p(D|r = 0) =

∫∫
p(D|Γ, Σ)p(Γ, Σ)dΣdΓ

= (2π)−Tp/2c0

∫ ∫
|Σ|−(T+p+q+1)/2 etr

{
Σ−1[A + (Y − ZΓ)′(Y − ZΓ)]

}
dΣdΓ

= π−Tp/2 |A|q/2 Γp(T + q)

Γp(q)

∫ ∣∣A + (Y − ZΓ)′(Y − ZΓ)
∣∣−(T+q)/2

dΓ

= π−Tp/2 |A|q/2 Γp(T + q)

Γp(q)

∫ ∣∣∣A + Y ′MZY + (Γ− Γ̂)′Z′Z(Γ− Γ̂)
∣∣∣−(T+q)/2

dΓ

= π−p(T−d)/2 |A|q/2 Γp(T + q − d)

Γp(q)

∣∣A + Y ′MZY
∣∣−(T+q−d)/2 ∣∣Z′Z

∣∣−p/2
,

where Γ̂ = (Z′Z)−1Z′Y .
If r = p, Π has full rank and, using the prior in (5.5), we have

p(D|r = p) =

∫∫∫
p(D|Π, Γ, Σ)p(Π, Γ, Σ)dΣdΓdΠ

= (2π)−Tp/2cp

∫∫∫
|Σ|−(T+2p+q+1)/2 exp

{
−1

2
tr Σ−1(W ′W + A + vΠΠ′)

}
dΣdΓdΠ

= k

∫∫ ∣∣W ′W + A + vΠΠ′∣∣−(T+p+q)/2
dΓdΠ

= k

∫∫ ∣∣∣A + vΠΠ′ + (Y −XΠ′)′MZ(Y −XΠ′) + (Γ− Γ̂)′Z′Z(Γ− Γ̂)
∣∣∣−(T+p+q)/2

dΓdΠ,

where W = Y −XΠ′−ZΓ, Γ̂ = (Z′Z)−1Z′(Y −XΠ′) and k = cpπ−Tp/22p(p+q)/2πp(p−1)/4Γp(T +p+ q).
Thus, using Lemma 4.2 twice,

p(D|r = p) = kπpd/2 Γp(T + p + q − d)

Γp(T + p + q)

∣∣Z′Z
∣∣−p/2

∫ ∣∣A + vΠΠ′ + (Y −XΠ′)′MZ(Y −XΠ′)
∣∣−(T+p+q−d)/2

dΠ

= kπpd/2 Γp(T + p + q − d)

Γp(T + p + q)

∣∣Z′Z
∣∣−p/2

∫ ∣∣∣S + (Π′ − Π̂′)′C1(Π
′ − Π̂′)

∣∣∣−(T+p+q−d)/2

dΠ

= kπpd/2πp2/2 Γp(T + q − d)

Γp(T + q + p)

∣∣Z′Z
∣∣−p/2 |S|−(T+q−d)/2 |C1|−p/2

= |A|q/2 vp2/2π−p(T−d)/2 Γp(T + q − d)

Γp(q)

∣∣Z′Z
∣∣−p/2 |S|−(T+q−d)/2 |C1|−p/2 ,

where Π̂ and S are defined in Theorem 4.5 and C1 in Theorem 4.3.

The multiplicative constant
|Z′Z|−p/2|A|q/2

πp(T−d)/2Γp(q)
which appears in both p(D|r = 0) and p(D|r = p) also

appears in the marginal likelihood of r = 1, ..., p − 1 (see the proof of Theorem 5.1) and can therefore
be discarded.
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