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Abstract

The purpose of this paper is to prove that all moments of the log like-
lihood ratio test for cointegration in a vector-autoregressive (VAR) model
of arbitrary order with fixed starting values asymptotically equal the corre-
sponding moments in a VAR model of order one, plus an error term of order
T-1, where T is the sample size. This generalizes the corresponding result
of Larsson (1998a) for unit root tests. We also discuss the implications of
our theorem to cointegration testing in panels.
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1. Introduction

Consider a p-variate stochastic process {X;} satisfying

m—1
AXt = HXt_l + Z PiAXt_i + Ety (11)

i=1
where {;} is a sequence of independent p-variately normal random variables with
expectation zero and covariance matrix 2. Furthermore, assume that we have
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observations X, ..., X7 and that the initial values Xy, X_1, ..., X_,,41 are fixed. If
the II matrix has reduced rank r < p, the process is said to be cointegrated. In
Johansen (1995), the log likelihood ratio test of the hypothesis H(r) : rank(II) < r
against H(p) : rank(II) < p is studied. Under certain assumptions on the system
(see assumption A of the next section), the asymptotic distribution of this test,
—21og Q%™ say, if rank(IT) = r equals the distribution of

ZEtr{/OldW(t (t) (/W t)dt) /W dW(t)}

where W (t) is a p — r dimensional Wiener process with initial value zero. This is
a non-standard distribution, but it may be simulated, approximating the Wiener
process by a random walk (cf e.g. Johansen (1995), chap. 15).

If, instead, we have observations from a panel, i.e. if we observe N parallell
series {X;:}, 7 =1, ..., N, where X fulfills

m—1
AXje =TLX;0 0+ > DjAXjei+€j,

i=1
the asymptotics may, assuming that all the €;; are independent, be greatly simpli-
fied. Following Larsson, Lyhagen and Lothgren (1998), the log likelihood ratio test
of the null hypothesis rank(Il;) < r for all j against the alternative rank(Il;) = p
for all j is simply }°; —2log Q;r , where —2log Q;r is the log likelihood test for
series j. Further, the average of these statistics, N~} > —2log Q7 = —2log Qr,
obeys the central limit theorem, i.e., as N — oo,

—2logQr — E(—2log Q1) W,
VN Var (—2log Q;7) — S NO), -2

where — denotes weak convergence and N(0,1) denotes the standard normal
distribution. Unfortunately, the finite sample moments, i.e. the moments of
—2log Qv = —2log QT , (emphasizing the dependency of the number of lags
m), are not so easy to obtain. However, replacing these by the moments of Z (the
asymptotic moments), we have normal convergence as N and T tend to infinity
in such a way that the error caused by the moment approximations tends to zero.
Indeed, if for n =1, 2

E{(-210gQ™)"} = E(2™) + O (T™) (1.3)
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for some k > 0, the condition on N and T is that v NT~* — 0 as N and T tend
to infinity. In a sense, the main result of the present paper, relating the VAR(m)
moments to the VAR(1) moments via

E{(-210gQ{")"} = E{(-210g@P)"} + 0 (T7), (1.4)

consists a first step to prove (1.3). At any rate, it provides us with an easy
way of approximating the finite sample moments of —2log Qg") in (1.2), because
to simulate the moments of the VAR(1) test statistic, we need not take the I;
parameters into account. We end this discussion by pointing out that, in the unit
root testing case (in a sense the univariate special case of cointegration testing),
(1.4) was proved in Larsson (1998a), while for n = m = 1, a proof of (1.3), together
with a numerical evaluation of E(Z) and the first order error term, which is O, (1)
in this case, is found in Larsson (1998b).

In section 2, we present the precise mathematical formulation of our theorem,
while the proof of it, in principle following the lines of Larsson (1998a), is contained
in section 3. Finally, some concluding remarks are given in section 4.

2. The theorem

Equation (1.1) may also be written in the form

A(L) X; = &, A(L)E(l—L)Ip—HL—EFi(l—L)Li,

=1

where L is the lag operator and I, is the p-dimensional identity matrix. Now,
assume for a moment that II has reduced rank r < p, or equivalently, that there
are p X r matrices a and 3 of full rank satisfying I = af. Then, we may
define p x (p — r) matrices c;, B, such that (e, o) has full rank, o'e; = 0 and
similarly for 3, . Moreover, introduce I' = I, — ¥"7;' T;. This notation is needed
to formulate the technical assumption(s)

Assumption A: |A(z)] = 0 implies z = 1 or |z| > 1. Moreover, the matrix
o, '8, has full rank.

Under assumption A, the Granger representation theorem (Johansen (1995),
theorem 4.2) states that there is a choice of initial distribution such that the
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linear combinations ' X; are stationary. These linear combinations are called the
cointegrating relations, and r is called the cointegrating rank. Johansen (1995)
shows that a consistent way of estimating this rank is to apply a sequential testing
procedure based on tests of H(r) : rank(II) < r against H(p) : rank(Il) < p.
Furthermore, he shows that the likelihood ratio test of H(r) against H(p), Q%™
say (to stress the dependency of the sample size T and of the order of the VAR
process, m), satisfies

p ~
—2log QYY) = T Y log (1 - )\i) : (2.1)

i=r+1

where Xl > XQ > . > Xp are the ordered solutions of the eigenvalue problem

|S ()\)| = 0, S ()\) = )\811 - 5103&1501, (22)

with .
S'ij = M‘ij - Mi2M2_21M2_'i7 Mij = T_l ZZitZ;'t, (23)

t=1

letting Zo; = AX;, Zys = X;—1 and Zo; = (AX;_1, ..., AXt—my1)'. The goal of the
present article is to prove

Theorem 2.1. Assume that II = af and that assumption A holds. Then, for
all positive integers n,

E{(-2108Q%)"} = E{(-210gQ")"} + 0 (T7).

3. The proof

In the following, we will generalize the corresponding proof for the univariate case,
given in Larsson (1998a). The main idea is at first, assuming that! \; = O, (T"!)
for all ¢ > r + 1 (which is proved in the lemma below), to Taylor expand in (2.1)
so that

—21og QYW =T zp: Ji+0, (W)} =T f: Ni+0, (T, (3.1)

i=r+1 i=r+1

1Following Mann and Wald (1943), the notation Y7 = O, (T) means that for each § > 0,
there is a constant As > 0 such that P (|Yr| < AsT*) >1—6 for all T
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then to write 3-0_ ., 5\1 as a trace of a certain product of matrices, and finally to
investigate the order of the terms composing this matrix product in detail. To
isolate all A\; with ¢ > r + 1, we at first need

Lemma 3.1. IfII = of and assumption A holds, then for T sufficiently large
the p — r smallest solutions A,41, ..., Ap to (2.2) equal the solutions to |S* (A)| = 0,
where

§ (N =BV BL-BSNB{BSN B BSM AL
Furthermore, X = Op (T7Y) forr+1<i<p.
Proof. From (2.2), we have

(5 )s(s o)

with S* (\) as above. But from lemma 10.3 of Johansen (1995), S, 3 S1168 and
(' S10 have well-defined limits (in probability), oo, Y and ¥gy = ZBB, say.
Hence,

0= = |8'sMB|Is* )

BSMB| % |XTs — TpoTg0 og|

showing that the r solutions of |ﬁ'S()\)ﬂl =0 are Oy(1) as T — oo.
Furthermore, as in the proof of lemma 10.3 in Johansen (1995), it follows that
B1S11B. is O, (T), while 3| Sio and 8| S118 are O, (1). Consequently,

BLS (N) BL = A8 SuBL — B151055 So1BL = A0, (T) + O, (1), (3.2)
and similarly, 3] S () 8 = O, (1), showing that
S (A) =20, (T) + 0, (1),

A

and so, the solutions Ayi1, ..., Ap to [S* ()] = 0 have to be O, (T"!). ®
Thanks to lemma 3.1, we may now approximate the test statistic by the trace
of a matrix product, as in the following lemma.

Lemma 3.2. IfII = o3 and assumption A holds, we have

—2log QY™ = Ttr {(,BlSnﬂl)_l ﬂlSmNSmﬂl} +Op (T_l) )

where

’ -1
N = S5 — S5 So1B (B S10S30' SB) B S105%5-



Proof. Since \; = O, (T™!) for i > 7 4+ 1, we may write A = T1p, and as in the
previous proof, we find

BLS (V) B =T pB.Sup — 8151055 SnB = —B1S105% S B+ Op (T7)
and
BS(\)B=T"p8 1B — B S105x S1B = —B S10550 S B+ Op (T ).

In conjunction with (3.2), these facts imply

S*(X) =T7'pBLS1B1L — BLS10N S+ O, (T7)

with N as defined above. Hence, application of (3.1) yields the result of lemma. B
Going on in the fashion of Larsson (1998a), we now need some moving average
representations.

Lemma 3.3. (a): If I = af and assumption A holds, then, defining X, =
(Z;, Ut') with Z, = # X, and U, = 8, AX,, we have

Xt = Ct (L) €t + ag, (33)

where

a; = Z Ci—s€s, es = f‘sXO + ...+ 1:m——-1*X’s---'rnr~l-1’ Ct ZCZLZ
— =0

for some matrices I~‘s, ...,f‘m~1, where L is the lag operator, cp = I, and c, is
defined recursively through

(m—1)An _
Cn = Z cn—ily, n=12 ..
i=0
Moreover, we have the representation

C(L)=C(1)+1-L)c? (), cP ()= zc“)y

=0



where -
MN=- 3¢, i=01,.,t—1.
j=i+1

Furthermore, for some 6 > 0, the sums

Coo (L) = tliglo Ct (L) = ;Ci[/i,
M b D 7y N Wi
Coo (L) - tll)rgct (L)_gcz L’
are absolutely convergent for |L| < 1+ 6, and® ||ci|| and ||c{!
exponentially fast as i — oo.
(b): If 11 = o’ and assumption A holds, we also have

| tend to zero

AXt = Dt (L) Et + a:,

where a; has a similar representation as a;, and where

26-2
Dt (L) = Z d,;Lz,
i=0
with do = I, and where the D, (L) polynomial fulfills the corresponding expansion
and convergence properties as C; (L) of part (a).

Proof. Johansen (1995) in his proof of the Granger representation theorem
derives the representation

A(L)E= (_gr )Et,
L

and shows it to be invertible. Hence, as in the proof of Theorem 2.1 of Johansen
(1995), we may write

X, =C, (L) e + an, C’t(L)—EC’t(L)(g, >
1

2We define the norm ||A|| of a matrix A through ||A| = ¢r (AA').
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and the properties of C; (L) and a; as stated in part (a) of our lemma follow as
in Johansen (1995), theorems 2.1 and 2.2.
As for (b), rewrite (1.1) as

B(L)AX;=af X;-1+e =€}, BL)=I,- S L[

But because of the Granger representation theorem, the process € is stationary
(under a suitable choice of initial distribution), hence the equation |B (z)| = 0
can only have roots z with |z| > 1. Hence, we may as in part (a) write

AX, = D! (L)ef +a”, Di(L)= Zd*L’

=0

where agl) may be expressed in terms of the d} sequence in the same way as a;

was expressed in terms of the ¢;’s of part (a). Moreover, because of part (a), it
follows that

t—2
D} (L)e; = D; (L)ec+ D; (L) (& 0 )(Zc,et i+ a? ) Zdet_J-i-ag),

=0 j=0

where
-l t—1
d=di+Yd(a 0)ey, i=1..,2-2 o¥=Yd(a 0)a?_,
7=0 i=0

As a consequence of these representations, the d; and a} = agl) + a,(3) sequences

fulfill the corresponding expansion and convergence properties as the ¢; and a;
sequences of part (a), completing the proof of (b). ®

For later use, we need to specify some first order asymptotic results, similar to
those of Johansen (1995). To this end, we define the random walk S; = >%_, &;.
Also, from now on, Y, will denote summation over {1 < ¢ < T}, and all &; with
a t not belonging to this interval will be interpreted as zero.

Lemma 3.4. Under assumption A and ifII = a8, we have for fixed and arbitrary
k that

(3.4)

S erkey
:

0,(T) ifk=0,
Oy (Tl/ 2) otherwise,
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> Sik-18; = Op(T), (3.5)

>SS, = 0,(T%). (3.6)

Proof. Because of the law of large numbers, 7! ¥, £:€, converges in probability
to (2, showing that ¥, e;¢; is O, (T). Further, for k nonzero, the fact that 3", &;_z¢,
is O, (Tl/ 2) follows from the univariate central limit theorem and the central limit

theorem for m-dependent sequences (cf Chung (1974)).
Regarding (3.5), we have from the limit theory of e.g. Johansen (1995) that
as T — oo,

1w 1 ’
T7'Y 846, B /0 W,dW,, (3.7)
t

where = denotes weak convergence and W, is a standard Wiener process, proving
(3.5) in the special case k = 0. In general, we may write

k

Z St—k—ls; = Z St—lf:; - Z Z 5t—i—15;,
t t t

=1

which, from (3.4) and (3.7), is O, (T'), proving (3.5).
Finally, by Johansen (1995) again,

’ w 1 ’
T23°8,,8,_, % /O W, W, dt,
t

as T — oo, showing (3.6). &
Now, we go on in the style of Larsson (1998a) to prove

Lemma 3.5. Under assumption A and if 1 = af,

S C1(1)Simie, = Cr(1)Y. Siag, + 0, (1), (3.8)

t i
> C1 (1) S3-18,,Cea (1) = Cr(1) Y S-181Cr (1) + 0, (1), (3.9)

t t

T-2
ﬁ, ZXt_ls; = ( I—,- 0 ) Z C; Z 5t—1—i5; + Op (1) ,(310)
t =0 t
, 2(T—k—1) ,
S AXe ke, = Y, diy ek-ig;+0p(1), (3.11)
t =0 t



for k arbitrary. Furthermore, § ¥, X;_1€, and ¥, AX,_ e, , k > 0, are both
O, (TI/Q), while the quantities 3| Mya, 8 Mya, Myy and My, are all O, (1).

Proof. Looking at first at (3.8), we find

T-2 T
th—l (1) St_16t = Z C; Z St—let = CT—I (1) ZSt_let -7, (312)
t t

=0 t=it2
where
T-2 i+l . T-1T-2 )
Q= Z CiZSt—IEt = Z z c,-St_lst.
=0 t=1 t=1 i=t—1
Thus, because® ||c;|| ~ * for some v with |y| < 1,
T-1 T-2 L Tl ,
Il <32 3 el ||Secaet| = 3o 0 () [|Seaet] = 05 (1) (3.13)
t=1 i=t—1 t=1

Further, because of the exponential decay of the ¢; coefficients, replacing Cr_; (1)
by Cr(1) in (3.12) will only cause an exponentially small error, and so, (3.8)
follows.

The proof of (3.9) follows similar lines, and is omitted.

Regarding 8’ ¥, Xtﬁls;, lemma 3.3 yields

,3, ZXt_lf;‘; = ( I. 0 ) {Z Ci—1 (L) et_le; + 7’2} , To = Zat_le;.
t t t
Here,
! T_2 ’
Z Ct_1 (L) Et—1&; = Z C; Zet_,-_lst, (314)
t =0 t

and because by lemma 3.4, >, st_,-_lslt is Op (Tl/ 2), and we may argue as in

(3.13) above to conclude that the r.h.s. of (3.14) has to be (at most) O, (Tl/ 2).
Further, because 7, is a linear combination of normal r.v’s with expectation zero
and covariance matrix a_ (Q ® I) a_, where a_ = (aq, ..., ar—1), T2 is O, (1), and

(3.10) and the fact that 8 3, X;_1¢; is O, (Tl/ 2) follow.

3The notation a,, ~ b, means that as n — oo, a, /b, — 1.
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By arguing in a similar fashion, we may show that for k arbitrary, (3.11) holds
and that for & > 0, 3, AX, e, is O, (T1/2).
To treat ﬂlMlg, we observe that

TA M =B, > Xoa ( DXy o AX{ 1 )
t

In the following, we will focus on the first component of the r.h.s. of this expres-
sion, and it will become clear that the others may be treated in a similar way. To
this end, we have by lemma 3.3 that, with b, = 3°%_, as,

’

B XX, = (0 L )3 {Ca (L) Sca + b3 { Doy (D) 1 + 0}y }
t t

= ( 0 Ip—-r ) th—l (L) St_ls;_lDt—l (L)I + 73,
t

where 73, not written out explicitly here, is O, (1) in the usual fashion. Moreover,
it follows that

’ ’ =32 2(T_2) ’ ’
Z Ct—l (L) St_1€t_1Dt_1 (L) = Z Z C; Z St_,-_lst_j_ldj, (315)
t =0 j=0 t

and because of lemma 3.4, Y, St_,-_ls;ﬁ_l is O, (T'), and it is a simple matter to
generalize the argument of (3.13) to prove that (3.15) is O, (T') . This completes
the proof of the fact that 8] ¥, X, 1AX,_, is O, (T'), which was what we wanted
to show to realize that 3| M;, has to be O, (1).

To see that 8 Mya, My and My, are all O, (1) is very similar, and the proofs
of these facts are omitted here. B

The following lemma writes the main term of lemma 3.2 in a more tractable
form for further analysis.

Lemma 3.6. Under assumption A and if I = o8,

—210g Q™ = Ttr {(ﬁ;snm)‘l By SwaL (o Soas)” a’lSmﬁl}—i—R—i—Op (),

(3.16)
where

R = —2Ttr{(ﬁlSllﬂL)_lﬁlSmRoSmﬁl}, (3.17)
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-1

Ry = {a —a) (a'J_SooaJ_) alSooa} (ala)_l SgﬁlR;
Xo ) (ail_Sooa_L)_l ai,_, (318)

with Sﬂﬁ = ,8,‘5'115 and

T-2
_ 7 7 I,,. — ’ —_ —
Ry =SuB-aSss=T13. Y e, i c; ( 0 )—T 'Y Mz M = O, (T7/?),

=0 t

(3.19)
where
Y'=XeaZy=Yea(AX,y . AX{ ).
t t
Proof. Using the representation (cf (1.1))
Zot = aff Zyy + U Zy; + &4, (3.20)

where as before, Zo; = AXy, Z1s = Xi—1, Zot = (AXi_1, ..., AX;_m41)’ and where
U = (I'y,...,T'm_1), we find from (2.3) that

Su—af Su = My —of My— (M02M2_21M21 - aﬂ'M12M2_21M21)
= T7'Y (%0 — B Zu) Z1, — T Y (Zo — B Zi) Zoy My My
t t
= T > (e + ¥ Zy) (Zit - Z;tM2_21M21)
t
= TN &2, — Ty 125 M3y My, (3.21)
t t
in conjunction with (3.10) of lemma 3.5 proving the second equality of (3.19).
Also, the third equality of (3.19) follows from lemma 3.5.

Now, inserting the identity Sp18 = aSgs + R, into the expression for N of
lemma 3.2, we find

N = 85" — S (Spp + B1) A™* (Sppe’ + R}) S, (3.22)
where A = Ay + Ry with
Ay = Sﬂﬁa'S&}aS[m,
Ry = Spsa Sy Ry + R SytaSps + R, Sqg Ry (3.23)
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But, knowing that R, is O, (T"l/ 2) and that, by Johansen (1995), lemma 10.3,

Spg and Spo are O (1) , we see that Ag is Op (1) and that R, is O, (T‘1/2). Hence,
we have

AT = A - AT R AT + 0, (T,
and simplification of (3.22) leads us to

N=N0+R3+OP(T"1),

where
No = Syt —Sater (o Syp'a) ™ e, (3.24)
Ry = —Sypla(d See)” SzR,Sw' — e RaSzh (o' Sag'ar) o Sigt
+Sqitex (a'S&)la)—l S3aR2S53 (a'S'&,la)_l o' S5t (3.25)

Next, observing that
No(a SO()OAL)=(O Qg ),

we may, because ( a Seooi ) and ( o oy ) both have full rank, rewrite (3.24)
as

’ -1 ’
No = ( 0 ay ) {< Z' ) ( a SpoL )} ( Z'J_ ) =0y (alsooal)—lal,

L

the last equality following from the well-known partitioned inverse formula. This
yields the main term of (3.16), and for (3.17), (3.23) and (3.25) imply

Ry=R+R +0,(T7),
where
—R = S3ja (a'.S'O_Oloz) - S’[}[}R; (So_ol — Spp'x (a'So_Ola)_l alSo_Ol) .
But as above, it follows that
-1,

-1
-1 —1 "a—-1 'a—-1 !
SOO - SOO (8 (a SOO a) (6] SOO =0 (a_LSO()aJ_) a_L

13



and
Sootcx (o/So"Ola)—1 = {a —a (a'lSooaJ_)_l alJ_Sooa} (a'a)—l )

As a simple consequence of this and of the cyclicity of the tr operator, (3.17) and
(3.18) are deduced. B

Our next lemma relates the quantities building up the expression of lemma
3.6 to the corresponding quantities in the m = 1 case.

Lemma 3.7. Under assumption A and if I = of8,

TSwar = Y &g+ Riay +0,(1), (3.26)
t
T Sy = (0 L, )Cr(1) Siager + Ryjay + 0, (1), (3.27)
t
’ ’ ’ 0
TF SuBL = (0 L )Cr(1)Y Si1S,Cr (1) ( I )
t p—r
+0,(T), (3.28)
where
T-
R; = Z d ZEt ,E,'t M02M2_21Y = Op (Tl/z) y (329)

=1

T—2
Ry = ( 0 I, ) 01(1) Xt:st_is; — BlMlez_QlY =0, (T1/2) . (3.30)

=1

Proof. We will start by proving (3.28). To this end, recall that from (2.3),

B81181 = B MnBy — B MiaMy My B, . (3.31)

Now, from lemma 3.5 it is seen that the second term of the r.h.s. of (3.31) is
O, (1), and we are left to consider 3| My, 3,. For this, we have by lemma 3.3

TR MiuBL =8> Xi-1X, 181
t

= (0 Ip—r){zct 1 (L) S1-18;_1Ce1 (L)' +r4} ( I

14



with
EZZCzSt —im1b;_ 1+Zzbt 181_i_1C; +th 161,
t i=0

which by arguing in the usual manner may be seen to be O, (1). Now, using
lemma 3.3, we have

C,(L)=C,(1)+(1-L)cM (L), cP(L Zc(”y

=0
so the main term of (3.32) satisfies
3" Cio1 (L) S-18,_1Ce-1 ( th 1(1) $4218,1Ceor (1) +75,  (3.33)
t
where
t—21-2 1 , , 1—2t-2 , 1y
PPIPILLWANNTED P) PP DLTMRCA: L
t i=0j=0 t i=0j=0
=262
+ Z ZC st"lst-—] g Y : (334)
t i=0 j=

But the main term of the r.h.s. of (3.33) is handled in lemma 3.5, and we are left
to show that 75 is O, (T"). Now, looking at the first term on the r.h.s. of (3.34),

22 p T-27-2
;ZOX%C €t—iSy_j_1C; —ZOZC (Zst, AP 1)0
1=0 j= =0 J=

where by lemma 3.4, the stochastic sum of the r.h.s. is (at most) O, (T"), making
the whole expression O, (T') by the usual arguments. It is clear that the remaining
terms of (3.34) may be handled in a similar way. Hence, via (3.31)-(3.33), (3.28)
follows.

To prove (3.26), observe that

Soo0ry = (Soo - 50150/) o, (3.35)

and moreover, it follows as in (3.21) that via (3.20),

T (Soo - 501,304') =" Zue, — MoaM' Y Zose,. (3.36)
: t

15



Now, by lemma 3.3,
3 Zoue, =Y AXie, = Di(L)ewe, + Y ajey, (3.37)
t t t t

where in the usual fashion, ¥, ate; = O, (1) while

T-1
YD (D)eer =Y e, + D di > eriey, (3.38)
: t -t

where by lemma 3.4, the first term of the r.h.s. is O, (T') and the second term is
Oy (Tl/ 2). Moreover, observe that via lemma 3.5, the second term of the r.h.s. of

(3.36) is Op (T"/2). Hence, (3.35)-(3.38) yield (3.26).
Finally, as for (3.27) it follows in the same fashion as above that
BLS1waL =B (S — Suba’) al, (3.39)

where

TA, (S0 — Sufe’) =Y B Xi1e, — BL M1 Mz' Y Zne,, (3.40)
t t

the second term of the r.h.s. being O, (Tl/ 2) by lemma 3.5. As for the first term,
lemma 3.3 gives

Z:B:LXt—ls:‘, = ( 0 Ip_r ) {Z Ct—l (L) St._lé‘; + th_ls;} , (341)
t t t

where as usual, 3", b;_1¢, is O, (1) and where

T-2
Z Ct—l (L) St—ls; = Z Ct—l (1) St_16; + Z C,El) ZSt_iE;. (342)
t i =1 t

Here, the first term is handled in lemma 3.5, and the second term is O, (Tl/ 2) by
lemma 3.4. Thus, (3.39)-(3.42) yield (3.27). ®

Observe that, when inserting the main terms of this lemma into the result of
lemma 3.6, we are left with the main term of the corresponding expression for
—2log ng ), (In the m = 1 case, there are no O, (T‘l/ 2) rest terms.) Hence, our
theorem is proved if we can show that the O, (Tl/ 2) terms of lemma 3.6 give rise
only to a O (T"!) term when calculating moments. For this, we need
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Lemma 3.8. The correlations between the elements of 21?":—02 Ci Y et_k_is; for
k > 0 and the elements of ¥, S;_1¢, and ¥, S;_1S,_, respectively, are all of order

T2 as T — oo. Replacing c; by c,(-l) or d;, the same statement holds true.

Proof. Denote the elements of €, the covariance matrix of the ¢;’s, by w;;, and

the elements of the vectors &; and S; by 6§i)and St(i) 1 = 1,...,p, respectively.
Then, the covariance between the (m,n)’th element of 3, S;_€; and the (r, s)’th
element of Y, st_k_ie; is, the latter having expectation zero,

y (ZSt"_”Bé”’Zsi’_’k_ieis)) = LXEB (SNl el)
t u t u
= E(SMeD N E (Ml
HECERIEED
= TwmrWns. (343)

Now, denoting the elements of c; by cz(r’q), the (r, s)’th element of 72 ¢; ¥, €¢_k_i€;

is p T—2
a(™®) = Z Z cgr,q) Z E@k—isy’

g=1 i=0 t

and by (3.43),

p T-2
B (S S0e7de) =T33 P,
t

g=1 i=0
which, because of the exponential decay of the ¢;’s, is O(T'). Hence, because
the variances of 3, S™e{™ and a™® are O (T2) and O (T), respectively, the
correlation is O (T‘l/ 2).

The corresponding statement with 3, S;_1S;_, in place of 3, S;_;¢; follows in
a similar manner. Further, since the {cgl)} and {d;} sequences decay exponentially
in the same way as the {c;} sequence does, we may replace {c;} by either {cz(-l)}

or {d;} without altering the result. B
At last, we are able to prove theorem 1.1.

Proof of theorem 1.1: Inserting the results of lemma 3.7 into the main term
of (3.16) and Taylor expanding, we obtain

—2log Q" =U+V +0, (T7), (3.44)
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where U = —2log Q% = 0, (1) and where V is O, ( -1/ 2) composed by deter-

ministic terms, Y, S;_1€; , 3 S;-15;_, and terms of the type Y72 ¢; ¥, €1_x_ic;,
k > 0. No other stochastic terms enter, because we may replace the quantities
Sep, Mo, B Mys and My, appearing in the rest terms R, R} and R} (cf (3.17),
(3.29) and (3.30), respectively) by their (deterministic) limits in probability, mak-
ing errors of order 7~%/2 which contribute to the overall error term to the order
T~!. Indeed, we e.g. have

Sop =B (Mn - M12M2_21M21) B,

where by lemma 3.3,

BMuB = T7BY XX, .8
t

= T7( L 0)3 Cer (D) eeiConn (L) ( é ) +0, (T7),

with, in the usual fashion,

-2 t—2
T“l Z Ot—l (L) EtE;Ot_l (L) = T_l Z Z Z c,-st_,f;_jc'j
t t i=0 ;=0
T—
136N e, i + Op (T_1/2)
t

=0

Il
N

T-2

= Z e, + Op (T“l/z) ,

=0

where Y72 c;Qc; is O, (1). It is clear that 8 M;2 and Mj, may be treated simi-
larly, proving that Sﬂﬂ is Op (1) and has a deterministic limit. Further, the factor
B, S1o (which is not treated in lemma 3.7) entering equation (3.17) causes no
trouble, since by arguing as in (3.15), this factor is seen to be O, (1), with a dom-
inating term composed by terms of the type T-'Y, S;_1€;. A similar statement
is true regarding the factor 3| My, appearing in (3.30).

Now, a simple binomial expansion in (3.44) yields

E{(-210gQ")"} = EU™) +nE (U™'V) + 0, (T7),
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where

E(U™V) = Corr (U™ V) {Var (™) Var (V)}"*
Corr (U,V)O (T"1/2) :

But because of lemma 3.8, we must have Corr (U,V) = O (T‘l/ 2) since applying
any almost surely smooth function to two random variables which are correlated
to a certain asymptotic order does not change this order. This completes the
proof of our theorem. B

4. Concluding remarks

The main result of this paper may be generalized in many interesting directions.
For example, for a practitioner it is often necessary to include constants, linear
terms etc. in the model, a practice which actually affects the limit distribution of
the likelihood ratio test for cointegration (cf Johansen (1995), chap. 6), but maybe
not the order of the type of asymptotic error term studied in this paper. Also,
it would of course be of interest to explicitly study how the nuisance parameter
matrices I'y,...,['\,—; affect the O, (T'~!) error term of our theorem. As for unit
root testing in an AR(2) process, this task was brought up in section 3 of Larsson
(1998a). More interesting however (for example in the context of panel data),
would be to relate the moments of the VAR(1) likelihood ratio cointegration test
to the asymptotic distribution, i.e. to prove (1.3), and to see to what extent «
and 3 affect the so produced error term. In the univariate case, related problems
are studied in e.g. Larsson (1997), Larsson (1998b) and Nielsen (1997).

5. References

Chung, K. L. (1974). A Course in Probability Theory, Academic Press, Orlando.

Johansen, S. (1995). Likelihood-based Inference in Cointegrated Vector Autore-
gressive Models, Oxford University Press, Oxford.

Larsson, R. (1997). On the asymptotic expectations of some unit root tests in
a first order autoregressive process in the presence of trend, Annals of the
Institute of Statistical Mathematics, 49, 585-599.

19



Larsson, R. (1998a). The order of the error term for moments of the log likelihood
ratio unit root test in an autoregressive process, Annals of the Institute of
Statistical Mathematics, 50, 29-48.

Larsson, R. (1998b). Bartlett corrections for unit root test statistics, Journal of
Time Series Analysis, 19, 425-438.

Larsson, R., Lyhagen, J. and Léthgren, M. (1998). Likelihood-Based Cointe-
gration Tests in Heterogeneous Panels, Working Paper in Economics and
Finance No. 250, Stockholm School of Economics.

Mann, H.B. and Wald, A. (1943). On stochastic limit and order relationships,
Annals of Mathematical Statistics, 14, 217-226.

Nielsen, B. (1997). Bartlett correction of the unit root test in autoregressive
models, Biometrika, 84, 500-504.

20



