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Abstract

Maximum likelihood estimation of Markov graph parameters is considered.
An iterative technique using an expansion of the expected values of sufficient
statistics in a Markov graph in terms of cumulants is introduced. Efficient
starting values for parameter estimates are shown to be obtainable from the
cumulants of graph statistics in uniform random graphs. A Markov chain
Monte Carlo method is used to generate samples of Markov graphs with
fixed parameter values at successive iteration steps. Complete enumeration
is used in a small graph to show that the iterative estimation technique per-
forms satisfactorily compared to the exact maximum likelihood estimates.
Properties of the maximum likelihood estimators and pseudolikelihood es-
timators, suggested earlier in the statistical literature, are investigated in
small and large graphs. Our results for an undirected graph with a uni-
variate sufficient statistic suggest that in graphs with up to approximately
40 vertices the maximum likelihood estimator is uniformly better over such
parts of the parameter space where the model behavior is not degenerate.
In larger graphs with 40-100 nodes, the two estimators seem to be nearly
equivalent. However, the pseudolikelihood estimators are shown to vary
with different graphs with the same value of the sufficient statistic.

Key words: Cumulants, Markov Chain Monte Carlo, Markov Graph,
Maximum Likelihood Estimation, Pseudolikelihood Estimation.

1. Introduction

In studies of social networks elaborate models allowing dependence between dyads
have gained popularity during the recent years. An important class of such models,



called Markov graphs, was introduced by Frank and Strauss (1986). However,
maximum likelihood estimation of Markov graph parameters has been considered
computationally too burdensome for routine data analysis. The only likelihood
based method suggested in the literature is restricted to Markov graphs with a
univariate sufficient statistic, see Frank and Strauss (1986), and Strauss (1986).

To enable estimation of Markov graph parameters in general, an approxima-
tive method based on pseudolikelihood has been developed by Frank and Strauss
(1986). Applications are also given in Strauss and Ikeda (1990), Frank (1991),
Frank and Nowicki (1993), and Wasserman and Pattison (1996). With this
method parameter estimates are obtainable via logistic regression models, for
which estimation procedures are available in standard statistical packages. No
large-scale simulation studies of the performance of pseudolikelihood estimators
seem to have been considered in the statistical literature. However, some lim-
ited comparisons are given in Frank and Strauss (1986) and in Strauss and Ikeda
(1990) for Markov graphs with a univariate sufficient statistic. These results
suggest that the pseudolikelihood estimators are satisfactory substitutes for the
maximum likelihood estimators.

In the present paper, which is a revised and extended version of Dahmstrém
and Dahmstrom (1993), we develop an iterative technique for maximum likelihood
estimation of Markov graph parameters. Our method is based on an expansion
of the expected values of the sufficient statistics in a Markov graph in terms of
cumulants. For general Markov graphs, we use a linear approximation to the cu-
mulant generating function of the sufficient statistics. Efficient starting values for
the parameter estimates are shown to be obtainable from low-order cumulants of
the graph statistics in uniform graphs, and algebraic expressions for such cumu-
lants are given for some special cases. A Markov chain Monte Carlo technique
is used to obtain samples of Markov graphs at successive iteration steps, and a
highly efficient algorithm for generating such samples is described.

To investigate the performance of the iterative estimation we use complete
enumeration to obtain the exact maximum likelihood estimates in a small graph,
and for comparison, the pseudolikelihood estimates are also given. Complete
enumeration and simulation are used to investigate the statistical properties of the
maximum likelihood and pseudolikelihood estimators in small and large graphs,
respectively. The variability of pseudolikelihood estimators with different graphs
with the same value of the sufficient statistic is illustrated, and some problems
associated with the interpretation of model parameters are discussed.

Necessary graph terminology and the definition of a Markov graph are reviewed



in the next section. In Section 3 an estimation technique for Markov graphs with
a univariate sufficient statistic is considered, and Section 4 gives a generalization
to graphs with multivariate sufficient statistics. Comparison of the exact, itera-
tive and pseudolikelihood estimates using complete enumeration is presented for
some models in the section thereafter. Specific properties of the pseudolikelihood
estimation are discussed in Section 6, and performance of the maximum likelihood
and pseudolikelihood estimators is considered in Section 7. Some final remarks
are given in Section 8.

2. Preliminaries

Let N denote a finite set of n elements. The set of all ordered pairs of distinct

elements from N is N®, and the set of all unordered pairs is (1;’ ) For the

cardinality of (g’ ) we write m. A graph G on N is a subset of pairs of elements
in N. Directed and undirected graphs can be given as G € N® and G C (I;’ ),

respectively. The elements of N, N® and (1;’ ) are called vertices, arcs and edges,
respectively. An alternative representation of a graph is an adjacency matrix Y,

where fuv)
1, if {u,v} €G
Yoo = { 0, otherwise (2.1)

for u,v € N. We shall solely consider cases where the size r of G is fixed, that is
all models in the sequel are conditioned on . There are ("("r‘l)) and (") distinct
graphs of size r in the directed and undirected cases, respectively. It is further
assumed here that the probability of a graph G is invariant under isomorphism.
Under this condition, see Frank and Strauss (1986), any Markov graph G has
probability

P(G) = ¢(0) ! exp(6'x) (2.2)

where 0 is a k-dimensional vector of model parameters, x is a k-dimensional
vector of the observed values of sufficient statistics of G, and ¢() is a normalizing
function of 8, equal to 3" exp(@'x). Here ' denotes transposition and all vectors
are understood to be column vectors. For definitions of the sufficient statistics
in various models, see Frank and Strauss (1986). As a special case, when 8 = 0,

-1 -1
the probability (2.2) reduces to ("("r_l)) or to (T) , and hence, G is a uniform
graph with a fixed number of arcs or edges, and mutual independence between



the elements of Y. For a review of various properties of uniform graphs, see, for
instance, Frank (1988).

3. Maximum likelihood estimation for Markov graphs with
a univariate sufficient statistic

Consider a special case of the general model (2.2), where € and x are one-
dimensional, and denoted by 6 and z, respectively. A standard result for the
exponential family is that the true maximum likelihood estimate O is given as
the solution to the equation

_ TeXexp(0X) _
BoX) = 5 aa0X) ~

where z is the observed value of the sufficient statistic X. The complicated form
of the normalizing constant in the model makes it difficult to obtain the solution
directly from (3.1). Therefore, we shall expand the expected value in terms of
cumulants of X (cf. with Frank and Strauss 1986), and use an iterative method
to find the estimate 6,,;. However, for certain values of z, the maximum likelihood
estimate is directly obtainable. First, it follows from (3.1), that for no finite value
of 6, the expectation Ey(X) is equal to min(X) or max(X). Hence, if the observed
value z is equal to the minimum (maximum), then the estimate O is equal to
—o0 (00). Second, as was noted in Section 2, when the parameter ¢ is equal to
0, the Markov graph reduces to a uniform graph. Therefore, for z equal to the
expected value of X in a uniform graph, the estimate 6., equals 0.

For an arbitrary value of x apart from the minimum and maximum,;the cu-
mulant generating function of X can be used to determine the value of 6. For
a general discussion on cumulants, see Stuart and Ord (1994). It can be shown
that the cumulant generating function of X, Cx(A) = log F exp(AX), equals

(3.1)

logc(f + A) — logc(6) (3.2)

where c(-) is the normalizing function defined in the previous section. Since the
cumulants are defined as the coefficients K;(6), ¢ = 1,2, ..., in the identity

Cx(8) = Y K0S (3.3)

=0



we can write the expectation as

Eoya(X) = a% logc(8 + A) = im(o) (Z,A_i _11)! (3.4)

By truncating the series expansion after a suitable number of terms, we can equal
(3.4) with z iteratively to find the estimate 6. For an arbitrary value 6o, the
new, updated value of the estimate is 8y + A, where A is a root of

Az’—l
(i—1)

The equation (3.5) can be solved explicitly for j up to order 5. A natural initial
value for the iterative estimation procedure is 8 = 0, for which explicit expressions

z— éKi(Go) ;=0 (3.5)

for cumulants of low order are obtainable. Let 921),,1 denote the estimate of 6

obtained by using the first j cumulants K;(6p), ..., K;(6o) given 6o = 0. The

estimate
~2  z—K(0)

chm - KQ(O) (36)

was suggested in Frank and Strauss (1986). A third order estimate 9£i)m is obtained
by solving the equation

We have derived algebraic formulas for the cumulants K;(0), K2(0) and K3(0) for
two sufficient statistics of an undirected graph (see the end of this section). These

are used in Section 5 to illustrate the performance of the estimate 9£i)m, which is
used as a starting value in the estimation procedure.

Generally, when 6, # 0, the cumulants have to be obtained by simulat-
ing the distribution of X for 6. Here, we describe a general procedure for
simulating Markov graphs with the Metropolis-Hastings algorithm, proposed in
Strauss (1986). Given a fixed value 6, the algorithm produces a Markov chain
Gi;t = 0,1, ..., of random graphs, such that the stationary distribution of the chain
is in accordance with (2.2). At the initial step t = 0, Gy is set to a randomly cho-
sen Bernoulli graph. Let Y; denote the adjacency matrix of G;. Further, at step
t, let G* be a proposal graph, obtained by setting two randomly chosen elements



Yiuww and Yi,,, such that Y;,, = 1 and Y, = 0, equal to 0 and 1, respectively.
The next graph Gy, is set equal to G* with probability «, where « is given by

*
min (1, %) = min(1, exp(fo(z* — z:))) (3.8)
and with probability 1 — a, Gy is set equal to G;. In (3.8) z* and z; denote
the observed value of X in G* and G}, respectively. From the simulated Markov
chain, it is possible to obtain. estimates of cumulants of X up to an arbitrary
order j. A highly efficient way of coding the Metropolis-Hastings algorithm is to
divide all possible nonredundant elements {u,v} in the graph G into two vectors,
one with Y, = 1, and the other with Y,, = 0. A proposal graph may then
be generated by randomly switching elements between the two vectors, and the
corresponding change in the value of the sufficient statistic is easily calculated. We
have programmed such an algorithm in Fortran, and the resulting code enables
generation of 10® Markov graphs within approximately 3 seconds on a PC with a
150MHz Pentium processor (for n up to 40).

To ensure that the simulated values are a sample from the stationary distrib-
ution, a burn-in period of suitable length, say 1000, should be excluded from the
beginning of the sequence. For general details on the Metropolis-Hastings algo-
rithm, and for a discussion on the convergence of Markov chains, see, for instance,
Gilks et al. (1996) or Gamerman (1997).

We have derived analytic expressions for the first three cumulants of two suffi-
cient statistics in an undirected Markov graph with 8 = 0. In a clustering model,
the sufficient statistic X = S is the number of two-stars in G and § = o is the
clustering parameter. In a transitivity model, X = T is the number of triangles
and 0 = 7 is the transitivity parameter. For more information on these two mod-
els, see Frank and Strauss (1986). The cumulants up to order 3 are related to the
moments according to

K, = E(X) (3.9)
K, = Var(X) = E(X?) - (E(X))?
Ks = E(X®) —3E(X)E(X)+2(E(X))?

Let v® denote v!/(v —1)!, and let I(.) be an indicator function which is equal to

m—y
1 when the argument is true, and 0 otherwise. Further, let g(y) = (';, . For the

number of two-stars we have

E(S) = ?%Q (3.10)



(3),-(3) 2 _6n@r@
n®yr n n@Wr
Var(S) = (2n-15) —5) + 2 —9

E(S®) = E(S)+62Z,+62,

— E(S)[E(S) - 1]

where Z; and Z; are given by

2n —5n®r@ n2 — 6n®r®

7 = 220+ 20T (3.11)
n—2n®r®  16n —37n®Wr®  n@rG  2p2 4 3n — §nG)rG)
Zy = + +4 +
6 m@®) 6 m@ m(5) 4 m®)
n3 4+ 6n% + 14n + 60 n©®r®  47pG)r6) 170
* 18 m® 6 m® 3 m®

Expressions for E(S) and Var(S) in this special case were also given in Frank and
Strauss (1986). Correspondingly, for the triangles we have

E(T) = (") 9(3) (3.12)
s = ()5 ()E5) (- )
o - EOE o

=9 ; [(" 6+]>+(6—j)<n_§+j)+(3—j)2(n—6+j)]-I— (3.13)
)
J

(- )
o(3= () | (- () - 1976 =0~ 201 =2y~ 201 = 2) - o1 = 9] +
(- ()

gl7— (2 [4I(j=1)+2I(j =2)]+

o(6-(3)) e-16-9)

The above expressions for E(T) and E(T?) were earlier obtained by Frank (1971).
For a general discussion on the moment properties of subgraph counts in random
graphs, see Frank (1979).

<
o

where

9—



4. Maximum likelihood estimation for general Markov graphs

We now consider a generalization of the estimation technique introduced in the
previous section. In a general model we have a k-dimensional vector X of sufficient
statistics and a vector 0 of the corresponding parameters. For single components
of X and @ we write X; and 6;, respectively. As in the univariate case, the
maximum likelihood estimate éml is obtained as the solution to

B > e Xexp(0'X) _
BoX) =5 Cop@%) -

(4.1)

and analogously, the estimate O is equal to 0 when x equals the expected value
of X in a uniform graph. However, the situation is more complicated in the
general model when any z; equals the minimum or maximum value of X;. Then
we know that the estimate of #; has no finite value. The simplest solution to
this problem is to exclude the parameters from the model for which no maximum
likelihood estimate exists, and then proceed with the estimation of the remaining
parameters. Another possibility is to condition the model on all sufficient statistics
X; for which the observed value z; equals the minimum or maximum.

As in Section 3 we use the cumulant generating function to find a solution to
the likelihood equation (4.1). The multivariate cumulant generating function, see
Stuart and Ord (1994), can be written as

0 w1 A\ W2 Wi
Cora®X)= Y Kk, 0008 2

’wl,...,'wkzo

4.2
wl!wgl---wk! ( )

where the coefficients K12 (@) are the multivariate cumulants and A de-

notes the vector (Ay, Ay, ..., Ax)". Define the order of a cumulant K22.*  (0) as
>  w;. In order to obtain a useful expression for the expectation (4.1) we use
a linear approximation to (4.2) and set all cumulants of order 3 or higher equal
to 0. To simplify the notation we exclude all null indices in K}2.*  (8) and
write K., (6) and K3, (), for K3%;% o(6) and Kg?;%,. o(6), respectively. In
particular, K {’1(0) is the covariance of X; and X;. Given the linear approximation

we may write the cumulant generating function of X as

KL0)A; + LKL (0)A2 + K12(0)A1Ag + ... + KIF(0) A1 A
: (4.3)
KX(0)A + 1KE(0)AZ + KE(O) ArA; + ... + KV (0) ArArs

8



By differentiating (4.3) we obtain, with some algebra, an expression for the ex-
pectation (4.1) as
Fora(X) =K;(0) + K, (6)A (4.4)

where K;(0) is the mean vector and K;j;(0) the covariance matrix of X. At 6,
solving the system of linear equations

x — K1(8,) — K,,(60)A =0 (4.5)

for A gives the updated estimate Oo+A. Although it is possible to obtain a closed
form solution for a general k, the expression becomes quite lengthy already for
k = 4, and is suppressed here. For an illustration consider the bivariate case,
where the solution is

_K1112(90)$2 — Ki7(60)K7(80) — K3(60)z1 + K3(60) K (60)
—K1#(80) + K%(60) K3(60)

A, = — K17 (60)x1 + K17 (80) Ki (60) + K;(8o)z2 — K3(80) K7 (60)
—K1{(60) + K3(80) K3(60)

For the iterative estimation procedure we set the initial value @y equal to 0. For
this particular value it is possible to derive algebraic expressions for the covariances
K?(0o), and we have done this in a bivariate case (see below). In general, when
6y # 0, the cumulants have to be obtained by simulating the distribution of X
for B,. Since this can be done by a straightforward modification of the univariate
simulation, we omit the details here.

As an illustration of general models we consider a Markov graph model with
S and T as sufficient statistics. The covariance of S and 7" in a uniform graph
can be written as

A, =

(4.6)

KO = (3)@n- 96+ @)
L0600

where g(.), E(S) and E(T) are defined as in Section 3.
Due to the linear approximation used in (4.3) it may happen that the stepwise
estimation procedure fails to converge when the initial estimates based on (4.6)

9



are far from 6. Alternative starting values are then needed in the estimation
procedure. One possibility is to simulate the expectation Fy(X) at a grid of values
of 8, and seek for values closer to 9,,11. This is computationally feasible even for
a large value of k due to the efficiency of the Metropolis-Hasting algorithm. It is
also possible to replace the relatively simple updating procedure for the parameter
estimates at the successive iteration steps by a more complex algorithm including
control parameters which ensure that the updating does not lead the estimation
procedure towards infinite values.

We shall describe briefly the pseudolikelihood method introduced in Frank
and Strauss (1986), which has been used for the estimation of Markov graph
parameters by Strauss and Ikeda (1990), Frank (1991), Frank and Nowicki (1993),
and Wasserman and Pattison (1996). In the pseudolikelihood method, the log-
odds of the probability of Yy, = 1, conditional on the rest of the graph, is written
as

k
logit P(Yy, = 1rest) = Y 6;6%, (4.8)
i=1

where &% is equal to the difference between the value of X; when we set Yy, = 1
and Yy, = 0, respectively. The representation (4.8) enables the estimation of 6;’s
to be done for k£ > 1 with the available standard logistic regression packages. One
advantage of the use of (4.8) is that the normalizing function ¢(8) is not involved in
the estimation procedure. However, it should be noted that the pseudolikelihood
method is not based on the sufficient statistics X;, but on the ”change variables”

1
8.

5. Enumeration results in small graphs

To investigate the performance of the iterative estimates and to compare them
with the pseudolikelihood estimates, we have chosen a graph with n = 7,r = 12,
and used complete enumeration to find the solutions to the equation (3.1). There
are 293930 distinct graphs for n = 7,7 = 12 and the distribution of the sufficient
statistics is given for the clustering and transitivity models (Section 3) in Table
1.

10



Value of S Frequency Value of T Frequency

30 19355 0 35
31 45360 2 1260
32 71190 3 9880
33 48055 4 39375
34 51030 ) 78330
35 27090 6 87360
36 18585 7 52080
37 8190 8 25795
38 4200 9 1260
39 875 10 2135
11 420

Total 293930 293930

Table 1. Distributions of S and T, respectively, for an undirected graph with
n="7r=12.

By using the distributions in Table 1, it is possible to obtain the maximum
likelihood estimates of o and 7 as solutions to (3.1) for each possible value of
the sufficient statistics. In Table 2, estimates of o using different methods are
given. Here, 6, is the true maximum likelihood estimate, and Gite; is the estimate
obtained by using several steps of iteration with aﬁ?}m as a starting value. For
comparison, the pseudolikelihood estimates 6, are also given. For some values
of the sufficient statistic, the pseudolikelihood estimate failed to converge, these
cases are denoted by *. The corresponding estimates of 7 are given in Table 3.

In the iterative estimation procedure we have initially used Markov chains of
length 50000, and then increased the length with 50000 at each iteration step to
obtain better precision of the estimates of cumulants in the neighbourhood of Opm1.
Estimates of the four first cumulants were used at each iteration step to obtain
a new value for @iter. For S and T, the minimum and maximum values can be
obtained numerically for any n and r using certain combinatorial functions.

From Tables 2 and 3 it can be seen that the iterative estimates are in a very
close agreement with the true maximum likelihood estimates for all possible values
of the sufficient statistics. It is reasonable to assume that the iterative estimates
perform similarly in larger graphs. Moreover, the estimates based on the three
first cumulants at @ = 0 are surprisingly good compared to the pseudolikelihood

estimates. For most values of S and T', the estimate 9Ci)m is closer to the maximum
likelihood estimate than the pseudolikelihood estimate, which is considerably bi-
ased. Due to variability of the pseudolikelihood estimates among graphs with the

11



same value of the sufficient statistic, the pseudolikelihood estimates given in Ta-
bles 2 and 3 are arithmetic means of the pseudolikelihood estimates for all possible
graphs with the specified value of the sufficient statistic. The variability of the
pseudolikelihood estimates is considered further in the next section.
Value of S om = %)  Guer O
30 —oc0 -—o00 —o0 %
31 —978 —970 —.979 -—1.859
32 —.350 —-.352 —.355 —.851
33 0 0 0 -.391
34 257 .265  .268 —.077
35 486  .465  .487 183
36 .727 648 .730 434
37 1.038 .812 1.034 731
38 1.597 962 1.612 1.173
39 00 00 oo 2.065
Table 2. Estimates of o for an undirected graph with n = 7,r = 12.

Value of T #7590  Fiter 7yl
0 —00 —00 —00 %
2 —-1936 —3.34 —1.935 —2.841
3 —1571 —-2.69 —1.570 —2.282
4 -—-1.103 -—-1.27 -1.102 -2.144
5 —.485 —490 —.485 -1.108
6 119 .119 119 —.290
7 .610 .611 .609 427
8 989 1.09 .989 .861
9 1.339 1.51 1.34 .739

10 1.811 1.89 1.810 1.425
11 00 00 o0 1.721
Table 3. Estimates of 7 for an undirected graph with n = 7,r = 12.

We now consider iterative estimation for the Markov graph model with S and
T as sufficient statistics. The bivariate distribution of the statistics is given in
Table 4.

12



S\ o 2 3 4 ] 6 10 1
30 35 1260 3780 9660 4620  — - - - -

I~
lco
ko
o
)
o
[

31 - — 1260 18900 20790 4410 - - - - =
32 - — 840 9450 39060 18900 2940 — - - =
33 - - - 735 11340 30030 5460 490 - - -
34 - - - 630 2520 27720 17640 2520 - - =
35 - - - - — 4620 16590 5670 - 210 -
36 - - - - — 1680 6720 10185 - - -
37 — - - - - — 2520 4410 1260 - =
38 - - - — - — - 2520 - 1680 —
39 - - - - — - 210 - — 245 420

Table 4. The bivariate distribution of S and T for an undirected graph with
n="7r=12.

Using the values in Table 4 we have calculated the true maximum likelihood
estimates of (o,7) for all possible values of S and T, such that neither S nor
T is equal to the minimum or maximum value. These estimates are given in
Table 5. At some boundary values of (S,7T) the maximum likelihood estimates
are numerically unstable, that is they tend towards infinity. Such values are
(31,6),(32,7),(33,8) and (35,10), for which the estimates given in Table 5 are
the smallest (in absolute value) with the deviation |Eg(S)—s|+|Ee(T)—t| < 0.005.
The reason why the estimates are nearly divergent at these values of the sufficient
statistics is not quite clear. However, our simulation results for models with a
univariate sufficient statistic (Section 7) show that in larger graphs, values of
sufficient statistics close to their maximum are observed only when the model
behavior is degenerate. It might be that such degeneracy problems appear already
for small » in general Markov models. The iterative estimates of (¢, 7) based on
the starting values (4.6) at 8y = 0 are given in Table 6.

13



S\T 3 4 5 6 7 8 9 10
31 .397,-1.758 -.396,-.851 -1.466,.781 -6.150,6.140
32 1.396,-2.426 .751,-1.661 -.136,-.349 -1.261,1.498 -5.010,5.640
33 1.459,-2.293 .790,-1.321 -.234,.398 -1.245,2.025 -5.400,6.390
34 2.082,-2.961 1.425,-2.030 .640,-.672 -.404,1.097 -1.239,2.394
35 1.291,-1.515 .443,.073 -.547,1.635 -3.350,6.700
36 1.811,-2.216 1.124,-.743 .310,.630
37 1.631,-1.339 1.140,-.165 .240,1.080
38 1.895,-.550 .215,1.590

Table 5. The true maximum likelihood estimates of (o, 7) for an undirected graph
withn =7,r = 12.

S\T 3 4 5 6 7 8 9 10
31 .396, -1.758 -.396, -.851 -1.466, .781  -8.304, 8.303
32 * .751, -1.661 -.136, -.349  -1.261, 1.497 -8.347, 8.971
33 1.459, -2.293 .790, -1.321 -.234, .398  -1.245, 2.025 -7.516, 8.504
34 X 1.424, -2.030 .640, -.673 -.404, 1.097  -1.240, 2.394
35 1.291, -1.515 .443, .072 -.547, 1.635 -4.108, 8.223
36 1.810, -2.215 1.124, -.743 .317, .630
37 1.631, -1.339 1.142, -.168  .245, 1.075
38 1.895, -.549 .207, 1.594

Table 6. The iterative estimates of (o, 7).

For the two values (32, 3) and (34, 4) of (S,T’) the estimation procedure failed
to converge. We experimented with various starting values of 0 for these two
particular cases, and found that convergence was achieved for the starting val-
ues at (2.50,—3.25) or closer to the maximum likelihood estimate for (32,3).
The iterative estimate with (2.50, —3.25) as the starting value attained the value
(1.396, —2.425). Correspondingly, for (34,4) convergence was achieved for the
starting values at (3.20,—4.00) or closer to the maximum likelihood estimate.
Given this particular starting value, the iterative estimate attained the value
(2.081, —2.960).

The results in Table 5 show that it can be difficult to interpret the obtained
parameter estimates in general models. Due to the complex dependence between
the two sufficient statistics considered here, the estimates cannot be interpreted
as in the models with a single sufficient statistic, where a small or large para-
meter value corresponds to an observed graph which is extreme with respect to
the property represented by the particular sufficient statistic. For instance, for

14



(S,T) = (31,6) the maximum likelihood estimate equals (—6.150,6.140). The
extremely large value of 7 thus indicates a high degree of transitivity in the ob-
served graph, whereas the value 7" = 6 is closest to the expected value of T in
a uniform graph. Hence, we would expect to observe the same degree of transi-
tivity in a simple random graph. The value T' = 6 is extreme in the conditional
distribution of T" given S = 31, which leads to the large value of 7. In practise the
obtained estimate of ; should therefore be interpreted in terms of the conditional
distribution of X; given the observed values of the remaining sufficient statistics
X1> %) Xi—-la X’H—la ) Xk:-

As for the univariate models, the iterative estimates are well in accordance
with the maximum likelihood estimates in the bivariate case, and the pseudolike-
lihood estimates given in Table 7 are considerably biased. For approximately 30%
of the possible values of (S,T), pseudolikelihood estimation procedure failed to
converge, these cases are denoted by *. Deviance between the values of the iter-
ative and true maximum likelihood estimators is negligible, except for the values
(31,6), (32,7),(33,8) and (35,10), for which the true maximum likelihood esti-
mates are nearly divergent. For these values the iterative estimates are larger in
absolute value, but they preserve quite accurately the relation between the values
of 6 and 7.
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S\T 0 2 3 4 5 6
30 * x * * *
31 -.338,-1.302 -1.044,-1.163 -4.410,2.458 *
32 902,-2.539  .405,-2.958  -.531,-.467 -2.152,2.366
33 1.014,-1.971  .629,-1.788 -.338,-1.302
34 * 1.499,-2.788  .829,-1.267
35 1.171,-1.442
36 *
S\T 7 8 9 10 11
32 *
33 -2.209,3.320 *
34 -1.006,1.414 -2.338,3.115
35 .003,.323 -2.171,3.629 *

36 1.217,-1.452 -.479,1.437

37 1.651,-2.231 .967,-.396 -.412,1.140

38 1.620,-.758 -.637,2.097

39 2.208,-2.391 * -.459,2.161
Table 7. The pseudolikelihood estimates of (o, 7).

6. Specific properties of the pseudolikelihood estimation

In the papers concerning the pseudolikelihood estimation for Markov graphs there
has not so far appeared any discussion about the variability of pseudolikelihood
estimators for graphs with fixed values of the sufficient statistics. To investigate
how the use of §°, affects the estimation, we have obtained the pseudolikelihood
estimates of o and 7 for all possible graphs with n = 7,7 = 12 and with n =
8,7 = 14, respectively. All possible graphs in the former case were summarized
in Table 1. In the latter case there are 40116600 distinct graphs, and it does not
seem feasible to study enumeratively still larger graphs. Estimation results for o
and 7 are given in Tables 8 and 9, respectively, for the graphs with n = 7,r = 12.
Corresponding results for the graphs with n = 8,7 = 14 are given in Tables 10
and 11.

16



30
31
32
33
34
35
36
37
38
39

#graphs with

#graphs without

convergence convergence

0 19355
43470 1890
70770 420
48055 0
51030 0
27090 0
18585 0
8190 0
4200 0
630 245

Mean Std.dev. Min
* * *
—1.859 223 —2.167
—.851 .049 —.981
-.391 011 —.427
—-.077 .0003 —.078
183 .001 181
434 .009 426
731 .029 677
1.173 112 1.012
2.065 475 1.723

Max

*
-1.602
—.792
—.381
—.076
.186
456
.765
1.260
2.736

Table 8. Properties of d;, for given values of S for graphs with n =7,r = 12.

O O Ut ix W N O

©

10
11

#graphs with

#graphs without

convergence convergence

0 35
1260 0
4620 1260
37590 1785
78330 0
87360 0
52080 0
25725 70
1260 0
2135 0
420 0

Mean Std.dev. Min Max
% * * *
—2.841 000 —2.841 -2.841
—2.282 547 —2.758 —-1.511
—-2.144 641 —-3.379 —1.187
—1.108 274 —-1.661 —.698
—.290 209 —-.870 127
427 287 —.370 1.092
.861 .243 434 1.719
739 .000 739 739
1.425 .126 1.047 1.562
1.721 .000 1.721 1.721

Table 9. Properties of 7, for given values of T' for graphs with n = 7,7 = 12.
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36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
52

#graphs with
convergence

#graphs without
convergence

0
2906400
6074880
5404560
7111440
4841760
4844160
2772000
2328900
1139040

910560
357840
208320
70560
26880
840

1024380
57120
33600

S OO OO OO OO OO

w
w
D
(@)

0

Mean Std.dev. Min Max
* % % %
—2.032 273 —2.442 —1.810
—1.050 .069 —1.299 —.954
—.623 026 —-.777 —.595
-.350 .005 —-.372 —.343
—.156 .0004 -.158 -—.155
.000 .000 .000 .000
135 .0003 134 .136
.258 .002 .254 282
.380 .007 372 447
.503 .008 .496 .530
.646 .009 .639 725
.831 .013 .796 .862
1.090 .030 1.040 1.113
1.710 .395 1.482 2.395
2.295 .000 2295 2.295

Table 10. Properties of 6y, for given values of S for graphs with n = 8,r = 14.

© OO Ui WO

10
11
12
13
16

#graphs with

#graphs without

convergence convergence
0 5040
152880 40320
922320 30240
3805620 7980
8322720 0
10445400 0
8466240 0
4825800 0
2204160 0
961960 0
246960 0
39900 0
21840 0
420 0

Mean Std.dev.
% %
—2.193 .454
—2.128 .581
—1.667 .486
—1.018 .270
—.407 .162
.075 .188
.490 .238
.802 307
.878 130
1.228 .255
1.281 237
1.409 .015
1.884 .000

Min

*
—3.283
-3.577
—-3.200
—2.231
—-1.014
—.647
—.394
329
.563
.806
1.047
1.370
1.884

Max

*
—1.665
—.932
—.746
—.489
.000
963
1.764
3.506
1.136
2.183
1.723
1.422
1.884

Table 11. Properties of 7 for given values of T for graphs with n = 8,r = 14.
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From the above tables it is evident that the specific graph with its specific
combination of values in Y is decisive for the pseudolikelihood estimation, that
is the ”change variables” &', do not give unique estimates. This is in contrast to
the iterative method in which the sufficient statistics are used. Using simulation
we have seen that the ”between-graph” variation decreases relative to the total
sampling variation when larger graphs are considered. However, the magnitude
of difference between minimum and maximum values of the pseudolikelihood es-
timates is considerable for negative parameter values even for moderately large
graphs. In order to save space, we do not present the results here, but they can
be obtained from the authors.

Another problem associated with the pseudolikelihood estimates is the lack
of convergence in special cases. Assume there exists a threshold value z, such
that for all 8%, < z, the indicator Y,, takes one specific value (say 1), while
for all 8%, > z, the indicator Y,, takes the opposite value (here 0). According
to Haberman (1974), this is a sufficient condition for the nonexistence of the
parameter estimate in a logistic regression model. An illustration of such a graph,
one of the 70 graphs with 7" = 8 in Table 9, for which the pseudolikelihood
estimate of 7 does not exist, is given in Figure 1.

Figure 1. An undirected graph with n = 7,7 = 12 for which the pseudolikelihood
estimate of 7 does not exist.

7. Comparison of the maximum likelihood and pseudolike-
lihood estimators

To investigate the statistical properties of the maximum likelihood and pseudo-
likelihood estimators, we have studied the clustering and transitivity parameters
o and 7 in graphs with n = 7,7 = 12, and the clustering parameter in graphs
with (n,7) equal to (25, 40), (40, 60), (50, 70), (60, 100) and (100, 200), respectively.
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Complete enumeration was used for the graphs with n = 7,7 = 12, whereas sim-
ulation was used for the larger graphs. Properties of the maximum likelihood
estimator were investigated using 10® replicates of the Markov model for each
o-value in the range -2,2(.5). The maximum likelihood estimates were here de-
termined by a grid search using interpolation of o, in order to determine the
parameter values which correspond to the integer values of E,(S).

Due to the extensive calculations involved, properties of the pseudolikelihood
estimator were investigated using 10° replicates of the Markov model for the
graphs with n equal to 25 and 40, whereas 10* replicates were used for the remain-
ing graphs. Means, variances, mean squared errors (MSE) and the probability of
convergence of the two estimators are given in Tables 12 to 18 (see Appendix).
Plots of the bias and MSE of the estimators of o are given in Figures 2 to 5 for n
equal to 7 and 40.

To check precision of the calculations we used the simulation method also for
the graph with n = 7,7 = 12, and compared the results with those obtained
by complete enumeration. Only some smaller deviations, usually in the third
decimal, appeared.

Bias

~O< ML — estimator

-0,8 - — esti
2 P 0 1 2 0.. PL— estimator

Figure 2. Bias of 6 and 6y, for graphs with n = 7,7 = 12.
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1,6

MSE

0,0

-2 -1 (o} 1 2

~o-. ML — estimator

~o.. PL — estimator

Figure 3. MSE of 6., and 6}, for graphs with n = 7,r = 12.

0,4

) e T ———

Bias

2

~O~. ML - estimator

“O- PL - estimator

Figure 4. Bias of 6m and 6y, for graphs with n = 40, r = 60.
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3,5

MSE

~o< ML — estimator

05 o
2 » o 1 > ~o. PL — estimator

Figure 5. MSE of 6,1 and 6y, for graphs with n = 40,7 = 60.

It is evident from our simulation results that the maximum likelihood estimator
generally has smaller bias and variance than the pseudolikelihood estimator. In
the cases considered here, the pseudolikelihood estimator has smaller bias than the
maximum likelihood estimator only in that part of the parameter space where the
model behavior is degenerate. By model degeneracy we mean that the observed
values of the sufficient statistics are concentrated on the extreme values, either
at the minimum or maximum. Such extreme values of the sufficient statistics are
not expected to be met in reality. The results for the larger graphs with 40-100
vertices suggest that the maximum likelihood and pseudolikelihood estimators are
nearly equivalent with respect to the magnitude of the bias and MSE. Moreover,
the bias of the estimators tends to 0 in the neighborhood of ¢ = 0 as the number of
vertices increases. Thus, the estimators seem to be, in some sense, asymptotically
consistent, for Markov models close to the uniform graph model.

It is evident that the behavior of the Markov model is problematic as n gets
larger. The larger n is, the smaller positive value of a parameter is needed to
produce graphs where the value of the sufficient statistic approaches its maximum.
The asymptotic behavior of the Markov graph model and degeneracy problems
were discussed in detail by Strauss (1986). The degeneracy problem is even more
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severe in models where the graph size r is allowed to be stochastic. An example
of this is the transitivity model for a graph with n = 30, considered in Frank
and Strauss (1986), where parameter values only in a narrow range around zero
produce "realistic” graphs.

8. Remarks

The numerical results presented in the previous sections show that the maximum
likelihood estimates seem to be accurate enough and computationally feasible to
be preferred in routine data analysis. Moreover, we have shown that the pseudo-
likelihood method does not yield unique estimates for fixed values of the sufficient
statistics. Concerning the aspects of inference, likelihood ratio tests of the uni-
form model corresponding to @ = 0 could be performed, albeit approximately, by
using the simulation method to obtain an approximation to the distribution of
P(x]|0 = 0)/P(x|0) under the null hypothesis.

An important aspect of interpretation of parameters in Markov models is re-
lated to the size of n. Any particular parameter value distinct from 0 will have
a different interpretation in graphs with different values of n. To avoid this com-
plication the definition of the graph probability (2.2) should be altered in some
suitable manner. It will be a task for future research to investigate this and other
properties of Markov graphs.
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Appendix

a E(6m) E(6pn) V(6m) V(6p) MSE(6m) MSE(6,) P-, P

conv conv

—-2.0 —.852 -1.652 071 221 1.389 342 281 .272
-1.5 —-.810 -1.529 .084 301 .560 302 426 413
-1.0 —-.677 -1.333 .148 401 .252 512 .607 .592
-5 —.451 -1.018 237 .509 .239 778 794 781
0 —-.058 —.509 343 582 .346 842 931 .926

D 514 187 .369 .544 .369 642 955 979
1.0 1.017 .812 .249 461 .249 496 .840 .955
1.5 1305 1.223 126 428 164 505 .654 .903
20 1453 1.492 .048 409 .348 667 .470 .852

Table 12. Properties of 6, and 6y, for graphs with n = 7,7 = 12.

o E(&ml) E(&pl) V(&ml) V(&pl) MSE(&ml) MSE(&I,I) Pml Ppl

conv conv

—-2.0 —-1.126 —2.446 752 .808 1.516 1.006 .983 .986
-1.5 —-1.299 -1.905 .369 .57 .409 721 997 998
-1.0 -1.070 -1.280 176 279 181 .357 1.000 1.000
-5 —=.573 —.658 .085 .109 .090 .134 1.000 1.000
0 -.032 -.069 018 018 .019 .025 1.000 1.000

.5 428 332 .049 .001 .055 029  .999 1.000
1.0 .356 .336 123 .0006 .539 403 .999 1.000
1.5 373 .369 130  .0006 1.400 1.280 .999 1.000
2.0 .395 370 133 .0006 2.839 2.657 .999 1.000

Table 13. Properties of 6,y and 6y, for graphs with n = 25,r = 40.

¢ E@6w) EGw) V(m) V(6n) MSE(6m) MSE(6,) P™, P

conv conv

:2.0 —1.987 —2.267 134 3374 134 446 1.000 1.000

—-1.5 —1.580 —1.740 .166 281 172 .308 1.000 1.000
-1.0 -1.066 —1.175 110 142 114 .174 1.000 1.000
-5 —.546 —.597 .047 .049 .049 .066 1.000 1.000
0 -.021 -.038 .009 .008 .009 .011 1.000 1.000

5 .248 .259 .050 .003 114 .059  .999 1.000
1.0 270 .265 .056  .0004 .589 541 999 1.000
1.5 .249 .266 .061 .0004 1.627 1.523 .999 1.000
2.0 .266 .265 .064 .0004 3.069 3.009 .999 1.000

Table 14. Properties of 6, and 6y, for graphs with n = 40, r = 60.
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g
-2.0
-1.5
-1.0
-.5
0
5
1.0
1.5
2.0
Table 15.

g
—-2.0
-1.5
-1.0
-5
0
.5
1.0
1.5
2.0
Table 16.

o
—-2.0
-1.5
-1.0
—-.5
0

.5
1.0
1.5
2.0

E@Gm) E@Gp) V(w) V(6p) MSE(6m) MSE(6n) Paw P
—1.987 -2.310 113 325 113 421 1.000 1.000
—-1.563 -1.701 138 218 142 .259 1.000 1.000
—-1.059 -1.137 .088 .130 .091 .148 1.000 1.000
—.536 —.586 .037 .043 .038 .050 1.000 1.000
—.018 —.050 .008 .008 .008 .011 1.000 1.000
223 211 .041 .003 A17 .086 1.000 1.000
.205 227 .042  .0004 .674 .598 1.000 1.000
215 234 .047  .0004 1.698 1.603 1.000 1.000
.200 234 .050 .0004 3.290 3.121 1.000 1.000
Properties of 6., and 6y, for graphs with n = 50, r = 70.
E(m) E@6p) V(m) V(6p) MSE(6m) MSE(Gp) Paw Phuw
—1.453 —-2.167 .694 .261 .994 .289 1.000 1.000
—1.497 -1.664 .156 .140 .156 .167 1.000 1.000
—1.041 -1.145 .065 .090 .067 112 1.000 1.000
—.526 —.579 .026 .035 .026 .041 1.000 1.000
—.012 -.025 .004 .004 .004 .005 1.000 1.000
167 .159 .018 .0004 129 116 .999 1.000
161 171 .020 .0004 725 .687 .999 1.000
.160 175 .019  .0004 1.814 1.757 1.000 1.000
178 175 .017  .0004 3.339 3.332 1.000 1.000
Properties of 6, and 6y o for graphs with n = 60, = 100.
E(&ml) E(5P1) V(&ml) V(6p1) MSE(&IDI) MSE(a-Pl) PcI:)lx]w Pcpolnv
—1.834 —2.105 .339 137 .367 .148 1.000 1.000
—1.531 -1.573 .066 .078 067 .083 1.000 1.000
—1.030 —1.052 .034 .034 .035 .037 1.000 1.000
—.517 —.543 .013 .017 .013 .019 1.000 1.000
—.006 —.009 .002 .002 .002 .002 1.000 1.000
.510 .094 .485 .000 .485 .165 1.000 .997
.661 .095 .644 .000 759 819 1.000 .986
815 .095 769 .000 1.238 1.973 1.000 .955
1.010 .095 .858 .000 1.839 3.629 1.000 .860

Table 17. Properties of 6., and 6y, for graphs with n = 100, r = 200.
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T
-2.0
-1.5
-1.0
-.5
0
5
1.0
1.5
2.0

E(fwm) E(@n) V(@Ew) V(@) MSE(Fw) MSE(F,) Faw Phw
—1.523 —2.395 214 450 442 606 611 570
—1.246 —2.075 319  .693 383 1.023 .889 .83l
—.896 —1.643 404 912 414 1.326 .983 .935
—.500 —1.124 460 1.034 460 1424 998 972
—.068 —.543 475 1.005 480 1.300 .999 .989
387 066 449  .834 462 1.023 985 .997
856 681 413  .605 433 707 905 .999
1.291  1.202 314  .328 358 417 707 999
1.579 1482  .167  .132 344 400 487 .999

Table 18. Properties of 7 and 7y for graphs with n = 7,r = 12.
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