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ML-ESTIMATION OF THE CLUSTERING
PARAMETER IN A MARKOV GRAPH MODEL

Karin Dahmstrom Per Dahmstrom
Department of Statistics

Stockholm University

Abstract: We consider a special case of Markov graph models
with a clustering parameter o. ML-estimation of this parameter
is performed by using simulation of Markov graphs. More
specifically an expansion of the expected number of two-stars
is done and a starting solution with the exact values of the
first three cumulants when o = 0 is used. Furthermore, the
cumulants up to the 4:th order are estimated for successively
better estimates of o. A special computer program is written to
perform the whole stepwise estimation procedure. The previously
suggested method of pseudolikelihood estimation by the use of
logistic regression is shown to be unsatisfactory in many
situations. All methods considered are compared with the exact
ML-estimates for complete enumerations.

Keywords: Markov graph models. Clustering parameter. Markov
simulations. Logistic regression. Cumulants.



1 INTRODUCTION

During the last two decades the use of graph theory in social
networks has been developed from being a descriptive method to
an analytical statistical method. The theoretical progresses
include for instance different model assumptions for random
graphs, survey designs and inference for the graphs and other
relations to traditional statistical theory. For a review, see
Frank (1980, 1988, 1991) and Karonski (1982).

The random "element" in a graph concerns the realisation or not
of an edge between two vertices. Then it is possible to define
different graph models according to the choice of probability
distribution for the edge indicators.

It is well-known that many of the models can be defined as log-
linear models for which the parameters in principle can be
estimated by means of methods for log-linear models in
contingency tables. To this category the Holland-Leinhardt pj-—
model, see Holland and Leinhardt (1981), and Markov graph
models belong. Another classification is whether the dyads are
independent or not. A model with independent dyads is the
Holland-Leinhardt pj-model. However, it is often more realistic
to consider dependent dyad models such as Markov graph models.

In this paper, attention is given to a special case of a Markov
graph model, the pure clustering model. The methods suggested
in the literature for ML-estimation of the clustering parameter
o, a graphical method and the use of 1logistic regression
respectively, are compared with a stepwise method with
simulations of Markov graphs and estimation of cumulants. The
starting value is based upon the first three exact cumulants
when 0=0. A special designed computer program, in which all the
steps are made automatically, is written.



2 NOTATION AND DEFINITIONS

Let us consider a random graph G with n vertices and r edges,
say an (n,r)—-graph. For any two vertices i and j, we define the
edge indicator

1 if the edge between i and j exists
Yij = i,J=1,2,...,n

0 otherwise
In general, the graph is directed, but here we will consider
undirected, symmetric graphs. The n-by-n matrix with the
variables Y; 4 is called the adjacency matrix. In this matrix,
the diagonal elements are so called structural zeros, since by
definition, Y;j4=0 for i=1,2,...,n. For an undirected graph,
Yi=Y5i, and the matrix is shortly given by its “upper
triangle", i,j=1,2,...,n.

The variables Yj4 are assumed to follow some probability
distribution. In the simplest case, the edge indicators Yj are
independent and identically distributed with P(Yij=l) = p,
i,j=1,2,...,n. This will give us a Bernoulli graph; see for
instance Frank (1985). However, in many applications it 1is
considered more realistic to assume some sort of dependence
structure between the "actors", and this is attained in Markov
graph models. For the notation and definitions of a Markov

graph model, see chapter 3.



3 MARKOV GRAPH MODELS

3.1 Introduction

Let us consider Markov graph models as they are defined in
Frank and Strauss (1986) and Strauss (1986). A graph is said to
be a Markov graph if non-incident edges are conditionally
independent. For an undirected Markov graph, it can be shown
that the stars and triangles are sufficient statistics. In the
following, we will restrict the study to homogeneous Markov
graphs, for which all isomorphic graphs have the same
probability; we are assuming that the vertices are a priori

indistinguishable.

In this paper, we are considering a special case of a Markov
graph model, the pure clustering model with the parameter o. In
section 3.4, the ML-estimate of this parameter is theoretically
derived, and the suggestions in the literature to numerically
find this estimate are described. More specifically, we
consider the disadvantages and the problems with the methods
suggested up to now. The results will bring us to a new,
stepwise estimation procedure described in chapter 4 and in the
rest of the paper.

3.2 Notation

Generally, the probability of any homogeneous, undirected

Markov graph G with n vertices can be defined as the log-linear

model
n-1
P(G) =c”1exp(tt + X OkSk)
k=1
with the parameters <t and ok, k=1,2,...,n-1, and the

normalizing constant c. Furthermore, the variable t is equal to
the number of triangles in G and sy is equal to the number of



k-stars in G, k=1,2,...,n-1. A simplified model is the so
called triad model, for which

P(G) = c lexp(pr + os + Tt)

with the parameters p = 03, 0 = 03 and T. The sufficient graph
statistics r, s and t correspond to the number of edges, i e
Yi4=1, the number of two-stars, i e combinations of edges such
that Y;4Yjx=1, J#k, and the number of triangles, i e
combinations of edges such that Yj4Y4x¥gj=1, ifj#k#i,
respectively. This model is also referred to as the pot-model.

The parameter o can be considered as a measure of the
clustering in the graph. If o > 0, then the number of
interacting edges is tending to increase, while the edges are
repulsing if o < 0, cf Strauss (1986). Furthermore, the
parameter T is a measure of the transitivity between the edges.
A relation is said to be transitive if, whenever (i,j) and
(j,k) are two related pairs of elements, then (i,k) is a
related pair too. Thus, if Tt > 0, the tendency of complete
connected elements is increasing and for Tt < 0, it is
decreasing. Finally, the parameter p measures the overall
density of the graph; it 1is also called a reciprocity

parameter.

Let us here consider a special case of the Markov triad model,

namely the pure clustering model
P(G) = c~lexp(pr + os)

Since this model generally is conditioned by the number of

edges r, it can be written
P(G|r) = exp(os)/c(0)

The normalizing constant is explicitly



c(o) = X exp(os)

where the sum is over all the possible graphs given the numbers
of vertices and edges.

It can be seen that the probability distribution of the number
of two-stars may be very asymmetrical if o is large in absolute
values. When o=0 however, all the Markov graphs have the same
probability, i e the Markov graph is identical to a conditioned
Bernoulli graph with a fixed number of edges r. In the next
section we will consider some exact expressions for the moments
and cumulants for the number of two-stars for this special
case. The third cumulant is of importance for the starting
value in the stepwise method described later.



3.3 Null cumulants for the number of two-stars

Consider the special case of the pure clustering model when
0=0. In that case, the expected value and the variance of s
can be written explicitly, see Frank and Strauss (1986).
Let us denote

v® = vi/(v - k)!

and

m = (3)

Since n denotes the number of vertices, m is equal to the
number of edges, actual and potential. Then we have

3 2
1_1()]:,()

E _n(8) =
o=0 2m(2)

The first moment is identical to the first cumulant Kl'

An alternative algebraic expression for Varozo(s) -

compared with the article - is the following:

(3),.(3) n2 — 6 n{4)p(®
(3) + ) (2) - KK
4 m

var__o(s) = (2n - 5)-2 - 1)

n 1

The variance is equal to the second cumulant K2.

As an example, the expected value of the number of two-
stars in a graph with n=12 vertices and r=33 edges and for
which ¢=0, is equal to 162.46; cf Figure 5 in Frank and
Strauss (1986). The variance of the number of two-stars is
29.46.

Here an exact expression for the third cumulant K3 when o0=0
is derived. This is used later in the starting value of o
in the suggested stepwise method.



Let us consider the number of two-stars and let

i=1,2,...,n(n-1)(n-2)/2

1 if the i:th two—-star exists
Al ~ 10 otherwise

The expected values of the sums over all two-stars, over
all pairs of two-stars and over all triples of two-stars

are denoted

E, = £ E(&;)

E, = £ X E(A;A.)
2 i<y 173

E, = X ¥ ¥ E(A.A.A )
3 i<i<k 17377k

Furthermore, let the first three moments of the number of
two—stars about 0 be denoted Ml’ M2 and M,. Then

3
M), =By

M, = E; + 2E,

M, = E, + 6E, + 6E,

The three first null cumulants can be written

K, = M, )
Ky =M, - My 3
Ky = My - 3M, M, + 2M

The expected value E1 is of course the value Eo=0(s) above.

The explicit expressions for E, and E; are

3 3 4 4
_2n - 5 n® r® n2 -6 nWr®
= . + .
2 (3) (4)
2 m 8 m

E



(3)_(3) (4)_(a) (4)_(5)
Ey = n 2 . n r 4+ len 37 n r + 4.0 r .
3 4 5
6 n® 6 n® n'®
5
2n? + 3n -8 n'5'r®>  n3 + 6n® + 14n + 60 0@ r‘®
(5) (6)
4 m 48 m
5 6 4 6
47 n® © 1 n@®
+ - . + = .
6 (6) 3 (6)
m m

The third null cumulant for the number of two-stars in a
(12,33)—graph is equal to 97.97.



3.4 ML-estimation of the clustering parameter

Let us assume that our observed graph has s, two-stars and that
we want to determine the ML-estimate of the clustering
parameter o. This is obtained by maximizing the 1likelihood

function
L(0|sg) = Nso-exp(oso)/ﬁ exp(osi)

where Nso is equal to the number of graphs with s, two-stars,

s; is equal to the number of two-stars in the i:th graph, and

the sum is over all the possible graphs. Differentiating with

respect to o, gives
exp(osg) [E(so — si)exp(osi)]/[Z exp(osi)]2 =0
The equation can be written
soX exp(osi)/ exp(osi) = I sjexp(osi)/Z exp(osj)
So = £ sjexp(osi)/Z exp(osji)
= Eg(s)
Thus, the estimate oyy, is that o-value for which the expected
value of the number of two-stars is equal to the observed
number.
This equality can also be written
Egq(s) = (d/do)[log c(0)] = sg

which will be used later on.

It may first be noted that it is impossible in practice to
obtain an exact numerical solution of this equation for graphs

10



consisting of more than 6-7 vertices. It is only for small
graphs that all the possible graphs and the distribution of the
number of two-stars can be calculated exactly. For larger
graphs however, two approximative methods are suggested in the
literature. In this paper, a complete enumeration of the graphs
will be given for some of these smaller graphs in order to make
a comparison between our estimation results and the true ML-

estimates, cf section 5.2.

The first approximative method is a simulation of Markov graphs
for different values of o such that a curve of E, (s) against o
is obtained, where Es(s) is estimated by the mean value s. From
this curve, the ML-estimate & can be found graphically given
the observed value s,. This method is suggested by Frank and
Strauss (1986) and by Strauss (1986). However, they say that
"the construction of the (0,Es;(s)) curve seems too large a task
for routine analysis...".

The second method is the use of pseudolikelihood estimates and
logistic regression. In Strauss and Ikeda (1989), it is shown
that a log-linear model

P(G) = ¢ 1(®) exp T 6%y (G)

where ® is a vector of v parameters, xp(G), m=1,2,...,v, are
different observable graph statistics, and c(©) is a
normalizing constant, is compatible to a conditional logistic
model. Let G = {Yjq: i#j, 1=i,j=n} be a realization of an
(n,r)—graph. Furthermore, let GIj be the realization of the
graph when Yj4=1, and G{j the realization when Yj4=0
respectively. We will also consider the complement Cij of the
graph ("the rest" of the graph) to an observed value of Yiq.
This gives

+
P(Gj4)

P(Yj§=1|Ci§) = Pjj = n ~
P(Gij) + P(Gij)

11



The log odds of the probability of an edge between the vertices
i and j, conditional of the rest of the graph, can be written

logit P(Yj4=1|Cj4) = logit Pj4 = Z 6p(Aij)m

where (Ajj)m is equal to the difference in the m:th graph
statistic when Yij=1 and Yij=0 respectively, m=1,2,...,v. For

the general triad model, we get
logit Pj4§ = pArjy + oAsjy + TAtj4

where Arj4, Asjj and Atj4 are the differences in the number of
edges, two-stars and triangles respectively when Yij=1 instead
of Yj4=0. For the pure clustering model we get

logit Pj§ = p + oAsjjy

since Arj4=1. The difference As.lj can explicitly be written,

see for instance Frank (1991),

ZY..+2Y.. - 2Y,.
j 1] i 1] 1]

Furthermore, we define the pseudolikelihood (PL) function for
the parameter vector ® as a conditional 1likelihood function,
where each probability is conditional on the rest of the data.

We have

PL(®) =T P(Yij|Cij) =1 Pj 4

i3 i#]

A maximum pseudolikelihood estimate is defined to be a value of
® which maximizes the PL-function. Compared to the "ordinary"
likelihood function, the observations are not independent and
thus, the PL-estimates will generally differ from the true ML-
estimates. It has been shown that the determination of the PL-

estimates in the conditional logit model can be performed in

12



the same way as the maximization of an ordinary 1likelihood
function for logistic regression with independent observations
Yig. This means that available statistical packages containing
this procedure such as BMDP and SAS can be used.

The numerical comparisons in Frank and Strauss (1986) and in
Strauss and Ikeda (1990) of the pseudolikelihood estimates with
the ML-estimates are, Jjust as the authors say, limited. More
specifically, only four true o-values are tested with five
replicates for each value. These values were all situated in a
narrow interval around 0; the values are -0.10, -0.05, 0, and
0.075. The value o0=0 means that the Markov graph is identical
to a conditioned Bernoulli graph. The opinion of the authors
concerning the results was that "The two methods appear to give
estimators that are about equally good.". However, there is
support for a more pessimistic view about the possibility of
obtaining accurate estimates by means of the logistic

regression.

3.5 Simulation of Bernoulli graphs

A third method of obtaining an unbiased estimate of E4(s) is by
simulating the simpler Bernoulli graphs instead of Markov
graphs and then using a ratio estimator. This is according to a
general method from importance sampling suggested in Snijders
(1989), but described in a graph model context below. It has
been performed in our work of finding a suitable estimation
method.

Suppose that we want to estimate the expected value of a graph
statistic xp(G) where the graph G follows a model M. The
desired parameter might for instance be the expected number of
two-stars in an (n,r)-graph which follows a Markov graph model.

Generally, we want to estimate the parameter

13



® = EmM[xm(G)]

There is also an alternative graph model, say model B, such

that for an observed graph G*, the relation
PM(G=G¥*) > 0 gives Pg(G=G*) > 0

is valid. Thus, there is an absolute continuity of Py with
respect to Pgp.

For a graph G, let us define the probability ratio

Ro(G) = Py(G)/Pp(G)

Then

® = EM[xm(G)] = Eg[xXm(G) Ro(G)]

That means that ©® can be estimated by the sample mean of
Xm(G)-Rg(G) according to probabilities from model B. Given our
estimation problem, the true model is the Markov clustering
model, but simpler Bernoulli graphs could be simulated, all
having the same probability.

Generally, a Bernoulli (n,r)—-graph can be created by randomly
choosing r edges among the m = (g) = n(n-1)/2 possible places
in the adjacency matrix. This method is the same as choosing r
elements from n(n-1)/2 elements without replacement. A

sequential method for this is suggested by Cassel (1970).

Suppose that k Bernoulli graphs are simulated. For each graph,
the number of two-stars sj is computed. Let Py(Gj) and Pg(Gj)
be the probabilities for a graph according to a Markov and a
Bernoulli model respectively, i=1,2,...,k. Furthermore, let g
be equal to the number of possible graphs. In this context,

Xm(G) = s, and we have

14



k
E{(g/k) x siPM(Gi)/PR(Gi)} = E(s)/Pg(G)
and
k
E{(g/k) § PM(Gi)/Pp(Gi)} = 1/Pg(G)

where Pgp(G) is the constant probability for a Bernoulli graph.

Therefore, a ratio estimator for Es(s) is given by

(g/k)-Z si-Py(Gi)/PB(Gj) Z siPu(Gi)

(g/k)-Z Py(Gi)/PB(Gj) Z PM(Gi)
Z si-exp(osji)/c(o) Z si-exp(osj)
> exp(osj)/c(o) Z exp(osjy)

where all the sums are over the k simulated Bernoulli graphs. A
ratio estimator is generally biased, but from sampling theory
it is known that its bias can be negligible for large values of
k.

However, this method is not to be recommended when |o| is
large. In that case, the estimated value of Eg(s) will be
seriously biased even if the number of simulations is large.
That is due to the fact that only graphs with a low probability
according to a Markov model generally will be observed when
Bernoulli graphs are simulated. As an example, we have noticed
that in a simulation of 106 Bernoulli graphs, the observed
maximum value of s for a (12,33)-graph was only 196, while the

maximum value theoretically is 213.

15



4 A STEPWISE ESTIMATION METHOD

4.1 Introduction

Since the experiences of the estimation methods for the
clustering parameter o are rather unsatisfactory up to now, a
method emanating from the earlier methods but combined with
some new ideas 1is suggested. In these experiences we also
include our own simulations of Bernoulli graphs which were

described in section 3.5.

The method is built upon simulations of Markov graphs with a
starting value of o which is more accurate than earlier
suggested estimates. It is followed by an expansion of Eg(s)
around that o-value using the cumulants up to the 4:th order
which are estimated from the simulations. Then a new, better
approximation of ;ML can be obtained for which new Markov
simulations are performed. The procedure is successively
repeated with an increasing number of simulations for each
approximative value until the difference between two
o-approximations is small enough. No curve (o, Eg(s)) is
obtained with this method and no graphical finding is necessary
either. The result is one numerical value, the ML-estimate of

ag.

4.2 The stepwise method - an overview

The suggested method is shortly described below. However, some
of the procedures are given a more detailed description in the

following sections.
The input to the computer program is the number of vertices,

the number of edges and the number of observed two-stars sg in

the graph respectively.

16



1. The minimum and maximum possible values of s are computed.
If s, equals spin Or Spaxs then the model is degenerate in the
sense that there 1is no clustering and the clustering is
complete respectively; the estimation procedure is finished.

Whatever the value of o, Eg(s) cannot take the value spjp Or

Smax-

2. The number of observed two-stars 1is compared with the
expected value of s when 0=0, cf section 3.2. If Eg=q(8) = Sqo,
then oym;,=0. If sg < Eg=g(s), then oy < 0, otherwise oM, > O.
This apriori-knowledge will decrease the calculations to about
half the time if the goal is to find a graphical solution.

3. An approximative ML-estimate can be obtained by solving the
equation

h j-1
so = K, +3 K:-T ——
° T =2 G-y

h=2,3,...

where K5 is the j:th cumulant for the number of two-stars when
0=0 and h is the number of added terms in the infinite sum.
Frank and Strauss (1986) consider the case h=2, which gives the
estimator

*

" = (sg — Kl)/K2

However, with the help of an exact expression for Ky derived in

section 3.3, the equation

9

so = K, + K,0 + K

1 ) 33 (4.1)

can be solved. When a solution exists, it is used as the
starting value o with still better accuracy for the successive
approximations in the suggested estimation method. The formulas

above are described in more detail in section 4.3.

17



4. A starting graph for the Markov simulations is given by a
simulated Bernoulli graph. To stabilize the Markov simulations,
a "round" with 1000 simulations is initially performed. Then
the simulations continue with 100000 graphs given the starting
value &. From these graphs, estimates of the cumulants up to
the 4:th order can be computed. According to the expansion of
the expected value of s given an arbitrary value of o, an
increment Ao to the old value of o, say Y is obtained from

the solution of the equation

(Ac)? (Ac)>
So — Kl(oo) - Kz(oo)-Ao - K3(00)- 5 - K4(00)-

A more detailed description of the use of estimated cumulants
and Markov simulations 1is given in section 4.3 and 4.4

respectively.

5. A new simulation "round" is performed unless the absolute
difference between the old and the new o-value is less than
0.01.

An example of the output of the computer program is given on
the next page. The name of the program is ESTSIGMA. The input
is the number of vertices and edges in a (12,33)-graph with 190
two-stars, cf the example in Frank and Strauss (1986) p 837.

18



*% ESTSIGMA **

MAXIMUM-LIKELIHOOD ESTIMATION
OF THE CLUSTERING PARAMETER O
IN THE PROBABILITY FOR A MARKOV-GRAPH

BASED ON THE NUMBER OF TWO—-STARS IN AN OBSERVED GRAPH

FOR THE OBSERVED GRAPH:
NUMBER OF VERTICES 12
NUMBER OF EDGES 33
NUMBER OF TWO-STARS 190

FOR A GRAPH WITH 12 VERTICES AND 33 EDGES
MINIMUM NUMBER OF TWO—-STARS 150

MAXIMUM NUMBER OF TWO-STARS 213

EXPECTED NUMBER OF TWO—-STARS WHEN o = 0 162.4615

APPROXIMATION NO 1 .507
APPROXIMATION NO 2 .530
APPROXIMATION NO 3 .532
APPROXIMATION NO 4 .533

Approximation no 1 is the starting value obtained from the

solution of eq (4.1).

4.3 The starting value and the estimated cumulants

In the derivation of the ML-equation in section 3.4,
noticed that

d
Eg(s) = ggllog c(o)]
where the normalizing constant c(o) was defined as

c(o) = Z e?"

with the sum taken over all possible graphs.

19
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According to standard theory, see e g Kendall-Stuart (1963,
volume 1), the moment generating function can be written

Mg(t) = E(et®) = g .2 _(c) = g ets'j:os -
= c(o+t)/c(0o)
Thus, the cumulant generating function is
C (t) = log M_(t) = log c(o+t) - log c(o)

Furthermore, the cumulants are defined as the coefficients Ki’

i=1,2,...,0, in the identity

_ 2 ti
C (L) = E Ki(o)'ET
Then we have
gl
log[c(o+t)] = log c(o) + Z Ki(o)-TT (4.3)
it

Let t be a difference between two o-values, say Aoc. Then (4.3)

is

i

(Ac)
i

log[c(o+Ac)] = log c(o) + X Ki(o)- (4.4)

After differentiation with respect to Ao, the 1left side of

(4.4) becomes

, > se(a+A0)s
4 jog[c(otho)] = S (otho) _
dAc c(o+Ao)

(c+Ao)s Eorac(®)
e

z

and the right side is

20



d z K. (o .(Ao)i =2 K Ségli:i
ane = Kito)r ] i) (i-1)!
and we have
0o (AO‘)i—l
E0+Aa(s) = E K. (0)- (4.5)

i=1 t (A1)
Thus, the expected value of s given an arbitrary value of o,

can be written as an expansion of the cumulants.

If we consider the special case o0=0, then Ac could be
interpreted as the difference between an arbitrary o-value and
0, i e Ao could be written as o itself. Then we have

1 2 3
Eq(s) = K (0) + KZ(O)-%T + K3(0)-%T + K4(O)-%T o

where the cumulants are calculated for o=0. If Eg(s) 1is
replaced by the observed number of two-stars sy, then the
equation has the ML-estimate of o as its solution. If the
expansion 1is terminated after the second term, we get an

approximative estimate of o by using

o* = so - K1
K>

where sy, is the observed number of two-stars. This estimate is
suggested by Frank and Strauss (1986).

The estimate o* was first used as a starting value in the
stepwise method suggested in this paper. However, a still
better estimate could be obtained by using the third cumulant
K3 in the expansion above. In section 3.3 an exact expression

for K3 when o0=0 is derived, and the value & obtained as the
solution - when it exists - of the equation

21



_ o2
S0 = K1(0) + Ky(0):0 + K3(0)-7%

is used as a starting value.

The relation (4.5) could be used in a stepwise method to get a
successively better estimate of o in the simulation of Markov
graphs. From the starting value of o, a new value of o could be
created by solving Ao with Newton-Raphson’s method. The
expected value of s is replaced by the observed number of two-
stars so. If we terminate the expansion after the fourth

cumulant and write an "old" o-value generally by o the

OI
equation can be written

(Ac)? (Ag)?
So — Kl(oo) - Kz(oo)-Ac - KB(GO)-——E—— - K4(00)-

is given by o, + Ac.

Then a new value o 0

1
The cumulants are estimated for the actual o-value from the
distribution of two-stars in the simulations of Markov graphs.
In each "round", the central moments u are first estimated. The
cumulant Kr of order r is related to the central moments of the
same and lower orders in the following way:

K1 = U
K, = u, = 02
2 2
K3 = u5
K, = u, - 3u°
4 4 2

It may be argued that cumulants up to an higher order, say the
10:th order, should be used instead of stopping "“already" at
the 4:th cumulant. In fact, the estimation method has, in an
earlier stage, included these cumulants of higher order, but
numerical studies showed that they had a very large variation.

Furthermore, no better accuracy of the ML-estimates was

22



obtained with these higher cumulants included.

4.4 Markov simulations

The Markov simulations are performed by using a method
described in Strauss (1986), which is based on the so called

Metropolis method, cf Hammersley and Handscomb (1964).

Let us start with a Bernoulli graph of n vertices and r edges
and the starting value & of o, (4.1). The following steps are
performed to simulate a sequence of Markov graphs Gy,
k=1,2,....

1. Consider the upper triangle of the adjacency matrix in the
starting graph Gj. Choose randomly one existing edge no I and
one potential edge no J. The graph G* = G-I+J is constructed
such that edge nr I is excluded and a new edge, no J, is
included; the total number of edges is unchanged.

2. Compute the difference As of two-stars in the two graphs,
i e As = #8(G1) - #s(G*). If & denotes the latest estimate of
o, then if &As<0, set Gy= G*. If GAs > 0, set Gy = G* with
probability exp(-86As), otherwise Gp = G, 1 e the new graph is
equal to the old one.

3. Simulate a new Markov graph by starting again from step no

In order to stabilize the distribution of the number of two-
stars, it is recommended that, say, 1000 graphs are simulated
in an initial sequence. These first graphs are not used in the
later computations. Furthermore, it is very important that the
simulations are not too time-—-consuming, for the method to be

used in routine analysis.
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5 RESULTS

5.1 Introduction

The results obtained have been very promising. The most
positive result is that the ML-estimate of o has been obtained,
not by any graphical method, but as one numerical result.
Furthermore, it has been possible to compare the results with
the true ML-estimates for some graphs by means of complete
enumeration. It can also be concluded that the pseudo-
likelihood estimates using logistic regression differ
considerably from the true values. For larger graphs,
comparisons have been made by doing an extremely large number
of Markov simulations and by comparing the results found

graphically from the curve (¢,Es(s)) in the literature.

5.2 Comparisons with complete enumeration

It is considered not practical to obtain a complete enumeration
of the graphs when the number of vertices is larger than 7.
Here a graph with n=7 vertices and r=12 edges is studied. The

n 7
() ()
total number of graphs of that size is given by r =\1p /%

The number of two-stars s varies between 30 and 39, see Table

5.1. The mean value of s when o=0 is 33.
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No of No of
two-stars graphs

30 19 355
31 45 360
32 71 190
33 48 055
34 51 030
35 27 090
36 18 585
37 8 190
38 4 200
39 875
Total 293 930
Table 5.1:

The exact distribution of two-stars for a (7,12)-graph.

By computing Eg (s) for 0=-2.50(0.01)2.50, the true ML-estimates
can be obtained. These are shown in Table 5.2.

No of ML-esti-
two-stars mate of o
30 Not defined
31 -0.978

32 -0.350

33 0

34 0.257

35 0.486

36 0.727

37 1.038

38 1.597

39 Not defined
Table 5.2:

True ML-estimates of o for a (7,12)-graph given different
number of two-stars.

The relation between o and Es(s) is shown in Diagram 5.1, which
is the same curve from which the ML-estimate of o can be found
by the graphical method suggested by for instance Frank and
Strauss (1986).
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Diagram 5.1:
The relation between o and Es(s) for a (7,12)-graph.

However, the stepwise method gives direct the numerical values
of the ML-estimate for different values of sy, as is shown in
Table 5.3 together with the starting values using the exact
third cumulant. The pseudolikelihood estimates obtained from
the logistic regression approach and the true ML-estimates are
also given for a comparison.

No of ML-esti- Starting Stepwise Pseudo-—
two-stars mate of o value method estimate
30 Not defined Not defined Not defined (-)

31 -0.978 -0.970 -0.979 (-1.6)
32 -0.350 -0.352 -0.355 (-)

33 0 0 0 -0.390
34 0.257 0.255 0.258 -0.077
35 0.486 0.465 0.487 0.182
36 0.727 0.648 0.730 0.433
37 1.038 0.812 1.034 0.736
38 1.597 0.962 1.612 1.182
39 Not defined Not defined Not defined (-)
Table 5. 3:

Comparisons between different estimates of o.
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It can be seen that the pseudolikelihood estimates are far away
from the true ML-estimates, even in the central part of the
curve. Furthermore, it may happen that the estimation does not
converdge. The independent variable in the logistic model will
be the difference Asjj of the number of two-stars when Yj4=1
instead of Y;4=0, cf section 3.4. If there exists a Asjj-value
such that for all Asjj-values less than this value, the edge
indicators Yjy all take one specific value, e g 1, while for
Asjj-values greater than this value, the indicators all take
the opposite value (here 0), then according to Haberman (1974)
p 315, this is a necessary and sufficient condition for the ML-
estimates of the logistic model not to exist.

It is worth to be noticed the very close agreement between the
estimates from the stepwise method and the true values. This
will be true in the whole o-interval. Furthermore, for most
values of the number of two-stars, the starting value itself
will be very close to the true value. It will even be better
than the estimates from the logistic regression approach.

The computer runs have been performed on a PC 386 with a math-
processor. The running time for the estimation is dependent on
the number of steps to obtain the necessary accuracy. For the
first approximative value besides the starting value, 100000
simulations are performed. For the following values, the number

of simulations increases with 50000 in each round.

The logistic regression has been performed by using the program
LR (Stepwise Logistic Regression) in BMDP and a specially
written program for only two parameters in the logistic model.

The computer program for the stepwise method is written in
Fortran 77. All graphs up to 30 vertices and with an arbitrary
number of edges can be handled by the program. Furthermore,
graphs with 31-40 vertices can be handled unless the number of

edges is not too extreme.
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6 DISCUSSION

The estimation of the only parameter o in the pure clustering
model has an analogue to the parameter T in the pure

transitivity model
P(G|r) = exp(Tt)/Z exp(tt)

where t is equal to the number of triangles in the graph. The
estimation methods for t suggested in the literature are the
same as for the clustering parameter, namely simulations of
Markov graphs to obtain a curve E¢(t) against T and use of
pseudolikelihood estimates from a logistic regression
respectively. It can be expected that the methods suggested
here can be applied for the transitivity parameter too. This

will be a task for the future research.
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