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ON IDENTIFICATION OF TRANSFER FUNCTION MODELS

by P-O Edlund

SUMMARY

Different ways to identify (preliminarily estimate) the impulse response
function of the Box & Jenkins transfer function model are discussed. The
discussion is based on the situation when there are several input
variables that are correlated with each other. It is found that most of
the methods proposed are unsuitable, some are not reliable when there are
correlated input variables, and some are expensive or difficult to use.
Therefore an extension of a regression approach used by Pukkila (1980) is
proposed. The new approach is based on the solution of some problems
connected with the application of the regression method in our particular
situation, namely the multicollinearity problem and the problem of
autocorrelated residuals. It is found that the use of biased regression
estimators on variables transformed with respect to the noise model
should give better estimates than the usual ordinary regression
estimator. To test the new approach a simulation experiment has been
designed and performed . The results from the simulations indicate that
the proposed method may be of value to the practitioner. It gives
estimates with smaller mean squared error and lower estimated standard

€rror.

This is a revised version of a paper presented at the workshop on "Time
Series Analysis in Management” at the European Institute for Advanced
Studies in Management, Brussels, November 26-27, 1981, and at the second
"International Symposium on Forecasting” held by the International
Institute of Forecasters, Istanbul, 6-9 July, 1982. An earlier version
of the paper titled "Identification of the Multi-input Box-Jenkins
Transfer Function Model” has also been published in the Journal of
Forecasting, p 297-308, vol 3, 1984. The main additions here are found
in Sections 5.4 and 5.5.

KEY WORDS: Time series Transfer function model Idéntification
procedure Biased regression Monte Carlo
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1. INTRODUCTION

In economic time series analysis we frequently work with models where it
is necessary to include lagged values of the independent variables to
make the model realistic. If we e.g. study the relationship between
advertising and sales it is reasonable to assume that this month’s sales
will be effected not only by this month’s advertising but also by the
advertising expenditures during previous months. In econometrics this
possible relationship between past and present advertising and present
sales could be represented by means of e.g. Almon-lags, Koyck schemes or
rational lag distributions (see e.g. Johnston, 1972, ch 10). (These
schemes are called "distributed lags").

If we do not have a relevant theory that explicitly tells us the shape of
the lag structure it has to be estimated by a trial-and-error method.

Even if an acceptable lag scheme is eventually found there will probably
be autocorrelated residuals which will violate the basic assumptions of

the regression model.

To avoid these difficulties the transfer function models described by Box
and Jenkins (1976) could be used. Their approach gives us a technique
for identification of a proper model and allows us to include a model for

the residual structure.

Unfortunately their preferred identification procedure was developed for
the case when there is only one independent variable (or when the
independent variables are mutually uncorrelated). In economic time
series analysis this is unlikely to be the case and for that reason it is
interesting to try to find another method for identification which will
work well when there are several independent variables which are

intercorrelated.

The purpose of this study is to investigate an extension of a regression

method, proposed by Pukkila (1980), for preliminary estimation of the



impulse response function of the transfer function model in the
identification phase of building a transfer function model. This
extended method will be useful when the input variables are correlated.
(Note: In the following., unless otherwise stated, the term
identification will be used as a synonym of preliminary estimation of the

impulse response function.)

To investigate the possible benefits of the extended method a simulation
experiment has been performed. The model used is from Pukkila (1980).

Outline of the paper:

In Chapter 2 the Box-Jenkins transfer function approach is presented and
some methods for impulse response function identification are discussed.
Chapter 3 deals with the regression method and the solution of the
multicollinearity problem by biased regression, and how to adjust for
autocorrelated residuals. A suggestion for an extension of Pukkila’'s
regression method, which could be used when the input variables are
correlated will be described in Chapter 4. To explore the possible
benefits of the new method a simulation experiment has been performed.
The outline of the experiment and the results will be reported in Chapter
5. Some concluding remarks will finally be given in Chapter 6.



2.  TRANSFER FUNCTION MODELS

The use of univariate models for description and prediction of economic
time series has been criticized by econometricians because the ARMA
models could be used without understanding of the underlying economic
system and that ARMA models could not be used to predict future values of
a series when the system has been "shocked"” (e.g. when an extreme value

of an exogenous variable has occured).

To overcome this criticism, Box and Jenkins transfer function models
(1976, Ch. 11) may be used instead. These models resemble ordinary
regression models but have the advantage of an explicit noise model which

allows the residuals to be autocorrelated.

A transfer function model with one input variable, X, . may be split into

two components following Jenkins (1979),

= +
Ye = U v 0y

where Y, is the dependent variable (suitably differenced/transformed to

be mean and variance stationary), u, contains that part of Y, which can

t
be explained exactly in terms of X, (suitably differenced/transformed to

be mean and variance stationary) and n, is an error term which represents

t
all "missing” x variables plus the pure noise.

The relationship between x_ and u, can be expressed by a linear dynamic

t
relationship of the kind,

Uem Oqup g7 m B L S 00Xy, T 01X TeeT OgX o
l1.e.,
WA~w, B-.. .- Bs
0 1 s _ w(B) _
Ye T Xt-b = 5(B) Xe-b = P(B)x;



where v(B) = %%%%'Bb, B is the ordinary lag operator, w(B) is a "moving
average" operator, §(B) is an "autoregressive" operator and b is a pure
delay parameter which represents the number of complete time intervals

before a change in X, begins to have an effect on Y-

The transfer function »(B) is a rational lag structure which may

represent any linear dynamic relationship between x, and y, to any

t
specified degree of accuracy. This formulation of the transfer function

weights has also been used in econometrics, see e.g. Jorgenson (1966).

In general differently differenced input and output variables may be

used.

n_ may be replaced by an ARMA(p.q) model of the form

where ¢(B) is an autoregressive operator, 6(B) a moving average operator
and a, a white noise series. If n, is eliminated between the two
expressions above a transfer function-noise model is obtained,

(2.1) y,=c¢+ w(B) + 8(B)

5(B) “t-b T ¥(B) 2t
When there are more than one input variable, say m variables X1¢r Xopr
e Xoeo the expression above is easily generalized to
m w_ (B)
- P it 8(B)
(2.2) Y, =¢ +j§15j(B) xj.t—bj + o(B) 2t

It is also possible to allow the series to be seasonal.

It is easy to show that the ordinary regression model is a special case
of the more general model (2.2) above.



2.1

Identification of transfer function models

Box and Jenkins (1976, p. 378) suggest the following identification

procedure:

(1)

(2)

(3)

(2.3)

Derive rough estimates vj of the impulse response weights.

Use the estimates vj to make guesses of the orders s and r of
the right-hand and left-hand operators, w(B) and 6(B)., and of
the delay parameter b.

~

Substitute the estimates Uj in the equations

vy = 0 J<b
vy = 51vj—1+ 62Dj—2+"’+ Grvj_r+ @y j=0b

= 61vj_1+ 62Dj—2+"'+ 6rvj—r— wj-b J = b+l,b+2,...,bts
vy = alvj_1+ 62vj_2+...+ 6rvj—r J > bts

with values of r, s and b obtained from (2) to obtain initial

estimates of the parameters § and w in §(B) and w(B).

If the true v, values were known, b, r and s may be guessed using the

following facts. The response weights consist of

(1)

(2)

(3)

b zero values DO' Dl’ e va_1

a further s-r+l1 values Vpe Dpiqr oooe Dpae o following no fixed

pattern (only if s 2 r)

values v, with j 2 b+s-r+l1 which follow the pattern of an r:th

J

order difference equation which has r starting values Viss’

vb+s—r+1'

In Fig. 2.1 some common forms of &(B) and w(B) and the corresponding

v(B)

w(B)/5(B) are shown. Usually the orders of 6(B) and w(B) are O, 1



r,s,b| Transfer function Impulse response, vj vj J
0,0.b| Y, = moBbXt 5] 0 j<b
b > j| wo j=b
0 i>hb
_ v.1 0 j<b
0.1,b| Y, = (wo-w:B)BX, j | o s
b ’J-mi j=b+1
0 j > b+l
_ 2 v 0 i<hb
0.2,b| Y, = (wo-w;B-wB2)BX jI | | A P
b > o, j = b+l
‘(1)2 j=b+2
0 J > b+2
1,0.b| (1-6,B)Y. = woB’X DjI | | 0 i<hb
t t llll-\‘ 3
b > J Yo i=bh
61Dj—1 ji>b
_ _ v 0 J<b
1,1,b| (1-5,B)Y, = (wo~w:B)B’X, JI | ’ T I PO -
b 61w0—w1 J= b+l
§1yj_1 J> b+l
s n2vw b 0 i<hb
2,0,b| (1-5,B-5:8%)Y, = woBX, jI I T oo dcw
- >
61Dj—1+52Dj—2
i>hb
5 n_s 2 _ D, 0 j<b
22.0] (1-0,8-0:8")Y, - R W TN B B
(mo—wiB—szz)BbXt b b10o~wy  j=btl
(61+wz)wo=6,0,
~Wg J=b+2
61v 1+62vj_2
Jj > b+2

Fig. 2.1. Examples of impulse response functions from transfer functions

r S
of order (r,s.b), (1-6,B-..-5 B")Y, = (ay~,B-..~ B%)BX .
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or 2.

When the noise model is included in the transfer function model, a
combined transfer function-noise model is obtained. The noise will of
course "disturb” the empirical response function in Fig. 2.1. We
therefore need a "good” method for estimating v»(B), a method that will
give efficient estimates of v(B). The method should also be easy to use
and not too expensive in computer time. The aim of this study is to
investigate some methods for estimating the impulse response function
(transfer function) that have been proposed. Of special interest is the

case when there are several correlated input (x) variables in the model.

The "true" identification problem of step 2 and 3 above can be solved in
different ways. That part of the identification phase will not be

discussed further in this study.

2.2 Methods for estimating the impulse response function

In their book, Box and Jenkins discuss three methods for estimating the
transfer function weights. Two of these methods are time domain methods,
the regression method (see Chapter 3) and the prewhitening-cross-
correlation method (Section 2.2.1). The third method is a frequency
domain method, the cross spectral analysis method (Section 2.2.3). They
found that the regression method had several disadvantages and that the
prevhi tening-crosscorrelation method was to be preferred. However, they
only discuss the case when there is only one input variable. There have

also been some other methods proposed or used in practical applications.

Priestley (1971) proposed a method, the covariance contraction method
(Section 2.2.2) that is similar to Box and Jenkins' prewhitening-
crosscorrelation method. In practical applications the transfer function
model could be identified by fitting a model that contains too many (or
too few) parameters (Section 2.2.4). By trial-and-error the "right"”

model will eventually be found.
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2.2.1 The prewhitening-crosscorrelation method

In order to study the relationship between x and y, the cross covariance
or the cross correlation coefficients at different lags may be computed.

The theoretical cross covariance coefficient between x and y at lag k is

(2.4) 1xy(k) = E((xt—ux)(yt+k—uy)) k =0, #1, 2,

and between y and x at lag k

(25) 7 (1) = BB (X i) k=0, £, #2,

In general, 1xy(k) # 1yx(k). However, since 1xy(k) = 7yx(—k) only one

function 7xy(k) for k = 0, %1, +2, ... is needed. This cross covariance

function is not in general symmetric about k = 0. The function

-
~~

k)

il
y

i

(2.6)  p, (k) = k =0, +1, £2,

XQ

is called the cross correlation function. In practice these functions are

estimated from

1n—k _ _
;;fl(xt—x)(yt+kjy) k=0,1,2, ..., n-1
2.7 k) =
27 e (k) =
n+k _ _
H;fl(yt—y)(xt_k—x) k=0, -1, -2, ..., -n+l

where x and y are the means of the x series and y series, respectively.

The cross correlation function is then estimated by

c_ (k)
(2.8) r_ (k) = X~ k =0, #1, £2,
Xy sxsy

wvhere s_ = c (0)1/2 and s = c (0)1/2.
X XX y yy
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If x and y are ergodic processes, rxy(k) dies out fairly rapidly.

To obtain an estimate of D, we could compute the regression coefficient
of Yy, on X . This coefficient may be a poor estimate of Dy partly
because of the autocorrelation in the x variable. To overcome this

problem Box and Jenkins proposed the following method.

If the input follows a white noise process, the regression coefficient
would be a fairly good estimate of b - When the input follows some other
process it could be transformed to white noise by a linear transfor-
mation. If the same transformation is applied to the output series both

variables have been prewhitened.

It is assumed that the input process has been suitably differenced to be
stationary. Then the differenced series can be represented by an
ARMA(p,q) model

(2.9) ¢, (B)(x,h) = 6, (Ba,

or &I B (xm) = a,

The noise series a, is then a close approximation to an uncorrelated

vwhite noise series. Applying the same transformation to the stationary

series Y, gives

-1
(2.10) B, = 6, (B)4, (B) (v, n,)-
The transfer function-noise model may then be written as

(2.11) Bt = v(B)at +te,

where €, = G;I(B)¢X(B)nt is the transformed noise series. Since a  is

white noise and n, is assumed to be independent of the input process, it

is possible to obtain the coefficients vj from
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7 o(k)
(2.12) o, = -2~ k=0, 1, 2,
g
a

where 1aB(k) is the cross covariance at lag k between a and B.

Alternatively (2.12) can be written as

k
(2.13) v =p—“’iﬂ3- k=0, 1, 2,

k o
a

In practice vy is estimated by

~

(2.14) v

s
. = EE.. r oK) k=0, 1, 2,

a

When there are more than one input variable, the prewhitening technique

can again be applied, if the input processes are not cross correlated, to

A

give the estimates ij‘ for k=1, 2, ..., mand j=0,1, 2, ... . If
some or all input processes are cross correlated, the prewhitening
technique is not directly applicable. For an example, see Damsleth

(1979).

In the case of one input variable, the estimate ;k could be thought of as
a regression coefficient of y, on the variable X k- If X, is
autocorrelated the x variables oo X g0 coen Xipo . will be
correlated. This means that we will have multicollinearity between
regressors. On the other hand, if the x variable is prewhitened as

described above, the regression variables x , x .. will

t' Xe-10 0 Xk
be made orthogonal to each other.

2.2.2 The covariance contraction method.

This method suggested by Priestley (1971) is an approach similar to that

of the prewhitening method described above.
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Priestley suggests that both X, and y, are prevhitened by fitting

univariate ARMA models to each process. This leads to

(2.15) & = 6 (B)4,(B)(x,h,)
and
(2.16) =6 (B} (B) (v, )

where a, and n, are white noise processes. Now a transfer function model

can be fitted to the residuals

(2_17) nt + plnt—l + ... + pnnt_n = qoat + qlat_1 + ... + qmat—m + et

or P(B)nt = Q(B)at +e,

The corresponding transfer function model for x, and Y, is then‘given by

t

(2:18)  P(B)O, " (B), (B) (v ) = Q(B)O, (B)4, (B)(x, 1) + e,

or B(B) (v, #,) = A(B)(x,h,) + N,
where B(B) = P(B)¢y(B)9x(B)
A(B) = Q(B)4,(B)6, (B)
N; = Gx(B)Gy(B)et

The main reason for this approach is that the structures of the operators
A(B), B(B) depend on both the autocorrelation and cross correlation
structure of X, and Y- When individual models are fitted to X, and Y,
the autocorrelation structures are removed and, therefore, it is
reasonable to assume that the form of the operators, Q(B) and P(B), will

be much simpler than the form of A(B) and B(B).

Then the fact that n, and a, are white noise processes is used when the

t
cross covariance function is used to indicate the forms of P(B) and Q(B)
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as follows. If

(2.19) &, = P(B)n,

then

(2.20) Et =que, tqa _  t+t...+qa +te.

The cross covariance function between Et and a, is given by
q k=0,1,...., m

(2-21) pfa(k) ) E(at§t+k) ) { 0 otherwise

This means that the cross covariance function at lag k is simply the
coefficient Q. and when Q(B) contains a finite number of terms, pfa(k)
will be zero, except for lags k =0, 1, 2, ..., m. On the other hand the

cross covariance function between N, and a na(k)' will not in general

tl
vanish after a finite number of terms since the operator (P_I(B)Q(B)), in
general, will produce an infinite series in powers of B. Luckily, there

is a simple relationship between pna(k) and pfa(k)’
2.22 k) = P(B k
(2.22)  pg,(k) = P(B)p (k)

(where the shift operator B acts on the variable k). Therefore, P(B) may
be regarded as the operator which "contracts” the cross covariance

function, pna(k)’ into the function pfa(k)'

In practice the estimated cross covariance function, rna(k)’ is used and
a suitable form of P(B) can be found by seeking the filter which causes

the function rna(k) to decay quickly to zero.
When the form of P(B) is found, the form of Q(B) may be determined by
inspection of the contracted cross covariance function, rEa(k)' (Only

lags for which rfa(k) differs significantly from zero are of interest.)

If there is a pure delay between the two series, some of the first q; are
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Zero.

When P(B) and Q(B) have been determined, the structure of B(B) and A(B)

can be found by polynomial multiplication.

This method does not seem to be superior to the prewhitening-cross
correlation method. In fact, the identification of P(B) seems to be a
difficult task in practice (see Liu and Hanssens, 1982).

Haugh and Box (1977) used a similar approach. They estimated a, and n,

as Priestley, but then they used the Box and Jenkins cross corrzlation
method to obtain an estimate of the impulse response function. The
identified model was then combined with the models for X, and Y, to
obtain the transfer function model.

Fask and Robinson (1977) generalized Priestley’s approach to multivariate

dynamic models.

2.2.3 The cross spectral analysis method

Box & Jenkins (1976, Appendix All.1) also give an identification method
that does not require prewhitening of the input. This method is based on
spectral analysis. It could also be extended to multiple (cross

correlated) inputs.

They redefine the transfer function v(B) so that it could have non-zero

impulse response weights v, for k a negative integer, so that
k

(2.23) o(B) = 3 ng"

=z e00

Then if the transfer function-noise model is

(2.24) Y = v(B)xt +n
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the theoretical autocovariance function between X, and Y, is

o
2.25 k) = 3 v (k-] = 0, %1, #£2,
( ) 7xy( ) j=_mv37xx( 3) k =0, 1, £
Let
ot k
(2.26) +Y(@B) = 3 ~+_(k)B
=—wxy

denote the cross covariance generating function. Then, multiplying

throughout in (2.25) by Bk and summing gives
(2.271)  ¥Y(B) = v(B)¥™™(B)

XX . . . . .
where ~ is the autocovariance generating function. Substituting

B = e 12 int0 (2.26) and (2.27) gives

. P (f
(2.28) u[e‘lz"f _ Byt Ll l

P (f) 2> 2

where

- (] .
(2.20) o[e72] L gyt o 3y IRMIK

k=—w

pxy(f) is the cross spectrum between input and output. (2.29) is called
the frequency response function of the system and is the Fourier

i2nf

transform of the impulse response function. Since vle is complex

it can be written as a product involving a gain function G(f) and a phase

function ¢(f). If v[e_i2"f] was known, it would be possible to obtain

the impulse response function v from
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172

(2.30) = Iv[e-i2wf]e12wfdf
-1/2
—i21rf]

In practice, v{e has to be estimated. The integral in (2.30) can

be replaced by a finite sum.
It is also possible to estimate the noise autocovariance function 1nn(k).

For multiple input transfer function models with m input variables it is
possible to extend the method above. Let us assume, that after

differencing the transfer function-noise model may be written as

(2.31) Y, = DI(B)xl,t + ...+ Dm(B)xm,t +n,
Multiplying throughout by xl,t—k' x2.t—k’ e e xm.t—k in turn, taking
expectations and forming the generating functions, the following system

of equations is obtained:

X,y X, X X X,
v @) = o, )y V1(B) + ... + v (B)r 1 (B)
(2.32)
b X_X X X
2™ (B) b B}y " 1(B) + ... + v (B)r " "(B)
Substituting B = e-'i2.'rf into (2.32) the spectral equations are obtained

Py y(£) = B (D), o (8) + oo 4 Hy(DRy o ()
(2.33) .
me§(” = B (E)p, , () + oo s Hm(f)p,;mxm(f)

where Hj(f) = vj[e_izvf] can be estimated and substituted into (2.30) to
give the vjk—weights. This method has been described in Pukkila (1979).

He has also performed some simulations to investigate the properties of
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this method. From his results it seems as if this method will work well
even when the input processes are cross correlated. One disadvantage
with this method is the computational effort needed. For the
practitioner it could also be difficult to understand the method since we

are partly working in the frequency domain.

2.2.4 The under-/overfitting method

If we have a good theory it may be possible to specify a tentative model.
We may then estimate the model and test the coefficients and residuals to
see if the model is adequate. If not, it can be modified according to

the result of the diagnostic checking.

A slightly different approach would be to overparametrize the model and
then delete the parameters that are non-significant. This approach may
lead to a non-parsimonious model, there can be common factors in &(B) and

w(B) which may not be detected.

If, on the other hand, the model is underparametrized, parameters are
added as they are needed. Also in this case it is possible to stop
before the "best” model is reached.

If the number of input variables is large, there may be many models to be

estimated and we are not even sure we got the best one.
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3. THE REGRESSION METHOD

Box and Jenkins (1976, p 379) also discuss a simple regression method for
identification of the impulse response function without prewhitening.

They write the model (2.1) without a constant as

(3-1) vy =g+ vXp ) F VX g ...+

where Veo X and n, are stationary processes with zero means. Then,

t
multiplying throughout in (3.1) by X 1 for k=0, 1, 2, ... gives the

following equations

(3.2) Xeade = Yo%eXe F P1¥eiFe-1 Tt XMy k =0,1,2,...

Taking expectations in (3.2), on the assumption that X is uncorrelated

with n, for all k the following set of equations is obtained
(3.3) 1xy(k) = vovxx(k) + vlwxx(k-l) + ... k=0,1,2,...

Assuming that Dj = 0 for k > K, then it is possible to write the first

K+1 equations of (3.3) as

(3.4) Ty = Fxxv
where
1xy(0) 7xx(0) 1xx(l) R 1xx(K) Vo
L. 7xy(1) _— 1xx(1) 7xx(0) cen WXX(K—I) . v,
Xy : XX : : : :
1xy(K) WXX(K) 7xx(K—1) ce 7xx(0) vy

To estimate v, 1xx(k) is replaced by cxx(k) and 1xy(k) by cxy(k)’
Box and Jenkins point out that these equations,

a) do not in general provide efficient estimates
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b) are cumbersome to solve
c) in any case require knowledge of the point K beyond which vj is

effectively zero.

If there are more than one input variable equations (3.3) and (3.4) could

easily be extended to include several input variables.

In addition to Box and Jenkins’ remarks on this method it could be seen
that if the input variables are autocorrelated and/or cross correlated
then the covariance matrix rxx will be multicollinear, i.e. if we view

the lagged variables x X

1,67 " X1 K X9, g0 v Xg gk e .t
N different variables these "independent’ variables will be
correlated. Therefore the estimate v will have larger variance than if
the inputs were white noise and not cross correlated. Even if Txx is
orthogonal there would still be a problem with autocorrelated residuals
from n..
To avoid these problems, which may be of great importance when input
variables are auto~ and cross correlated, the x variables could be
transformed with respect to the noise model and then some form of biased
regression could be used to reduce the effects of multicollinearity. The
problem of multicollinearity and its solution is discussed in the two
following Sections. The problem of autocorrelated residuals is discussed

in Section 3.3.

From knowledge of the underlying system it may be possible to specify
which lags v, may be non-zero. This may decrease the order of the T

matrix.

Pukkila (1980) investigated this regression method and found that the
estimates were surprisingly good for systems where the input variables
were moderately cross correlated. Therefore, it is of interest to study
how this method works when the input variables are more seriously cross

correlated.



- 929 -

Liu and Hanssens (1982) solved the multicollinearity problem by
transforming the y and x variables by a common filter. This filter was
constructed to eliminate AR factors with roots close to one in the ARMA
processes for the x variables. To avoid the effects of autocorrelated
residuals the transfer function weights were estimated with generalized

least squares (GLS) rather than ordinary least squares (OLS).

Erickson (1981) used the ridge estimator to estimate the transfer
function weights in a "direct lag model” for the famous Lydia Pinkham
Data. He used only one input variable and did not correct for

autocorrelation in the resdiuals.

3.1 Multicollinearity

In general, there will be correlation between the variables X) o0 ¥ e
cies Ko 40 Xg o g ceee X0 X 40 --. - The correlations will be of
two different kinds,

a) autocorrelation between X5 ¢ and X{ ¢4k 1% 1, 2, ..., m

b) cross correlation between Xt and Xiel. t4k T 1, 2, ,m; 1 #0

This means that the independent variables are not independent, i.e. there

is a multicollinearity problem.

The main consequences of this are (Johnston, 172, p 160):

- The precision of estimation falls. This means that the specific
estimates may have very large errors; these errors may be highly
correlated, one with another, and finally, the sampling variances of
the coefficients will be very large. (it is also possible that the
estimated coefficients have the wrong signs.)

- We may be led to drop variables incorrectly because their
coefficients are non—-significant.

- Estimates of coefficients become very sensitive to particular sets of

sample data, the addition of more data may produce large shifts in



some of the coefficients.

Several ways to detect and test for multicollinearity in the data matrix
have been discussed in literature, see e.g. Webster et al (1974) and
Haitovsky (1969).

Several "remedies™ have also been proposed to decrease the bad effects of
multicollinearity, see e.g. Intriligator (1978, Ch. 6), Silvey (1969) and
Farrar and Glauber (1967). Some of them are not applicable when economic
data are used, and in particular not possible to use when estimation of

the impulse response function is of interest.

The author therefore proposes the use of biased regression to reduce the

effects of multicollinearity.

The basic idea of biased regression is that if a small bias is introduced
in the estimate it is possible to reduce the variance of the estimate
considerably. Then the mean squared error, MSE, will be lower for the

biased estimator than for the OLS (Ordinary Least-Squares) estimator.

(MSE = E{(p-v)2} = E{((p-Ev)+(Ev-0))2} = Variance + Square of bias.)

Various biased estimators have been described in literature. Among them
the principal component estimator and the ridge estimator seem to be of
particular interest. Other biased regression estimators have been
proposed by Marquardt (1970) (Generalized Inverse Estimator), James and
Stein (1961)., and Webster, Gunst and Mason (1974) (Latent Root

Estimator).
3.2 Biased regression methods
In this Section two of the biased estimators that have been proposed and

used to decrease the effects of multicollinearity will be briefly

described.
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3.2.1 The principal component estimator

If the idependent variables are correlated then it is possible to
describe most of the variation in the dependent variable by a subset of
the independent variables. In principal component regression linear
combinations of the x variables are constructed, principal components,
and then these new variables are used in the regression. The principal
components are chosen so that they are pairwise uncorrelated and that the
first component will have the maximum possible variance, the second the
maximum possible variance among those uncorrelated with the first, and so

forth. The first component can be written as,

(3.5) Z1p T 31%: F 491%] -1 + ...+ 1%, t-k t=1, ..., n

where h = m*(k+1) (h is the number of independent variables, including

lags of the original variables). In matrix form,

(3.6) z; = Xa1
Usually a; is normalized by setting aia1 = 1. This means that z )z, =

171 ~
A a = A, where Al is the largest eigenvalue of the X'X matrix.

12121 =N
Continuing in this way gives, in matrix form,

(3.7) Z = X+ A
(nxh) (nxh) (hxh)

where A = (al, Ags ees ah) is a matrix of eigenvectors and Z is a nxh
matrix with h principal components. Transformation of the x variables by
the A matrix gives the least squares solution of v, the transformed

coefficients, as

>

(Z’Z)—IZ’y or

-2
Il

(3.8)

>
—

170y



where A is a diagonal matrix of size hxh with Al’ R2, cee Ah on its

A A

~
diagonal. To obtain v the transformation is reversed and v is given as v

= Av. If X’X is orthogonal all Ai are equal to one. Even though the

~

data matrix A is orthogonal the estimates in v are as imprecise as
before. To improve on the OLS estimates some of the principal components
have to be deleted (meaning that the effective rank of X'X is reduced).
This will introduce a bias, but if the data are highly collinear the

A

reduction in the variance of the estimate v will be larger than the
effect of the bias. There are several ways to determine the number of

and which of the principal components to delete:

a) The v values could be plotted for different numbers of deleted
variables. This plot is called a Principal Component Trace by Vinod
(1974). From this trace it may be possible to find the point where

the ;’s are stabilized and choose the corresponding number of
principal components.

b) Marquardt (1970) discusses the principal component estimator and its
generalization to non—-integer ranks. He calls his estimator the
Generalized Inverse estimator. He proposes a criterion for choosing
an integer rank that will include "substantially all” of the
variation in the x variables. The criterion is that the smallest

value of r for which

h
3 kj
3.9) T <o
A
j=11
is chosen, where Al > A2 > ... 2 Ah' Typically w is Selected to be

10™°, or in the interval 10 ! to 1077.

c) Massy (1965) gives two alternative criteria for deleting components,

(i) Delete the components with the smallest eigenvalues.
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(ii) Delete the components that are relatively unimportant as

predictors of y, i.e. the components with the smallest value of

; in equation (3.8) are deleted.
There is no reason why the two criteria should give the same result
because y need not be highly correlated with components having large
eigenvalues. Greenberg (1975) summarizes this, "including components
with small eigenvectors increases variance, while including such

components, if correlated with y reduces bias".

The principal component method may be very useful in our case since there

are a large number of variables. If the rank of the X'X matrix is

reduced it will be easier to solve the equation (3.8) for ~.

3.2.2 The ridge estimator

Hoerl and Kennard (1970 a,b) introduced a biased regression method called

Ridge Regression. Their estimator may be written as,

A

i} -1 b}
(3.10)  »p = (X'X+kI,) X'y

i.e. a small quantity k > O is added to the diagonal elements of X'X
before inversion of the matrix. They showed that the sum of MSE's for

individual parameters of the ridge estimator is always lower than the

corresponding MSE for the OLS estimator for some k < 02/12 (where Vo
is the largest v from regression on principal components as described in

the previous Section). The summed MSE for the OLS estimator is,

>’|H

. h
3.1) EC3@)) =23

i=1 i

and for the ridge estimator
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2
| R A, A2
(3.12)  E(L2(vp)) = oz — Lo+ i’s — 1o

(Ai+k) (Ai+k)

where the first term on the right is the variance and the second is the

squared bias. As k - ® the variance - 0 and the bias - v'v. The effect

of increasing k is to force the v, towards zero. Kk "shrinks” the v

vector.

As can be seen from equation (3.11) the effect of multicollinearity is

that the MSE is greatly increased. For an orthogonal X'X Rl = .

1 and E(L?(v)) = h-az. When the multicollinearity is strong at least

some O < Ai << 1. Then E(L%(v)) >> h'a2. It may then be assumed that at

~

least some v, are too large. This may also be seen from the expected sum

of squared coefficients

A A — h
(3.13) E(»'p) = »'» + tr(X'K) = pw 4+ 023 =

i=1 "i
which will be larger than v’v on the average.

This estimator may then be used in our case. However, there is one
problem that has to be solved, the value of k has to be determined.
Since its optimal value depends on the unknown parameters o and v (or v)

k has to be estimated from our data. Unfortunately there is no guarantee

that L?(;R) < L?(S) for our estimated k. Therefore many techniques for
estimating k have been proposed and a number of simulation studies have
been performed to investigate the relative merits of ridge regression v.
OLS regression and of the methods for choosing k. (See e.g. Dempster,
Schatzoff and Wermuth (1977), Wichern and Churchill (1978), Hocking,
Speed and Lynn (1976). Gunst and Mason (1977), Lawless and Wang (1976),
Hoerl and Kennard (1976), McDonald and Galarneau (1975)). Here only some

of the methods are given:
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i) Hoerl, Kennard and Baldwin (1975)

(3.14) k = —5 ; is the OLS estimate of ~

(3.15) k = 2%

iii) Bulcock, Lee and Luk (1981)
Choose k to satisfy

A
1__

3.16 —_—
( ) ()\i+k)2

1
H‘E

iv) Hocking, Speed and Lynn (1976)
(3.17) k=20

v) Hoerl and Kennard (1976)

An iterative version of i) above

(3.18) k., = B2
0 2
2,
1

kK = o > ___fi____;

t s 7:% it (Ai+kt_1) i

-1.30

Stop when —=5L— ¢ 5 = 20(tr(X*X) '/h)
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vi) Hoerl and Kennard (1970 b)

A

The Ridge Trace: R is computed for different values of k and

plotted in a diagram with k on the x-axis and 7R(k) on the y-axis.
The optimal value of k is then determined by inspection. The value

of k for which the ridge trace has stabilized is chosen.

In Leskinen (1980) the results from a simulation study are reported. He
makes the following conclusions (p 78-9): The ridge estimator is more

favourable to the OLS estimator when,

a) the number of explanatory variables increases

b) the degree of multicollinearity increases

c) the signal-to-noise ratio 7’1/02 decreases

d) the direction of the parameter vector changes from the eigenvector
corresponding to the smallest eigenvalue of the X'X matrix to the
eigenvector corresponding to the largest eigenvalue of the X'X

matrix.

The ridge method described above may be called the Ordinary ridge
estimator. The same value k is added to all diagonal elements of X'X.

It is also possible as pointed out in Hoerl and Kennard (1970a p 63) to
have a more general form of ridge regression by replacing k-Ih by K where
K is a hxh diagonal matrix with diagonal elements equal to ki’ i.e. a k
value is determined for each of the explanatory variables. It is then
possible to adjust the bias for each variable. This estimator is called

the Generalized ridge estimator. The optimal value of ki is ki = 02/1?.

As above 02 and 7; are unknown so ki has to be estimated. Hemmerle
(1975) and Goldstein and Smith (1974) have proposed a non-iterative and

an iterative method for estimating the ki respectively.

Since some of the v, may be relatively unaffected by the

multicollinearity it may be wise to add a value ki only to those diagonal



elements corresponding to variables affected by the collinearity. Then
the total bias will be reduced. This estimator, the Directed ridge

estimator has been proposed by Guilkey and Murphy (1975).

3.3 Autocorrelated residuals

A basic assumption in regression analysis is that the residuals are
uncorrelated. If this is not true the OLS estimates will not be
efficient (minimum variance) and ordinary tests of significance can not
be used. There will also be a bias in the estimation of the variance of
the stochastic disturbance term. The OLS estimates are still defined,
linear, unbiased and consistent. Since we want to test the significance
of individual regression coefficients it is important that tests for
autocorrelation are performed and if autocorrelation is found the

estimates are corrected for this.

In regression there have been several methods proposed for dealing with
autocorrelation. These methods, e.g. Durbin’'s method and
Cochrane-Orcutt’s method (see e.g. Johnston, 1972), assume that the
residuals can be described by an AR model of low order (often an AR(1)
model). The technique is to assume and estimate the noise model and then
transform the x and y variables according to the noise model. The
difficulty is to identify and estimate the noise model. The two methods
mentioned above are of two different kinds. Durbin’s method is a
two-step procedure and Cochrane-Orcutt’s method is an iterative method

where the iteration is on the estimation of v and the noise model.

Box and Tiao (1975) used the transformation technique in a case study
where they wanted to estimate an intervention function model. In the
case of transfer function-noise models the variables can be transformed

(if the true model was known) as,
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$(B)y, = 6(B)y; all t '
(3.19)
#(B)x, . . = 68(B)x. . . i=1, ..., m
i,t-] i,t-] =0, .... k

where y; and x; . are the transformed variables. Equation (2.2) can

i, t-j
then be written as

o (B)
(3.20) Yp=¢' + jzlsjtﬁj-xj't_bj +a,

This model may then be estimated by one of the biased regression methods

of the previous Section.
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4. A TWO-STEP PROCEDURE FOR THE IDENTIFICATION OF THE IMPULSE RESPONSE
FUNCTION WHEN THE INPUT VARIABLES ARE CORRELATED.

In this Chapter a biased regression method is presented. The method can
be used to identify the impulse response function when the input
variables are correlated and when the noise model can be described by a
(seasonal) ARMA model. As has been shown in the previous Chapter it is
possible to deal with multicollinearity and autocorrelated resisuals by
biased regression and transformation respectively. Therefore in the
first step the noise model is estimated and the x and y variables are
transformed, in the second step the impulse response function is
estimated by a biased regression estimator as e.g. the principal

component estimator or the ridge estimator.

4.1 Step one: Identification, estimation and checking of the noise
model and transformation of the input and output

variables

To identify the noise model, Box and Jenkins (1976, p 384) suggest that

the noise series n, is estimated by

A ~

(4.1) n =y -v(B)x =y, - VX " VX 4 T DX 5 ...

where the v(B) are preliminary estimates of the impulse response

function. Formula (4.1) may easily be modified to include several input

A

variables. From the noise series n_an ARMA model (or a seasonal ARMA
model) can be identified by the standard procedure of Box and Jenkins.

To estimate the impulse response function it is suggested that one of the
biased regression methods described in Section 3.2 is used. Those
estimators do in general give better estimates of v and better
predictions of future values than the ordinary least-squares estimator.
The identified model is then estimated by e.g. Marquardt's (1963)

non-linear estimation method. The results are checked and if the model
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is inadequate it has to be modified and re-estimated till it is found

acceptable. The so obtained model

(4.2) n, =B 7

t ~ t
$(B)
is then used to transform the original variables Yer Xper v Ko This
gives
(4.3) 6(B)y, = ¢(B)y, all t

G(B)xjt = ¢(B)xjt J=1, .... m all t

4.2 Step two: Estimation of the impulse response function from the
transformed variables y; and x&t

In the second step

(4.4) yt’: =c’ + v +

101, ¢ 11%1,e-1 % 0 Y Ptk T 2¢

is estimated by a biased regression method. In (4.4) the residuals a,

will be (almost) white noise and by using biased regression the bad

A

effects of multicollinearity are decreased. The estimates vij will then
hopefully be good estimates of vij and the significance of the

coefficients can be tested by the standard t-test. From the estimated

A

values vij the transfer function model can be identified as described in

Section 2.1.

If it is believed that the estimated noise model is inadequate, i.e the

estimated residuals, a.. in (4.4) are not white noise, step one can be

repeated with the estimates vij from (4.4) substituted into (4.1). The
noise model is then re-identified and re-estimated, the variables

transformed and (4.4) re-estimated. This procedure can be repeated until

the estimated residuals, a ., in (4.4) are white noise.
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5.  EVALUATION BY SIMULATION

Since it is not possible to evaluate the proposed identification method
of Chapter 4 by analytical methods the author has chosen to perform a

simulation study.

5.1 The model

Of course it is an impossible task to make a complete evaluation of the
proposed procedure by the use of simulation techniques. The results may
be dependent on the model chosen and its parameter values. Therefore the
aim is not at a complete evaluation, but merely at showing the effects
for one model. The model chosen is from Pukkila (1979) and has also been
used in Damsleth (1979) and Pukkila (1980). Pukkila considers two

similar models, here the two input processes model has been chosen

2 -1.3
(5.1) Y, = (2+4B+B )xl,t + (1-.6B) B Xg ¢ * My

where n = at + .75at_1

X106 = %) 1t 2
Xg 0 = 1:20%5 1 = ToXg o + 85,

The processes aj.. a5, and a,_ are normal white noise processes such that

t

a, is uncorrelated with a1t and a2t. and a1t and a2t are correlated with

the covariance matrix 3.
If we expand the model we obtain

(5.2) yp=2x)  F Ky X gt Xy gt Oxy g+ 30k, ot

.+ .0279936x2’t_10 t ... +n,

We are interested in trying to estimate the coefficients in eq. (5.2) by

the use of the regression methods presented in Chapter 3.



5.2 Criteria for comparing estimators

The most commonly used criterion is the MSE criterion which may be

computed for each coefficient or for the whole vector of coefficients.

We have

=2

~

(5.3) MSE(») = E(v-0)"(v-v) = 3 E(p,-v,)”
i=1

where v is the estimated vector of coefficients. The mean squared error
may be thought of as the sum of two components, bias2 + variance. In

this study main focus has been on the total MSE(v) as in (5.3). The MSE

has also been computed for each coefficient.

Another possible criterion is the generalized mean squared error

(5.4) GMSE(v) = E(v-v)'G(v-1)

where G is a symmetric positive semi-definite matrix of order hxh. If

G = Ih we obtain the MSE(v) in (5.3). Usually G = X'X so that the

GMSE(v) is a measure of the predictive ability of the v, is. Since the

primary interest is not in prediction this criterion will not be used.

When the impulse response weights are estimated by regression methods not
only the true values of the viis are of interest, but also their standard
errors (for testing their significance). Therefore estimators which give
low standard errors for the estimated coefficients are of interest. As a

measure of the ability to identify the significant coefficients the

standard error of the virs have been computed.
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5.3 Selected estimators
In Chapter 3 several biased regression estimators were discussed. For
this study two of the more well known estimators have been selected ; the

principal component estimator and the ridge estimator.

For the ridge estimator the k-value has been computed by the method of
Lawless & Wang (1976), i.e.

(5.5) k=

A

where 7 is the OLS estimate of T A, is the i:th eigenvalue and 02 is

i
the OLS estimate of the standardized 02.

The principal component estimator uses the first r principal components
corresponding to the r largest eigenvalues. The value of r has been
determined so that the r components contain at least 99.5 % of the
variance of the 22 standardized x-variables. Another way of choosing the
principal components is to choose the components which contributes

significantly to the explanation of y. There may be some of the

components with small eigenvalues that have significant v:s. This would

have been more time consuming in terms of CPU time.

As a standard of comparison the OLS estimates have also been computed .
For these three estimators, estimates are computed both for the original
data and for the transformed data.

5.4 The experimental design

As was noted in Section 3.2.2 the ridge estimator is more favourable to

the OLS estimator when
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a) the number of explanatory variables increases,

b) the degree of multicollinearity increases;

. 3 td 2
c) the signal-to-noise ratio v’v/0”~ decreases,
d) the direction of the parameter vector v changes from the eigenvector
corresponding to the smallest eigenvalue of the X’X matrix to the

eigenvector corresponding to the largest eigenvalue of the X'X.

In this experiment the effects of changes in b) and c) have been studied
by varying the degree of multicollinearity by using different values of

the covariance between 3. and 3y, and by varying the signal-to-noise

ratio by using different values of 02.

The number of explanatory variables is 22, since lags up to 10 for each
variable have been used. (As can be seen from eq (5.2) the value of

Y5 10 X 0, i.e. the cut-off is after lag 10.). More x variables could
have been included by using more explanatory variables or by using a
larger lag for each variable. Since the ridge estimator is known to be
more superior to the OLS estimator when the number of variables
increases, there is no need to include more variables at this preliminary

stage.

It would be more interesting to experiment with different orientations of
the parameter vector v but that is left for a later study. (The number
of possible combinations of levels on the multicollinearity,
signal-to—noise ratio and parameter vector orientation would soon become

very large.)

The degree of multicollinearity may be varied in two different ways.
First, the intra correlation (autocorrelation) may be changed by changing

the parameters of the two input processes. The coefficient of x

1,t-1
could e.g. be changed to, say, .9. Then the autocorrelation for the X1
series would be increased, i.e. the correlation between Xy ¢ and X; ok

would increase etc..

The second way is to change the inter correlation (cross correlation)

between the two variables. This is done by changing the off-diagonal



element of the covariance matrix 2, i.e. the correlation between a and

1t
ag, is changed.

Since the prewhitening technique seems to be less efficient when the
cross correlations are strong, it is interesting to see if the proposed
method may be an improvement in such situations, and therefore only the
latter way to change the multicollinearity in the X'X matrix has been

used.

In the experiment the following = matrices were used

z=[3 2] z=[3 3] 3 = 3 3.4]
2 4 3 4 3.4 4

which gives the following approximate correlations between a. and 3y,
.58, .87 and .98 respectively. (The variance for a, and the covariances
are not the same as in Pukkila (1979). He used only one I matrix with

the correlation coefficient .612.)

The second factor considered in this experiment is the signal-to-noise

ratio. The ratio has been changed by using different values of 02. 02

= .01, 1 and 25 were used.

Fifty replications were made for each combination of 3 and 02.

The practical work has been carried out as follows:

(The program was written in FORTRAN-77 and run on a PRIME 750 computer,
All real variables have been declared in double precision (REAL»S8).
NAG-routines have been used to generate random normal deviates and to

compute correlations, eigenvalues and eigenvectors.)

a) 150 random normal deviates were generated for each of the two x-
variables and for 50 series of a.
b) The xl—series was computed from the normal deviates. Only the last

100+k values have been used where k is the lag.
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.c) For each covariance matrix
1) the x2-series ﬁas computed
2) the correlation matrix was computed
3) the eigenvalues and eigenvectors were computed
4) the number of principal components to be used was determined so
that the components correspond to 99.5 % of the variation in the
x-variables.
d) For each value of the residual variance and for each replication
1) y, was computed
2) the coefficent vectors and the corresponding variances were

estimated. In matrix form the following relations were used

OLS:
" -1, ~ _ A . . .
ToLs = A 2y, Vors = TAwoLS where T is a diagonal matrix
with the scale factors Sy/sx on
J
(5.6) its diagonal
~ A A 1_:;’ Z'y
2 -1,,4, 2 OLS
V(DOLS) = aOLSTAA AT’ where %LS = “100-25
Ridge:
TRR = K70LS’ Vpg = TA‘VRR where K is a diagonal matrix
with ki/Xi+k on its diagonal
(5.7)
12 7" y-ka?
~ ~2 -1.,,, .0, ~2 RR RR 'RR
V(DRR) = RRTAKA K’A’T’ where ORR = 100=25
Principal component:
;PC = A;IA;X’y, ;PC = TArqPC | where A;l and Ar contain the
first r (largest) eigenvalues
(5.8) and eigenvectors respectively
1_;’ ly
~ > S S ng  177pcZy
V(DPC) = aPCTArAr ArT where %c = “100-55
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e) The x variables and the y variable were transformed with the true,

£)

rather than the estimated, noise model

vy + .75yt_1 =y, or

(5.9)
Ve =¥y = TV
and
Xie + .75xit = X; or
(5.10)
xit = xit - '75Xit—1 i=1, 2

This was done in order to simplify the computations. Of course, in
practice the noise model has to be estimated as described in Chapter
4.

For each estimator and for each coefficient, j, the following

statistics were computed

(5.11) MSE(v). = 2 (v, .-v.)°/50 i=1, ..., 22
A IR & I
- 50 .
(5.12) BIAS(v) ., = 3 (v, .-v,)/50 i=1, . 22
Iy 13
- 50 ‘
(5.13) S(). = I s, ./50 i=1, ..., 22
J oy 1J

where sij is the estimated standard error of regression coefficient j

in the i:th replication.

Then the following statistics were computed

~ 22 ~
(5.14) MSE(v) = = MSE(D)J./22

j=1
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22

(5.15) BIAS(0) = 3 BIAS(S)j/zz
§=1
— ~ 22 A
(5.16) S(v) = 3 S(0)./22
=1

MSE(v) measures the average MSE over all coefficients and
replications, BIAS(v) measures the average bias over all coefficients

and replications, and §Iv) measures the average standard error of the

estimate for all coefficients and over all replications.

In order to compare the suggested procedure and its estimators the

ratios
E§E(u)m §(u)m
(5.17) MSEm e e —— and Sm =
MSE(D)OLS S(u)oLS

where m = RR, PC, OLS(t), RR(t) and PC(t) were computed (t = trans-

formed).

By using the same time series for variable Xy for all simulations and the

same time series for variable X for all replications with a given

combination of values of 2 and 02 the variance of the estimators have
been reduced. This means that the comparisons between different

combinations of 3 and 02 will be less influenced by the fact that only 50

replications were made. By this technique we will also avoid the problem

of having stochastic x variables.



5.5 Results of simulations

Before presenting the summarized results from the simulations the results

for one replication where Py = .87 and 02 = 1 are presented.
1

For this replication the y variable was computed from the two x series
(Xlt and x2t) and from a residual series. The two X series remained the

same for all replications with a given combination of Pa a and 02.
172

Different sets of residuals where used for each replication.

All series were transformed by the true residual model (see Section 5.4)
to reduce the autocorrelation in the residual series and to make the
estimated residual variance from OLS regression an estimate of the true
variance of the residual series. The true models for the transformed

1t and x..  are,

variables, x 9t

—O.Olet_1 + 0.525x1t_2 + a1t

»”
]

Xoy = 0.5x2t_1 + 0.1875x2t_2 - 0.5625x, 5 + a5,
i.e. the orders of the two AR processes have increased from AR(1) to
AR(2) and from AR(2) to AR(3) respectively.

The simulated series are shown in Fig. 5.1. Apart from the 3 series the
original and transformed series look very much the same. Please note
that the scales are different, the transformed series have lower

variances. The series are given in Appendix 1.

In Table 5.1 the autocorrelation and crosscorrelation functions are given
, . X2 . d fairly well to thei

for X1¢ Xorr X1t and Xo¢ They correspon ly 1 to r

theoretical values. (The autocorrelation and cross correlation functions

for other values of Py a, are given in Appendix 2 (simulated) and
1

Appendix 4 (theoretical).) When estimating the impulse response weights

these correlation functions determine the correlation matrix (the X’X
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This can be seen in Fig. 5.2 and 5.3 where the correlation matrices for

the original and transformed variables are shown.

correlation between the original 22 variables (x

1t

Fig. 5.2 shows the

IS S

x2t_10) and Fig. 5.3 the corresponding matrix for the transformed

variables.

x

t t-l t-2 t-3 t-4
1.00 .74 .53 .36 .23
1.00 .74 .53 .36
1.00 .73 .52
1.00 .74
1.00

Fig 5.2. The correlation matrix for the original variables when

*1

t t-1 t-2 t-3 t-4
1.00 -.03 .55 -.04 .26
1.00 -.02 .55 ~-.04
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As can be seen in Fig. 5.2 the "upper"” triangle contains the
L J

autocorrelations of variable x, and the "lower" triangle the

1t
autocorrelations of Xo, - The "square" shows the cross correlations

between the two variables.

The effects of transforming X1 and Xg, may be seen in Fig. 5.3 where
some of the correlations drop significantly. The transformation may be
viewed as a sort of differencing. The effect in this case is a reduction
of the multicollinearity. For the two correlation matrices the
eigenvalues and some other interesting measures of multicollinearity are
shown in Table 5.2. (All correlation matrices and eigenvalues for the
simulated series are given in Appendix 3. Their theoretical values are
given in Appendix 5). From the results in Table 5.2 the following may be

noted:

a) The sum of variance inflation factors are much larger than for an
orthogonal matrix of the same order, about 29 and 8 times resp..

b) The spectral condition number is 1 if the correlation matrix is
orthogonal. This measure also shows that the X'X matrices are ill-
conditioned, especially the first one.

c) Haitovskys test variable is effectively zero for both matrices. This
means that there are a ¥ 100 ¥ multicollinearity in the matrices.

d) A relatively low number of principal components may represent most of
the variation in the x variables. In order not to introduce too much
bias in the principal components estimator the number of retained
components were chosen so that they correspond to at least 99.5 % of

the variation in the x variables.

The estimated regression coefficients for all estimators together with

their theoretical values are shown in Table 5.3.
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Table 5.2. Some measures of multicollinearity for the two correlation
matrices of Fig 5.2 and 5.3.

Original variables Transformed variables
i A, % 3% i A % Py 4
i i
1 5.964 27.1 27.1 1 4.758 21.6 21.6
2 4.935 22.4 49.5 2 3.893 17.7 39.3
3 4.796 21.8 71.3 3 2.942 13.4 52.7
4 1.997 9.1 80.4 4 2.589 11.8 64.5
5 1.109 5.0 85.5 5 1.808 8.2 72.7
6 0.875 4.0 89.4 6 1.343 6.1 78.8
7 0.462 2.1 91.5 7 0.930 4.2 83.0
8 0.364 1.7 93.2 8 0.660 3.0 86.0
9 0.301 1.4 94.6 9 0.648 2.9 89.0
10 0.233 1.1 95.6 10 0.521 2.4 91.3
11 0.186 0.8 96.5 11 0.492 2.2 93.6
12 0.173 0.8 97.2 12 0.468 2.1 95.7
13 0.164 0.7 98.0 13 0.271 1.2 96.9
14 0.143 0.7 98.6 14 0.183 0.8 97.8
15 0.129 0.6 99.2 15 0.121 0.5 98.3
16 0.091 0.4 99.6 16 0.096 0.4 08.7
17 0.034 0.2 99.8 17 0.077 0.4 99.1
18 0.012 0.1 99.9 18 0.074 0.3 99.4
19 0.009 0.0 99.9 19 0.045 0.2 99.6
20 0.009 0.0 99.9 20 0.042 0.2 99.8
21 0.007 0.0 100.0 21 0.021 0.1 99.9
22 0.007 0.0 100.0 22 0.018 0.1 100.0
22.000 100.0 22.000 100.0
Sum of variance inflation factors:
b 1/?\i = 672.40 3 1/7\i = 217.86
The spectral condition number:
AI/A22 = 848.52 RI/A22 = 267.82
Determinant of the correlation matrix:
[X°X] = Aye...ohgy = 4.90423:10 27 |X°X| = A -..."A,. = 3.73064-10 11
= Aty = 4 = At Ayy = 3.

Haitovskys test variable:

x2(231) = 0.000 x2(231) = 0.000
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Table 5.3. Estimates of impulse response weights for all estimators and
the corresponding theoretical weights.

Untransformed variables Transformed variables Theoretical
OLS Ridge PC OLS Ridge PC weights
b0 2.15 2.16 2.35  2.07 2.07 2.27 2.00
vy, 3.00 3.8 3.76 3.97 3.93 3.8l 4.00
Do 1.03 1.0 0.79 1.03 1.01 0.78 1.00
bia -0.09 -0.05 0.20 -0.12 -0.08 0.21 0.00
b4 -0.12 -0.12 -0.07 -0.09 -0.06 0.00 0.00
b 0.11 0.10 -0.02  0.15 0.13 -0.16 0.00
b 0.24 0.22 0.09 0.17 0.16 0.23 0.00
>y -0.03 -0.02 0.20  0.00 0.02 0.19 0.00
bia ~0.22 -0.20 -0.01 -0.08 -0.08 -0.12 0.00
b 0.03 0.01 -0.25 -0.08 -0.09 -0.16 0.00
%110 0.08 0.08 0.12 0.05 0.05 0.06 0.00
Pog -0.07 -0.08 -0.24 -0.07 -0.07 .~0.23 0.00
. 0.01 0.02 0.17 -0.01 0.02 0.19 0.00
Doo ~0.07 -0.05 0.08 -0.06 -0.06 0.04 0.00
Dos 1.02 0.97 0.6l 1.04 1.01  0.67 1.00
Doy 0.57 0.59 0.75  0.52 0.54 0.66 0.60
Do 0.32 0.32 0.33  0.30 0.32 0.53 0.36
Dog 0.06 0.05 0.07 0.12 0.11 -0.10 0.22
Do 0.25 0.23 0.04 0.18 0.16 0.11 0.13
Dog 0.15 0.14 0.07 0.04 0.04 0.14 0.08
Dog ~0.22 -0.20 0.06 -0.05 -0.04 -0.05 0.05
bo10 0.14 0.13 -0.06 0.03 0.03 -0.01 0.03
MSE 0.015 0.013 0.032 0.006 0.005 0.032

Bias -0.010 -0.012 -0.016 —0:016 -0.015 -0.018
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We can see that the ridge estimators are better than the corresponding
OLS estimator in terms of MSE and that the principal components
estimators are rather poor compared to the other estimators even though
the bias is of the same order. Both the OLS and ridge estimators are
much better on the transformed variables than the original variables.

OLS on untransformed variables overestimated the true residual standard
deviation (1.28 vs 1.00). On transformed variables the residual standard
deviation was 1.01 which is very close to the true value. The principal
component estimator used 16 components for the untransformed variables

and 19 components for the transformed variables.

The estimated standard errors are shown in Table 5.4. We can again

Table 5.4. Estimates of standard errors for the estimated impulse
response weights for all estimators.

s; Untransformed variables Transformed variables
ij OLS Ridge PC OLS Ridge PC
1,0 0.16 0.15 0.09 0.13 0.12 0.09

1 0.20 0.18 0.11 0.13 0.12 0.11
2 0.20 0.18 0.10 0.16 0.15 0.09
3 0.20 0.19 0.11 0.16 0.15 0.10
4 0.20 0.19 0.11 0.16 0.15 0.11
5 0.20 0.19 0.11 0.16 0.15 0.10
6 0.20 0.18 0.11 0.16 0.15 0.11
7 0.20 0.18 0.10 0.16 0.15 0.08
8 0.20 0.18 0.10 0.13 0.13 0.11
9 0.16 0.15 0.10 0.11 0.11 0.09
10 0.10 0.10 0.09 0.08 0.08 0.08

2,0 0.14 0.13 0.06 0.11 0.11 0.08
1 0.21 0.19 0.04 0.12 0.11 0.10
2 0.22 0.20 0.04 0.13 0.12 0.08
3 0.23 0.20 0.04 0.14 0.13 0.06
4 0.23 0.20 0.04 0.14 0.13 0.09
5 0.23 0.20 0.05 0.14 0.13 0.09
6 0.22 0.20 0.04 0.14 0.13 0.09
7 0.22 0.19 0.03 0.14 0.13 0.06
8 0.22 0.19 0.03 0.11 0.10 0.08
9 0.19 0.17 0.03 0.11 0.10 0.10
10 0.12 0.11 0.05 0.09 0.09 0.08




observe that the ridge estimator is at least as good as the OLS

estimator.

We can also notice that the principal components estimator

now has much lower values that the other estimators.

Now the results for all simulations will be presented.

been summarized in tables to ease comparisons.

The results have

Table 5.5. Estimated ratios of MSE(v)m to MSE(D)OLS.

MSEm p = .58 p = .87 p = .98
Estimator| 0 =1 o0=1 0=5|0=.1 0=1 0=5]|0=.1 =1 o=25
OLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RR 1.00 0.96 0.57 0.99 0.89 0.33 0.99 0.53 0.08
PC 25.21 1.21 0.82 | 81.04 1.499 0.29 |152.48 1.71 0.09
OLS(t) 0.64 0.82 0.82 0.72 0.83 0.83 0.83 0.8 0.85
RR(t) 0.64 0.79 0.50 0.72 0.76 0.32 0.82 0.52 0.08
PC(t) 76.54 2.00 0.73 | 86.50 1.70 0.44 |188.79 2.11 0.10
MSE(D)OLS 0.0001 0.009 0.217 |0.0003 0.021 0.530 | 0.001 0.133 3.320

In Table 5.5 the average MSE values are presented.

It

may be noted that:

a) The MSE for the OLS estimator increases roughly proportional to the

residual variance for a given value of p.

b)

corresponding OLS estimator.

The ridge estimator (RR) used is always better than (or equal to) the

The principal component estimator (PC)

is better than the corresponding OLS estimator when the signal-to-

noise ratio is low (aa'= 5). The RR estimator is with one exception

always better than the PC estimator. The largest reductions in MSE

from using RR are obtained when the average MSE is large (signal-to-

noise ratio is low) and when the correlation between a. and a

2t 1s

high (strong multicollinearity).
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c) The estimates on transformed variables are always better (or equal
to) estimates on original variables for OLS and RR.

d) The PC estimator performes very poorly except when the signal-to-
noise is low. This may be an effect of the criteria used for
selecting principal components. In Table 5.6 the number of principal
components used for different correlations between a1, and ag, are
shown. In Table 5.7 the average number of deleted significant
principal components are shown for different combinations of

correlation and residual standard deviation.

Table 5.6. The number of principal components, r, used for different

correlations between alt and a2t.

Data series

Correlation. Untransformed Transformed
p = .58 19 21
p = .87 16 19
p = .98 13 13

Table 5.7. Average number of deleted significant principal components
for different combinations of correlations between

a; . and ag, and residual standard deviations.
Correlation True Data series
between standard Untransformed Transformed
a and a deviation no % no p 4
1t 2t
p = .58 o=.1 3.00 100 1.00 100
(S3and 1 pc o =1 0.10 3 0.7 716
deleted) o=5 0.02 1 0.08 8
p = .87 o=.1 4.34 72 3.00 100
(6and 3 pc o=1 0.82 14 1.12 37
deleted) o=5 0.20 3 0.20 7
p = .98 o= .1 5.8 65 7.88 88
(9 pc dele- o =1 2.34 26 2.56 28
ted) o=5 0.86 10 0.76 8
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From Table 5.7 it is quite clear that the effect of deleting components
is most serious when the residual standard deviation is low. We may
therefore expect that the PC estimator would do much better if the
components that are significant are selected rather than the r components
with largest eigenvalues (which is based only on the correlation matrix

and not on the residual standard deviation).

Table 5.8. Estimated average bias for the estimators (x10—4).

BIAS p = .58 p = .87 p = .98
Estimator| 0 =.1 o0=z1 o=5]|0=.1 0=1 0=5)}0=.1 0=1 o=5
OLS -3 8 55 4 17 75 12 38 154
RR -3 4 -16 4 13 7 11 25 -4
PC -5 6 53 -24 -9 57 -79 -78 ~-75
OLS(t) -7 6 66 1 17 87 10 42 184
RR(t) -7 -2 ~-108 1 12 -29 10 38 26
PC(t) ~-31 -18 41 -19 -3 68 82 82 81

Table 5.8 shows the average bias for the estimators. As may be expected,
on the average the absolute value of the bias increases as the
multicollinearity increases and the signal-to-noise ratio decreases.
Still, the largest average bias is not more than 0.0154 which is small
compared to the values of most of the coefficients. For individual

coefficients the bias may be much larger than the averages given above.

From Table 5.9 below it may be noted that:

a) The average standard error for the OLS estimator increases roughly

proportional to the residual standard deviation for a given value of

p.



b)
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When we look at the average standard error for the coefficients we

L 4
find the same relationship between OLS and RR as before, but that the

PC estimator nearly always is the best estimator in its class

(original vs transformed data).

It is interesting to notice that the

reduction in S(v) is largest when the multicollinearity is strong and

when the signal-to-noise ratio is small.

As may be seen from the

bottom row of the Table it is almost impossible to obtain any

significant coefficient from the OLS estimator when p = .98 and o

5.

coefficients of which some are less than 1 and the largest 4.

The average s.e. is then about 2.3 as compared with the

If we

then use the RR estimator on the transformed variables the average

s.e. decreases to about

.3.

The RR is of course a much better

estimator in this situation since we are interested in identifying

significant coefficients.

Table 5.9. Estimated ratios of §(;)m to EKD)OLS'

Sm p = .58 p = .87 p = .98

Estimator| 0 =1 o=1 o=5|0=.1 0=1 o=5 o=.1 =1 o=5
OLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RR 1.00 0.97 0.66 1.00 0.91 0.44 0.99 0.61 0.17
PC 1.29 0.77 0.76 0.96 0.38 0.37 0.90 0.15 0.12
OLS(t) 0.68 0.71 0.71 0.7 0.71 0.71 0.7 0.70 0.70
RR(t) 0.68 0.69 0.53 0.70 0.67 0.38 0.7 0.52 0.14
PC(t) 1.81 0.66 0.63 1.47 0.49 0.47 0.60 0.11 0.09
S(;)OLS 0.013 0.117 0.587 | 0.019 0.183 0.915 | 0.046 0.457 2.286

c) The estimated s.e. from the transformed data are in general lower

than the corresponding estimate from the original data when the

multicollinearity is large and/or the signal-to-noise ratio is low.

This is to be expected since when we have autocorrelated residuals
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the estimate of the variance of a, will be biased (too large). The

transformation procedure will then give a practically unbiased

estimate of o, (and unbiased estimates of the s.e. of Di)' This
also gives us the possibility to use the standard t-test to test the

significance of the estimated coefficients, see Table 5.10.

Table 5.10. The estimated residual standard deviation for OLS on un-
transformed and transformed data.

True Correlation

standard between Data series

deviation a1t and ay, Untransformed Transformed

o=.1 p = .58 0.136 0.108
p = .87 0.129 0.103
p = .98 0.123 0.100

o=1 p = .58 1.214 0.992
p = .87 1.213 0.992
p = .98 1.214 0.991

o=5 p = .58 6.062 4.957
p = .87 6.063 4.956
p = .98 6.071 4,958

In Table 5.11 the values of the shrinkage parameter k for the ridge
estimator are given. The values are proportional to the residual
variance of the simulated series as can be seen from eq. (5.5). Except

vhen o0 = 5 the value of k is very small.



Table 5.11 The average estimated value of k in ridge regression on
untransformed and transformed data.

Correlation True
between standard Data series
A, and a2t deviation Untransformed Transformed

p = .58 o=.1 0.00001 0.00003
o=1 0.00117 0.00214
o=5 0.02813 0.05055
p = .87 o=.1 0.00001 0.00002
o=1 0.00101 0.00186
o=5 0.02449 0.04438
p = .98 o=.1 0.00001 0.00002
og=1 0.00093 0.00172
o=5 0.02259 0.04108

If any recommendations are to be made from this study it would be to
advice the practitioner to start by studying the eigenvalues of the
correlation matrix. If these show clear signs of multicollinearity or if
it is believed that the signal-to-noise ratio is low, then the ridge
estimator should be used after the transformation of the original
variables. If the signal-to-noise ratio is high it may still be wise to
use the ridge estimator on the transformed variables, even though the

gain in terms of MSE may not be so dramatic.
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6. COONCLUDING REMARKS

In this paper different ways to estimate the impulse response function
weights in the Box-Jenkins transfer function model have been discussed
(Chapter 2). The discussion was based on the case when there are several
input variables that are correlated with each other. It was found that
most of the methods proposed are unsuitable, some are not reliable when
there are correlated input variables, and some are expensive or difficult
to use. Therefore an extension of a simple regression approach used by
Pukkila (1980) was proposed. The new approach is based on the solution
of some problems in connection with the application of the regression
method in our particular situation, namely the multicollinearity problem
and the problem of autocorrelated residuals. It was found that the use
of biased regression estimators on variables transformed with respect to
the noise model should give better estimates than the ordinary regression

estimator (Chapter 4).

To test the new approach a simulation experiment was designed and
performed. The results from the simulations indicate that the proposed

method may be of value to the practitioner (Chapter 5).

It seems as if the greatest benefit of the proposed method is the

possible reduction in the s.e. of ;i' The use of biased regression
decreases the risk of obtaining too large estimates of the coefficients.
This reduces the risk of over-parametrization of the identified transfer
function model. The method should be easy to apply since almost all

computer systems have programs for biased regression.

It was noted that the two criteria used gave somewhat different results.
This indicates that the results may be dependent on the criteria chosen.
One other criterion that may be of interest is the proportion of times
that the different estimators were better than the OLS estimator. In

Bulcock et al (1981) some other criteria are discussed.

Since the results of the simulation study are very promising further

studies will be made in the following areas:



- 57 -

a) Lawless and Wangs method of determining k was used. Several other
methods have been proposed and some of them may be particulary
suitable for this type of data. Further research is needed in this
area. It is also interesting to investigate other critera for
choosing r, the number of components in the PC estimator. This may
have changed the conclusions regarding the benefits of the PC
estimator, especially in terms of the MSE.

b) A comparative simulation study including some of the other methods
discussed in Chapter 2. Then different models (different
orientations of the parameter vector) would be used. Other relevant
aspects to study are the effects of varying the number of lags
included (including too few lags), the length of the time series,
effects of seasonality, other distributions for the independent
variables and the residual model.

c) Some real world applications to study the practical use of the

proposed methods.

When drawing conclusions from this study it should be remembered that the
conclusions are based on simulations of one model (under different
condifions). Even though the results are in line with what may be
expected one should be very careful to say anything about the gain in MSE
from using the proposed method. It is likely that the proposed method
gives smaller or equal MSE than ordinary least-squares but that the gain

in MSE may vary between models.

When we evaluate the results of the simulation study we should keep in
mind that in real world applications we face problems like how many, and
which, x variables to be included (the missing variables problem) and
measurement errors. It is also possible that the transfer function model
is not providing good fit. It may therefore be better to start with a
mul tivariate model to make sure of the direction of causality, before

choosing the transfer function model.

Finally it is noted that even if we may identify a suitable transfer

function it may still be difficult to obtain meaningful estimates if the



input processes are correlated. On the other hand, with the proposed
method we may delete variables that are not to be included, and then
reduce the effects of multicollinearity on the remaining variables. This

may be the greatest advantage with the proposed method compared to OLS.
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APPENDIX 1. Original and transformed time series used in the numerical
example in Section 5.5.
¢ V¢ X1t X9t t \L X1t X9t
1 -3.994 -2.368 -4.219 51 0.798 -0.743 2.193
2 ~7.524 0.262 0.985 52 -1.996 -2.200 0.214
3 ~4.072 0.447 4.604 53 -3.624 -0.181 1.353
4 -7.008 -0.299 5.643 54 2.462 -0.417 2.212
5 -0.364 2.245 8.451 55 0.773 -0.413 1.633
6 12.750 1.911 5.357 56 -0.984 -0.300 -0.280
[ 11.913 -0.916 -1.559 57 4.788 1.925 0.724
8 9.321 -0.274 ~7.359 58 17.881 3.665 1.277
9 6.828 ~-1.773 -8.954 59 23.849 2.713 2.315
10 -3.764 -0.902 -3.685 60 21.033 2.452 2.886
11 -18.346 -4.919 -1.668 61 16.014 0.770 0.133
12 -34.255 -2.717 1.403 62 9.166 0.607 -0.411
13 -25.222 -0.289 6.533 63 10.419 0.476 -1.150
14 -11.614 0.561 8.055 64 10.985 1.169 -0.345
15 -5.467 -1.429 3.093 65 8.966 0.424 0.461
16 0.553 0.320 0.511 66 0.392 -0.707 -1.282
17 13.010 0.750 -1.839 67 -0.422 2.119 0.555
18 9.921 -1.775 -4.145 68 13.236 3.242 2.925
19 -5.582 -2.350 -7.267 69 25.944 6.449 6.782
20 ~17.292 -4.259 ~7.459 70 35.488 4.145 5.801
21 -24.318 -2.130 -3.402 71 29.385 2.054 1.735
22 -22.114 -0.538 3.181 T2 21.335 0.842 -2.927
23 -14.535 1.041 7.533 73 16.387 1.373 -5.145
24 -3.344 1.879 8.459 74 13.177 -0.930 -6.530
25 6.111 0.763 4.912 75 -0.026 -0.324 -3.058
26 5.309 -1.805 -0.314 76 -1.812 2.301 6.332
27 1.722 -0.860 -4.276 77 5.659 2.179 8.914
28 4.844 -1.198 -5.478 78 9.561 2.765 8.015
29 -3.628 -3.650 -8.443 79 23.406 4.423 5.584
30 -15.159 0.214 -3.959 80 40.201 4.948 2.028
31 -9.931 -0.618 2.435 81 52.154 6.903 1.863
32 -13.006 1.005 8.062 82 66.850 10.008 5.791
33 -10.441 -1.082 6.179 83 70.441 6.850 5.350
34 -10.060 -1.313 1.045 84 51.629 3.270 0.421
35 -5.178 -2.335 -5.179 85 33.036 1.881 -2.922
36 -3.138 -1.106 -5.717 86 26.055 2.663 -2.430
37 -3.821 -1.692 -4.336 87 24.341 2.628 -0.450
38 -~11.325 -0.109 2.243 88 16.865 1.293 1.871
39 -4.796 2.109 7.080 89 8.510 1.730 4.379
40 2.793 1.768 7.169 S0 2.947 -1.176 1.091
41 8.682 1.718 3.377 91 -4.248 -0.852 -2.293
42 18.001 1.748 -1.823 92 -0.445 -1.150 -3.731
43 20.673 0.275 -4.825 93 -2.227 -0.887 -2.531
44 13.190 0.379 -3.329 4 -4.161 -0.282 0.867
45 -0.610 -2.394 -2.755 95 -7.061 -0.274 2.827
46 -15.254 -1.034 -0.180 9% -12.270 -2.037 -0.279
47 -11.237 1.535 4.456 97 -14.402 -2.047 -2.954
48 -6.547 -1.843 2.633 o8 -5.690 0.766 -2.109
49 -10.192 -0.181 1.975 99 3.689 0.855 -1.665
50 -2.728 -0.163 2.500 100 4.793 1.471 0.172
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Ye 1t 2t Y 1t 2t

1 -3.234 -2.161 -1.994 51 -0.740 0.251 1.383
2 -5.099 1.883 2.480 52 -1.441 -2.388 -0.823
3 -0.248 -0.965 2.743 53 -2.543 1.611 1.971
4 -6.822 0.425 3.585 54 4,369 -1.625 0.734
5 4.752 1.926 5.763 55 -2.504 0.806 1.083
6 9.186 0.467 1.035 56 0.894 -0.904 -1.092
7 5.024 -1.267 -2.336 57 4.117 2.603 1.542
8 5.553 0.676 -5.607 58 14.793 1.713 0.120
9 2.663 -2.281 -4.749 59 12.755 1.428 1 2.225
10 -5.761 0.809 -0.123 60 11.467 1.381 1.217
11 -14.025 -5.525 -1.575 61 T.414 -0.266 -0.780
12 -23.736 1.427 2.585 62 3.605 0.807 0.175
13 -7.420 -1.359 4.594 63 7.715 -0.129 -1.281
14 -6.049 1.580 4.609 64 5.199 1.266 0.616
15 -0.930 ~-2.614 -0.364 65 5.066 -0.525 -0.001
16 1.251 2.281 0.783 66 -3.407 -0.313 -1.281
17 12.071 -0.961 -2.426 67 2.134 2.354 1.515
18 0.868 -1.055 -2.325 68 11.636 1.477 1.788
19 -6.233 -1.559 -5.523 69 17.217 5.342 5.441
20 -12.617 -3.090 -3.317 70 22.575 0.139 1.720
21 -14.855 0.187 ~-0.914 71 12.453 1.950 0.444
22 -10.973 -0.678 3.866 T2 11.995 -0.620 -3.260
23 -6.305 1.550 4.634 73 7.391 1.838 -2.701
24 1.385 0.717 4.983 T4 7.634 -2.309 -4 .504
25 5.072 0.226 1.175 5 -5.751 1.407 0.320
26 ©1.505 -1.974 -1.195 76 2.502 1.246 6.092
27 0.594 0.620 -3.380 7T 3.783 1.245 4.345
28 4.398 -1.663 -2.943 78 6.724 1.831 4.756
29 -6.927 -2.403 -6.235 79 18.363 3.050 2.017
30 -9.963 2.016 0.717 80 26.429 2.660 0.515
31 -2.458 -2.130 1.898 81 32.332 4.907 1.477
32 ~-11.162 2.602 6.639 82 42 .601 6.327 4.683
33 -2.070 -3.033 1.200 83 38.491 2.105 1.838
34 -8.508 0.962 0.145 84 22.761 1.691 -0.958
35 1.203 -3.057 -5.288 85 15.965 0.613 -2.204
36 -4.041 1.186 -1.751 86 14.081 2.204 -0.777
37 -0.790 . -2.581 ~-3.022 87 13.780 0.975 0.133
38 -10.733 1.827 4.510 88 6.530 0.562 1.771
39 3.254 0.739 3.698 89 3.612 1.308 3.051
40 0.353 1.214 4,395 S0 0.238 -2.157 -1.198
41 8.417 0.808 0.080 91 -4 .,426 0.766 -1.395
42 11.688 1.142 -1.883 92 2.875 -1.725 -2.685
43 11.907 -0.581 -3.413 93 -4.383 0.407 -0.518
44 4.260 0.815 -0.769 94 -0.874 -0.587 1.255
45 -3.805 =-3.005 -2.178 95 -6.406 0.166 1.886
46 -12.400 1.220 1.453 96 =7.465 -2.161 -1.693
47 -1.937 0.620 3.366 o7 -8.803 -0.426 -1.684
48 ~-5.094 -2.309 0.109 98 0.913 1.085 -0.846
49 ~-6.371 1.550 1.893 99 3.005 0.041 -1.030
50 2.050 -1.326 1.080 100 2.53% 1.440 0.945
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Autocorrelation and cross correlation functions for simu-

APPENDIX 2.

lated processes.
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1.00
0.74
0.53
0.36
0.23
0.14
0.14
0.18

0.22

0.00

0.09

1.00
-0.03
0.55
~0.04
0.26
-0.05
0.12
0.08
0.07
0.20
0.01

0.32
-0.01
0.11
0.01
0.05
-0.05
0.01
-0.06
0.03
0.00
0.09
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0.74 0.53
1.00 0.74
0.74 1.00
0.53 0.73
0.36 0.52
0.23 0.35
0.15 0.23
0.15 0.16
0.20 0.17
0.23 0.21
0.26 0.25

0.16 -0.05
0.28 0.16
0.18 0.29
0.10 0.18
¢.08 0.10
0.03 0.07
-0.02 0.02
-0.04 -0.02
-0.03 -0.04
0.01 -0.03
0.05 0.00

0.36
0.53
0.73
1.00
0.74
0.53
0.35
0.23
0.15
0.16
0.21

-0.21
-0.05
0.16
0.29
0.19
0.10
0.07
0.02
-0.02
-0.03
-0.03

0.23
0.36
0.52
0.74
1.00
0.74
0.52
0.34
0.20
0.11
0.13

-0.25
~0.22
-0.08
0.15
0.29
0.19
0.12
0.08
0.01
-0.03
-0.04
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Correlation matrices and eigenvalues for simulated
processes.

0.14
0.23
0.35
0.53
0.74
1.00
0.73
0.51
0.31
0.17
0.09

-0.17
-0.26
=0.25
-0.09
0.15
0.29
0.20
0.12
0.07
0.00
-0.04

0.14
0.15
0.23
0.35
0.52
0.73
1.00
0.73
0.50
0.30
0.17

0.03
=-0.17
~0.26
-0.25
-0.10

0.14

0.29

0.20

0.12

0.06
-0.01

0.18
0.15
0.16
0.23
0.34
0.51
0.73
1.00
0.73
0.51
0.32

0.25
0.04
-0.16

0.22
0.20
0.17
0.15
0.20
0.31
0.50
0.73
1.00
0.75
0.53

0.34
0.25
0.05

-0.27 -0.17
-0.26 -0.28

-0.11
0.13
0.29
0.20
0.11
0.05

-0.27
-0.12
0.13
0.29
0.19
0.09

0.25
0.23
0.21
0.16
0.11
0.17
Q.30
0.51
0.75
1.00
0.76

0.23
0.34
0.26
0.04
~-0.18
~-0.29
-0.28
-0.11
0.13
0.26
0.15

0.22
0.26
0.25
0.21
0.13
0.09
0.17
0.32
0.53
0.76
1.00

0.02
0.24
0.35
0.25
0.02
-0.20
~0.30
-0.27
-0.10
0.12
0.24

Correlation matrix for the original

-0.03 0.55
1.00 -0.02
~-0.02 1.00
0.55 -0.02
-0.04 0.54
0.27 -0.04
-0.05 0.27
0.12 -0.04
0.08 0.13
0.09 0.10
0.20 0.10

0.01 0.03
0.32 0.02
0.00 0.32
0.12 0.00
0.01 0.11
0.06 0.01
~0.05 0.05
0.01 -0.05
-0.06 0.01
0.04 -0.06
0.00 0.03

Correlation matrix for the transformed variables

-0.04
0.55
~0.02
1.00
-0.02
0.55
-0.05
0.27
-0.04
0.14
.11

-0.21
0.03
0.03
0.33
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0.11
0.00
0.04

-0.05
0.01

-0.06

0.26
-0.04
0.54
-0.02
1.00
-0.02
0.55
-0.06
0.27
-0.06
0.13

-0.10
-0.22
0.02
0.02
0.34
0.00
0.12
0.01
0.04
-0.05
0.02

-0.05
0.27
~0.04
0.55
-0.02
1.00
-0.02
0.54
-0.06
0.24
-0.06

-0.18
-0.10
-0.24
.0.01
0.01
0.33
0.01
0.13
0.00
0.03
-0.06

0.12 0.08
-0.05 0.12

0.27 -0.04

-0.05 0.27
0.55 -0.06
-0.02 0.54
1.00 ~0.03

-0.03
0.54

1.00
-0.02

-0.08 0.54

0.23

0.07
-0.18
-0.11
-0.24

0.01

0.01

0.33

0.01

0.13

0.00

0.03

-0.06

0.12
0.07
-0.18
-0.11
-0.25
0.00
0.00
0.33
0.02
0.12
-0.01

0.07
0.08
0.13
-0.04
0.27
~0.06
0.54
-0.02
1.00
0.00
0.55

0.28
0.12
0.08
-0.17
-0.11
-0.26
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0.00
0.34
0.02
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0.20

0.01

0.09 0.20

0.10
0.14
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0.24
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0.54
0.00
1.00
0.03
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0.08
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0.31
0.00
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0.1i1
0.13
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0.23
~0.06
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1.00
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0.13
0.29
0.14
0.08
-0.20
-0.14
-0.27
0.00
0.01
0.31

0.27
0.16

0.02

1.00
0.68
0.06
~0.45
~-0.63
-0.45
-~0.10
0.19
0.31
0.27
0.16

variables when p

0.32
0.01
0.03
-0.21

-0.10
-0.18

0.07
0.12
0.28
0.12
0.04

1.00
0.43
0.10
-0.47
-0.45
-0.41
0.00
0.12
0.30
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0.68
1.00
0.68
0.05
-0.47
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-0.09
0.19
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-0.22

-0.10

-0.18
0.07
0.12

0.10
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0.29
0.16
-0.08
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-0.26
-0.16
0.05
0.26
0.35

0.06
0.68
1.00
0.67
0.03
-0.48
-0.64
-0.44
-0.10
0.17
0.28

-0.24
-0.11
-0.18

0.08

0.28 0.13

0.13

0.43
1.00
0.43
0.10
-0.47
-0.46
-0.41
0.01
0.12
0.30
0.15

0.29

0.10
0.43
1.00
0.43
0.09
-0.49
-0.46
-0.41
0.01
0.11
0.29

0.08
.10
0.18
0.29
Q.15
-0.09
-0.25
-0.27
-0.17
0.04
0.25

-0.45
0.05
0.67
1.00
0.67
0.03

-0.48

-0.64

-0.45

-0.11
0.16

0.01
0.12
0.00
0.33
0.02
0.01
-0.24
-0.11
-0.17
0.08
0.14

-0.47
0.10
0.43
1.00
0.41
0.07

-0.49

-0.46

-0.41
0.00
0.10

6.03
0.08
0.10
0.19
0.29
0.15
-0.10
-0.26
-0.28
-0.18
0.02

-0.63
=-0.47
0.03
0.67
1.00
0.67
0.04
-0.48
-0.65
-0.47
-0.12

a

-0.01
0.03
0.07
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0.19
0.29
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-0.48
0.03
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1.00
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-0.48
-0.65
-0.47

172

0.05
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0.00
0.34
0.01
0.01
-0.25
-0.11
-0.20
0.08

-0.45
~-0.47
0.09
0.41
1.00
0.41
0.09
~0.49
-0.47
-0.42
-0.01

when p

-0.05
0.06
0.01
0.11
0.00
0.33
0.01
0.00

~0.26

~-0.12

-0.20

-0.41
-0.46
~0.49
0.07
0.41
1.00
0.42
0.10
-0.49
-0.48
-0.43
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2

-0.04
-0.02
0.02
0.07
0.12
0.20
0.29
0.13
-0.12
-0.28
=-0.30

-0.10
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Some measures of multicollinearity for the two simulated correlation

matrices with p ~ .58.
a.a
172
Original variables Transformed variables
i A, % 3% i Al % 3%
i i
1 4.983 22.6 22.6 1 3.783 17.2 17.2
2 4.506 20.5 43.1 2 3.220 14.6 31.8
3 4.037 18.3 61.5 3 2.825 12.8 44.7
4 1.973 9.0 70.5 4 2.365 10.7 55.4
5 1.673 7.6 78.1 5 1.652 7.5 62.9
6 1.106 5.0 83.1 6 1.336 6.1 69.0
7 0.855 3.9 87.0 7 1.118 5.1 74.1
8 0.505 2.3 89.3 8 0.920 4.2 78.3
9 0.394 1.8 91.1 9 0.721 3.3 81.5
10 0.391 1.8 92.8 10 0.597 2.7 84.3
11 0.319 1.5 94.3 11 0.529 2.4 86.7
12 0.277 1.3 95.5 12 0.508 2.3 89.0
13 0.229 1.0 96.6 13 0.491 2.2 91.2
14 0.176 0.8 97.4 14 0.472 2.1 93.3
15 0.166 0.8 98.1 15 0.306 1.4 94.7
16 0.157 0.7 98.9 16 0.293 1.3 96.1
17 0.101 0.5 99.3 17 0.249 1.1 97.2
18 0.039 0.2 99.5 18 0.223 1.0 98.2
19 0.031 0.1 99.6 19 0.143 0.7 98.9
20 0.031 0.1 99.8 20 0.129 0.6 99.5
21 0.025 0.1 99.9 21 0.063 0.3 99.7
22 0.024 0.1 100.0 22 0.056 0.3 100.0
22.000 100.0 22.000 100.0
Sum of variance inflation factors:
3 1/?\i = 221.02 3 1/7\i = 79.17
- The spectral condition number:
Al/xzz = 204.53 A1/A22 = 67.22
Determinant of the correlation matrix:
IX°X] = Ao oA, = 4.73826-10 12 [X*X| = A,+...°A,, = 1.63570-10 0
= Ay, = 4 = Aty = 1

Haitovskys test variable:

x2(231) = 0.000 x2(231) = 0.000
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Some measures of'multicollinearity for the two simulated correlation

~

matrices with Py g = .98.
172

Determinant of the correlation matrix:

d - . . - - —25 b - . .
|x*x| = Aps oAy = 2.34242410 IX*X| = At Ao

Haitovskys test variable:

x§(231) = 0.000 x§(231) = 0.000

Original variables Transformed variables
i A, % 3% i A, % 3%
i i
1 6.333 28.8 28.8 1 5.153 23.4 23.4
2 5.201 23.6 52.4 2 4.180 19.0 42.4
3 5.078 23.1 75.5 3 2.954 13.4 55.9
4 1.986 9.0 84.5 4 2.770 12.6 68.4
5 0.915 4.2 88.7 5 1.910 8.7 77.1
6 0.717 3.3 92.0 6 1.338 6.1 83.2
7 0.421 1.9 93.9 7 0.837 3.8 87.0
8 0.337 1.5 95.4 8 0.627 2.9 89.9
9 0.261 1.2 96.6 9 0.566 2.6 92.4
10 0.198 0.9 97.5 10 0.492 2.2 4.7
11 0.175 0.8 98.3 11 0.463 2.1 96.8
12 0.169 0.8 99.1 12 0.408 1.9 98.6
13 0.148 0.7 99.7 13 0.214 1.0 99.6
14 0.022 0.1 99.8 14 0.024 0.1 99.7
15 0.017 0.1 99.9 15 0.016 0.1 99.8
16 0.012 0.1 100.0 16 0.013 0.1 99.8
17 0.005 0.0 100.0 17 0.010 0.0 99.9
18 0.002 0.0 100.0 18 0.009 0.0 99.9
19 0.001 0.0 100.0 19 0.006 0.0 100.0
20 0.001 0.0 100.0 20 0.006 0.0 100.0
‘21 0.001 0.0 100.0 21 0.003 0.0 100.0
22 0.001 0.0 100.0 22 0.002 0.0 100.0
22.000 100.0 22.000 100.0
Sum of variance inflation factors:
> 1/7\i = 5069.50 b3 1/?\i = 1516.92
The spectral condition number:
Al/kzz = 7306.35 AI/K22 = 2120.83

= 2.73348-10 1

9
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Autocorrelation and cross correlation functions for theore-

APPENDIX 4.

tical processes.
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Correlation matrices and eigenvalues for theoretical
processes.
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Some measures of multicollinearity for the two theoretical correlation

matrices with p ~ .98.
a.a
172
Original variables Transformed variables
i AL % 3% i A % 3%
i i
1 4.786 21.8 21.8 1 3.684 16.7 16.7
2 4.425 20.1 41.9 2 3.208 14.6 31.3
3 3.914 17.8 59.7 3 3.111 14.1 45.5
4 2.517 11.4 71.1 4 2.329 10.6 56.1
5 1.352 6.1 77.2 5 1.773 8.1 64.1
6 0.925 4.2 81.4 6 1.474 6.7 70.8
7 0.754 3.4 84.9 7 1.000 4.5 75.4
8 0.627 2.9 87.7 8 0.802 3.6 79.0
9 0.489 2.2 89.9 9 0.725 3.3 82.3
10 0.461 2.1 92.0 10 0.558 2.5 84.8
11 0.331 1.5 93.5 11 0.482 2.2 87.0
12 0.280 1.3 94.8 12 0.445 2.0 89.1
13 0.248 1.1 95.9 13 0.429 2.0 91.0
14 0.224 1.0 97.0 14 0.415 1.9 92.9
15 0.201 0.9 97.9 15 0.384 1.7 94.6
16 0.189 0.9 08.7 16 0.331 1.5 96.1
17 0.123 0.6 99.3 17 0.219 1.0 97.1
18 0.061 0.3 99.6 18 0.205 0.9 98.1
19 0.036 0.2 99.7 19 0.131 0.6 08.7
20 0.024 0.1 99.8 20 0.120 0.5 99.2
21 0.019 0.1 99.9 21 0.089 0.4 99.6
22 0.016 0.1 100.0 22 0.086 0.4 100.0
22.000 100.0 22.000 100.0
Sum of variance inflation factors:
b) 1/7\i = 245.69 3 1/?\i = T71.00
The spectral condition number:
Al/x22 = 300.76 Rl/xzz = 42.75
Determinant of the correlation matrix:
IX°X| = Aye...oAgy = 1.04877-10° 11 [X°X| = A +... Ao = 1.89621-10°°
= Ayt Ay = 1. = Aty = 1.

Haitovskys test variable:

x2(231) = 0.000 x2(231) = 0.000
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Some measures of multicollinearity for the two theoretical correlation

matrices with p ~ .87.
a,a
172
Original variables Transformed variables
i A, % 3% i A, % 2%
i i
1 5.187 23.6 23.6 1 3.905 17.7 17.7
2 4.855 22.1 45.6 2 3.439 15.6 33.4
3 4.355 19.8 65.4 3 3.354 15.2 48.6
4 2.705 12.3 77.7 4 2.602 11.8 60.5
5 1.227 5.6 83.3 5 2.008 9.1 69.6
6 0.844 3.8 87.1 6 1.604 7.3 76.9
7 0.575 2.6 89.8 7 1.086 4.9 81.8
8 0.401 1.8 91.6 8 0.816 3.7 85.5
9 0.324 1.5 93.1 9 0.671 3.0 88.6
10 0.273 1.2 94.3 10 0.543 2.5 91.0
11 0.239 1.1 95.4 11 0.503 2.3 93.3
12 0.219 1.0 96.4 12 0.475 2.2 95.5
13 0.213 1.0 97.3 13 0.299 1.4 96.8
14 0.200 0.9 8.3 14 0.147 0.7 97.5
15 0.190 0.9 99.1 15 0.136 0.6 98.1
16 0.096 0.4 99.6 16 0.127 0.6 98.7
17 0.043 0.2 99.8 17 0.075 0.3 99.0
18 0.021 0.1 99.8 18 0.070 0.3 99.4
19 0.013 0.1 99.9 19 0.043 0.2 99.6
20 0.009 0.0 99.9 20 0.040 0.2 99.7
21 0.007 0.0 100.0 21 0.029 0.1 99.9
22 0.006 0.0 100.0 22 0.029 0.1 100.0
22.000 100.0 22.000 100.0
Sum of variance inflation factors:
z 1/7\i = 642.09 2 1/7\i = 181.66
The spectral condition number:
Al/kzz = 915.50 Al/kzz = 135.66
Determinant of the correlation matrix:
[X°X| = A e...ohyq = 9.42407-10" 10 [X*X| = A,-... A, = 1.70391-107 10
= Ay = 9. =N 99 .

Haitovskys test variable:

x2(231) = 0.000 x2(231) = 0.000
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0.66
0.46
0.32
0.23
0.16
0.11
0.08
0.05
0.04
0.03

0.49
0.70
1.00
0.70
0.49
0.34
0.24
0.17
0.12
0.08
0.06

0.10
0.48
0.66
0.46
0.32
0.23
0.16
0.11
0.08
0.05
0.04

0.34
0.49
0.70
1.00
0.70
0.49
0.34
0.24
0.17
0.12
0.08

-0.23
0.10
0.48
0.66
0.46
0.32
0.23
0.16
0.11
0.08
0.05

0.24
0.34
0.49
0.70
1.00
0.70
0.49
0.34
0.24
0.17
0.12

-0.36
-0.23
0.10
0.48
0.66
0.46
0.32
0.23
0.16
0.11
0.08

0.17
0.24
0.34
0.49
0.70
1.00
0.70
0.49
0.34
0.24
0.17

-0.28
-0.36
-0.23
0.10
0.48
0.66
0.46
0.32
0.23
0.16
0.11

0.12
0.17
0.24
0.34
0.49
0.70
1.00
0.70
0.49
0.34
0.24

-0.08
-0.28
-0.36
-0.23
0.10
0.48
0.66
0.46
0.32
0.23
0.16

0.08
0.12
0.17
0.24
0.34
0.49
0.70
1.00
0.70
0.49
0.34

0.11
-0.08
-0.28
-0.36
-0.23

6.10

0.48

0.66

0.46

0.32

0.23

0.06
0.08
0.12

0.17.

0.24
0.34
0.49
0.70
1.00
0.70
0.49

0.20
0.11
-0.08
-0.28
-0.36
-0.23
0.10
0.48
0.66
0.46
0.32

0.04
0.06
c.08
0.12
0.17
0.24
0.34
0.49
0.70
1.00
0.70

0.17
0.20
0.11
-0.08
-0.28
-0.36
-0.23
0.10
0.48
0.66
0.46
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0.03
0.04
0.06
0.08
0.12
0.17
0.24
0.34
0.49
0.70
1.00

0.06
0.17
0.20
0.11
-0.08
-0.28
=-0.36
-0.23
0.10
0.48
0.66

Correlation matrix for the original

-0.11
1.00
-0.11
0.53
-0.08
0.28
-0.06
0.15
-0.04
0.08
-0.02

0.15
0.67
0.04
0.35
0.01
0.18
-0.01
0.10
~0.01
0.05
-0.01

0.53
-0.11
1.00
-0.11
0.53
-0.08
0.28
-0.06
0.15
-0.04
0.08

0.17
0.15
0.67
0.04
0.35
0.01
0.18
-0.01
0.10
-0.01
0.05

-0.08
0.53
-0.11
1.00
«0.11
0.53
-0.08
0.28
~0.06
0.15
-0.04

-0.26
0.17
0.15
0.67
0.04
0.35
0.01
0.18

-0.01
0.10

-0.01

0.28
~-0.08
0.53
-0.11
1.00
-0.11
0.53
-0.08
0.28
-0.06
0.15

-0.18
-0.26
0.17
0.15
0.67
0.04
0.35
0.01
0.18
~0.01
0.10

-0.06
0.28
-0.08
0.53
-0.11
1.00
-0.11
0.53
-0.08
0.28
~0.06

-0.24
-0.18
-0.26
0.17
0.15
0.67
0.04
0.35
0.01
0.18
-0.01

0.15
-0.06
0.28
-0.08
0.53
-0.11
1.00
-0.11
0.53
~0.08
0.28

-0.01
-0.24
-0.18
~-0.26
0.17
0.15
0.67
0.04
0.35
0.01
0.18

-0.04
0.15
-0.06
0.28
-0.08
0.53
-0.11
1.00
-0.11
0.53
-0.08

0.05
-0.01
-0.24
-0.18
-0.26

0.17

0.15

0.67

0.04

0.35

0.01

0.08
-0.04
0.15
~0.06
0.28
-0.08
0.53
-0.11
1.00
-0.11
0.53

0.16
0.05
-0.01
-0.24
-0.18
~0.26
0.17
0.15
0.67
0.04
0.35

-0.02
0.08
-0.04
0.15
-0.06
0.28
~-0.08
0.53
-0.11
1.00
-0.11

0.09
0.16
0.05%
-0.01
-0.24
~0.18
-0.26
0.17
0.15
0.67
0.04

0.04
-0.02
0.08
-0.04
0.15
-0.06
0.28
~-0.08
0.53
-0.11
1.00

0.05
0.09
0.16
0.05
-0.01
-0.24
-0.18
-0.26
0.17
0.15
0.67

0.66
0.48
0.10
-0.23
-0.36
~-0.28
-0.08
0.11
0.20
0.17
0.06

1.00
0.71
0.14
-0.36
-0.55
-0.42
-0.11
0.17
0.30
0.25
0.08

variables when Py

0.67
0.15
0.17
-0.26
-0.18
-0.24
-0.01
0.05
0.16
0.09
0.05

1.00
0.51
0.16
-0.39
-0.45
-0.39
-0.06
0.15
0.28
0.20
0.07

0.46
0.66
.48
0.10
-0.23
-0.36
-0.28
-0.08
0.11
0.20
0.17

0.71
1.00
0.71
0.14
-0.36
-0.55
-0.42
-0.11
0.17
0.30
0.25

0.09

0.51
1.00
0.51
0.16
-0.39
-0.45
-0.39
-0.06
0.15
0.28
0.20

0.32
0.46
0.66
0.48
0.10
-0.23
-0.36
-0.28
-0.08
0.11
0.20

0.14
0.71
1.00
0.71
0.14
-0.36
=-0.55
~0.42
-0.11
0.17
0.30

0.35
0.04
0.67
0.15
0.17
-0.26
-0.18
-0.24
-0.01
0.05
0.16

0.16
0.51
1.00
0.51
0.16
-0.39
-0.45
-0.39
~-0.06
0.15
0.28

0.23
0.32
0.46
0.66
0.48
0.10
-0.23
-0.36
-0.28
-0.08
0.11

-0.36
0.14
0.71
1.00
0.71
0.14

-0.36

-0.55

-0.42

-0.11
0.17

0.01
0.35
0.04
0.67
0.15
0.17
-0.26
-0.18
-0.24
-0.01
0.05

-0.39
0.16
0.51
1.00
0.51
0.16

-0.39

-0.45

-0.39

-0.06
0.15

0.16
0.23
0.32
0.46
0.66
0.48
0.10
-0.23
-0.36
-0.28
-0.08

-0.55
-0.36
0.14
0.71
1.00
0.71
0.14
-0.36
-0.55
-0.42
-0.11

1

0.18
0.01
0.35
0.04
0.67
0.15
0.17
-0.26
-0.18
-0.24
-0.01

-0.45
-0.39
0.16
0.51
1.00
0.51
0.16
-0.39
-0.45
-0.39
-0.06

a

0.11
0.18
0.23
0.32
0.46
0.66
0.48
0.10
-0.23
-0.36
-0.28

-0.42
-0.55
-0.36
0.14
0.71
1.00
0.71
0.14
-0.36
~-0.55
-0.42

2

-0.01
0.18
0.01
0.35
0.04
0.67
0.15
0.17

-0.26

-0.18

-0.24

-0.39
-0.45
-0.39
0.16
0.51
1.00
0.51
0.16
-0.39
-0.45
-0.39

Correlation matrix for the transformed variables when p

122

0.08
0.11
0.16
0.23
0.32
0.46
0.66
0.48
0.10
-0.23
-0.36

-0.11
~0.42
~0.55
-0.36
0.14
0.71
1.00
0.71
0.14
-0.36
-0.55

.98.

0.10
-0.01
0.18
0.01
0.35
0.04
0.67
0.15
0.17
-0.26
-0.18

-0.06
-0.39
-0.45
-0.39
0.16
0.51
1.00
0.51
0.16
-0.39
-0.45

0.05
0.08
0.11
0.16
0.23
0.32
0.46
0.66
0.48
0.10
-0.23

0.17
-0.11
-0.42
-0.55
-0.36

0.14

0.71

1.00

0.71

0.14
-0.36

-0.01
0.10
-0.01
0.18
0.01
0.35
0.04
0.67
0.15
0.17
-0.26

0.15
~0.06
-0.39
-0.45
-0.39

0.16

0.51

1.00

0.51

0.16
-0.39

O8.

0.04
0.05
0.08
0.11
0.16
0.23
0.32
0.46
0.66
0.48
0.10

0.30
0.17
-0.11
-0.42
-0.55
-0.36
0.14
0.71
1.00
0.71
0.14

0.05
-0.01
0.10
-0.01
0.18
0.01
0.35
0.04
0.67
0.15
0.17

0.28
0.15
-0.06
-0.39
~0.45
-0.39
0.16
0.51
1.00
0.51
0.16

0.03
0.04
0.05
0.08
0.11
0.16
0.23
0.32
0.46
0.66
0.48

0.25
0.30
0.17
-0.11
-0.42
-0.55
-0.36
0.14
0.71
1.00
0.71

-0.01
0.05
-0.01
0.10
~-0.01
0.18
0.01
0.35
0.04
0.67
0.15

0.20
0.28
0.15
~0.06
-0.39
-0.45
-0.39
0.16
0.51
1.00
0.51

0.02
0.03
0.04
0.05
0.08
0.11
0.16
0.23
0.32
0.46
0.66

0.08
0.25
0.30
0.17
-0.11
-0.42
-0.55
-0.36
0.14
0.71
1.00-

0.03
-0.01
0.05
-0.01
0.10
-0.01
0.18
0.01
0.35
0.04
0.67

0.07
0.20
0.28
0.15
-0.06
-0.39
-0.45
~0.39
0.16
0.51
1.00
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Some measures of multicollinearity for the two theoretical correlation

matrices with p < .98.
a.a
172
Original variables Transformed variables
i Ai Z p 4 i Ai % 3%
1 5.367 24.4 24.4 1 4.008 18.2 18.2
2 5.047 22.9 47.3 2 3.547 16.1 34.3
3 4.545 20.7 68.0 3 3.464 15.7 50.1
4 2.799 12.7 80.7 4 2.721 12.4 62.5
5 1.239 5.6 86.3 5 2.104 9.6 72.0
6 0.757 3.4 89.8 6 1.660 7.5 79.6
7 0.569 2.6 92.4 7 1.131 5.1 84.7
8 0.402 1.8 94.2 8 0.844 3.8 88.5
9 0.309 1.4 95.6 9 0.689 3.1 91.7
10 0.255 1.2 96.8 10 0.544 2.5 94.1
11 0.224 1.0 97.8 11 0.516 2.3 96.5
12 0.206 0.9 S8.7 12 0.430 2.0 8.4
13 0.1%4 0.9 99.6 13 0.244 1.1 99.6
14 0.031 0.1 99.7 14 0.021 0.1 99.6
15 0.029 0.1 99.9 15 0.019 0.1 99.7
16 0.014 0.1 99.9 16 0.018 0.1 99.8
17 0.006 0.0 100.0 17 0.011 0.0 99.9
18 0.003 0.0 100.0 18 0.010 0.0 99.9
19 0.002 0.0 100.0 19 0.006 0.0 99.9
20 0.001 0.0 100.0 20 0.006 0.0 100.0
21 '0.001 0.0 100.0 21 0.004 0.0 100.0
22 0.001 0.0 100.0 22 0.004 0.0 100.0
22.000 100.0 22.000 100.0

Sum of variance inflation factors:

2 1/7\i = 4310.49 b 1/)\i = 1198.88
The spectral condition number:
Al/k22 = 6611.98 xl/x22 = 994.06

Determinant of the correlation matrix:

’ — - L] — - —23 ’ — L] L] — L] _18
IX'X| = At Ay = 2.17814-10 IxX*X| = Apt-- oAy = 3.93816-10

Haitovskys test variable:

x2(231) = 0.000 x2(231) = 0.000



