

Optimisation algorithms in Statistics I, lecture 4

Frank Miller, Department of Statistics; Stockholm University November 6, 2020

Course schedule

- Topic 1: Gradient based algorithms
 Lectures: October 2; Time 10-12, 13-15 (online, Zoom)
- Topic 2: Stochastic gradient based algorithms
 Lecture: October 13; Time: 9-12 (online, Zoom)
- Topic 3: Gradient free algorithms
 Lecture: October 23; Time 9-12 (online, Zoom)
- Topic 4: Optimisation with restrictions
 Lecture: November 6, Time 9-12 (online, Zoom)

Course homepage: http://gauss.stat.su.se/phd/oasi/ Includes reading material, lecture notes, assignments

Today's schedule

- Optimisation with constraints
 - Equality constraints
 - Inequality constraints
- Remarks
 - Simulated annealing

Optimisation with equality constraints

- Optimisation problem:
 - -xp-dimensional vector, $g: \mathbb{R}^p \to \mathbb{R}$ function
 - We search x^* with $g(x^*) = \max g(x)$
 - Subject to $h_i(x^*) = 0$, i = 1, ..., m (equality constraints)

Optimisation with equality constraints

- Optimisation problem:
 - -xp-dimensional vector, $g: \mathbb{R}^p \to \mathbb{R}$ function
 - We search x^* with $g(x^*) = \max g(x)$
 - Subject to $h_i(x^*) = 0$, i = 1, ..., m (equality constraints)
- Approaches:

2020-11-06

- Transformation to an unconstrained problem (problem specific approach)
- Modification of iterative algorithm to reflect constraints (algorithm specific approach)
- Lagrange multipliers (general approach)
- $\mathbb{S} = \{x \in \mathbb{R}^p | h_i(x) = 0, i = 1, ..., m\}$ called <u>feasible points</u>

Optimisation with equality constraints – transformation

- Example: Cubic regression model for fertilizer-yield-relationship with fertilizer $x \in [0,1.2]$. Experiment planned with
 - proportion w_1 of observations using $x_1 = 0$,
 - proportion w_2 using $x_2 = 0.4$,
 - proportion w_3 using $x_3 = 0.8$,
 - proportion w_4 using $x_4 = 1.2$.
- Note that $w_1 + w_2 + w_3 + w_4 = 1$.
- Information matrix M (proportional to inverse of covariance matrix for $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)^T$): $M = X^T \operatorname{diag}(w_1, ..., w_4) X = \sum_{i=1}^4 w_i f(x_i) f(x_i)^T$ with $f(x) = (1, x, x^2, x^3)^T$
- The D-optimal design maximises $g(\mathbf{w}) = \det(\sum_{i=1}^{4} w_i \mathbf{f}(x_i) \mathbf{f}(x_i)^T)$ subject to $h_1(\mathbf{w}) = 1 \sum_{i=1}^{4} w_i = 0$

Optimisation with equality constraints – transformation

- The D-optimal design maximises $g(\mathbf{w}) = \det(\sum_{i=1}^{4} w_i \mathbf{f}(x_i) \mathbf{f}(x_i)^T)$ subject to $h_1(\mathbf{w}) = 1 - \sum_{i=1}^{4} w_i = 0$
- Transformation: $1 \sum_{i=1}^{4} w_i = 0 \implies w_4 = 1 w_1 w_2 w_3$ $\tilde{g}(w_1, w_2, w_3)$ $= \det(\sum_{i=1}^{3} w_i \mathbf{f}(x_i) \mathbf{f}(x_i)^T + (1 - w_1 - w_2 - w_3) \mathbf{f}(x_4) \mathbf{f}(x_4)^T)$
- The <u>constrained</u> optimisation problem max. $g(w_1, w_2, w_3, w_4)$ subj. to $h_1(w_1, w_2, w_3, w_4) = 1 - \sum_{i=1}^4 w_i = 0$ is equivalent to the <u>unconstrained</u> optimisation problem maximise $\tilde{g}(w_1, w_2, w_3)$.
- Solution with optim: $(w_1, w_2, w_3) = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}), w_4 = 1 \frac{3}{4} = \frac{1}{4}$

Optimisation with equality constraints – modification of algorithms

- Constrained optimisation problem:
 - -x p-dimensional vector, $g: \mathbb{R}^p \to \mathbb{R}$ function
 - We search x^* with $g(x^*) = \max g(x)$
 - Subject to $Ax^* b = 0$, $A \in \mathbb{R}^{m \times p}$, $b \in \mathbb{R}^m$ (linear equality constraints)
- Example: Particle Swarm Optimisation (see L3)
- Movement of particle i at iteration t+1:

$$- x_i^{(t+1)} = x_i^{(t)} + v_i^{(t+1)}$$

$$- v_i^{(t+1)} = wv_i^{(t)} + c_1R_1^{(t+1)} (p_{\text{best}, i}^{(t)} - x_i^{(t)}) + c_2R_2^{(t+1)} (g_{\text{best}}^{(t)} - x_i^{(t)})$$

- $R_1^{(t+1)}$ and $R_2^{(t+1)}$ are uniformly distributed, runif()
- Ensure that $Ax_i^{(0)} = b$ and $Av_i^{(0)} = 0$, then $Ax_i^{(t)} = b$ for all i and t

- Example: D-optimal design for quadratic regression without intercept. Experiment planned on x ∈ [0,1] with
 - prop. w_1 of observations using $x_1 = 0.5$,
 - prop. w_2 using $x_2 = 1$,
 - $w_1 + w_2 = 1$.

•
$$g(\mathbf{w}) = \det(w_1 \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{16} \end{pmatrix} + w_2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix})$$

•
$$h(\mathbf{w}) = 1 - w_1 - w_2$$

2020-11-06

•
$$g(\mathbf{w}) = \det(w_1 \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{16} \end{pmatrix} + w_2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix})$$

•
$$h(\mathbf{w}) = 1 - w_1 - w_2$$

• g'(w) direction of steepest ascent

- Condition for constrained maximum: $g'(w) = \lambda h'(w)$
- $g'(\mathbf{w}) \lambda h'(\mathbf{w}) = 0$
- Define $\mathcal{L}(x, \lambda) = g(w) \lambda h(w)$

- Constrained optimisation problem:
 - -xp-dimensional vector, $g: \mathbb{R}^p \to \mathbb{R}$ function
 - We search x^* with $g(x^*) = \max g(x)$
 - Subject to $h_i(x^*) = 0$, i = 1, ..., m (equality constraints)
- Lagrange:

2020-11-06

Let $\mathcal{L}(x,\lambda) = g(x) - \lambda^T h(x)$, $h(x) = (h_1(x), ..., h_m(x))^T$, $\lambda \in \mathbb{R}^m$ and $g, h_1, ..., h_m$ are continuously differentiable. If g has a local maximum at some point x^* with $h(x^*) = \mathbf{0}$ (i.e. in the constrained maximisation problem) and at which the gradients of $h_1, ..., h_m$ are linearly independent, then there exists a λ such that gradient $\mathcal{L}'(x^*, \lambda) = \mathbf{0}$ (i.e. stationary point in the unconstrained problem).

Stockholm

- Constrained optimisation problem:
 - -xp-dimensional vector, $g: \mathbb{R}^p \to \mathbb{R}$ function
 - We search x^* with $g(x^*) = \max g(x)$
 - Subject to $h_i(x^*) = 0$, i = 1, ..., m (equality constraints)
- Unconstrained problem: Search stationary point (x^*, λ) of $\mathcal{L}(x, \lambda) = g(x) - \lambda^T h(x)$.
- Note:
 - $-\frac{\partial}{\partial\lambda_i}\mathcal{L}(\pmb{x}^*,\pmb{\lambda})=0$ ensures $h_i(\pmb{x}^*)=0$
 - $-\frac{\partial}{\partial x_i}\mathcal{L}(x^*,\lambda)=0$ ensures that gradient $g'(x^*)$ is orthogonal to the set \mathbb{S} of feasible points at $x=x^*$

Optimisation with inequality constraints

- Constrained optimisation problem:
 - -x p-dimensional vector, $g: \mathbb{R}^p \to \mathbb{R}$ function
 - We search x^* with $g(x^*) = \max g(x)$
 - Subject to $h_i(x^*) = 0, i = 1, ..., m$
 - and $q_i(x^*) \le 0$, i = 1, ..., n (inequality constraints)
- Set of feasible points

$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^p | h_i(\mathbf{x}) = 0, i = 1, ..., m; q_i(\mathbf{x}) \le 0, i = 1, ..., n \}$$

- Approaches to handle inequality constraints:
 - Generalisation of Lagrange multipliers (Karush-Kuhn-Tucker approach)
 - penalty method
 - barrier method (also called: interior-point method)

Optimisation with inequality constraints

- lasso example

Lasso's objective function to minimise:

$$g(\widehat{\boldsymbol{\beta}}) = \|X\widehat{\boldsymbol{\beta}} - \boldsymbol{y}\|^2 + \lambda \sum_{i=1}^p |\widehat{\beta}_i|$$

Alternatively, one can solve the constrained problem:

minimise:
$$g(\widehat{\beta}) = ||X\widehat{\beta} - y||^2$$

subject to $\sum_{i=1}^{p} |\widehat{\beta}_i| \le t$

• For p=2 and t=1, the set of feasible points $\mathbb{S} = \{ \widehat{\pmb{\beta}} \in \mathbb{R}^p \big| \sum_{i=1}^p \big| \widehat{\beta}_i \big| \le t \} \text{ is inside of the blue area}$

Optimisation with inequality constraints - Karush-Kuhn-Tucker approach

- Constrained optimisation problem:
 - -xp-dimensional vector, $g: \mathbb{R}^p \to \mathbb{R}$ function
 - We search x^* with $g(x^*) = \max g(x)$
 - Subject to $h_i(x^*) = 0$, i = 1, ..., m
 - and $q_i(x^*) \le 0$, i = 1, ..., n (inequality constraints)
- Karush-Kuhn-Tucker (KKT) approach uses generalised Lagrangian $\mathcal{L}(x, \lambda, \mu) = g(x) \lambda^T h(x) \mu^T q(x)$ with $h(x) = (h_1(x), ..., h_m(x))^T, \lambda \in \mathbb{R}^m, \ q(x) = (q_1(x), ..., q_n(x))^T, \mu \in \mathbb{R}^n$
- Instead of above constrained optimisation, search stationary point $(x^*, \lambda, \mu \ge 0)$ of $\mathcal{L}(x, \lambda, \mu) = g(x) \lambda^T h(x) \mu^T q(x)$. For x^* being a solution of the constrained problem, following condition required: "for all i=1,...,n: $q_i(x^*) = 0$ or $\mu_i = 0$ ".

Optimisation with inequality constraintspenalty and barrier methods

- Constrained optimisation problem:
 - -xp-dimensional vector, $g: \mathbb{R}^p \to \mathbb{R}$ function
 - We search x^* with $g(x^*) = \max g(x)$
 - Subject to $q_i(x^*) \ge 0$, i = 1, ..., n (inequality constraints)
- Idea: Modify g to \tilde{g} such that the algorithm finds only local maxima which fulfil $q_i(x^*) \geq 0$, i = 1, ..., n, even if optimisation done unconstrained
- Penalty methods: Set $\tilde{g} = g$ on $\mathbb{S} = \{x | q_i(x) \ge 0, i = 1, ..., n\}$ and add a (negative) penalty if $q_i(x) < 0$ for some i
- Barrier methods: Set $\tilde{g} = -\infty$ if $q_i(x) < 0$ for some i and g is modified on $\mathbb{S} = \{x | q_i(x) \ge 0, i = 1, ..., n\}$

Optimisation with inequality constraints

- Barrier method (interior-point method)
- Example: maximise g(x) on range x ≤ 10
- Add barrier function $\mu^{(t)}b(x)$
- $\tilde{g}(x) = g(x) + \mu^{(t)}b(x)$ should be small close to 10, x<10, and $-\infty$ for x>10
- Log barrier: $b(x) = \log(10 x)$
- Solve maximisation for $\tilde{g}(x)$
- Adapt barrier with smaller $\mu^{(t)}$
- If $\mu^{(t)} \rightarrow 0$, local maxima of g can be detected, both <u>at the boundary</u> and <u>in the interior</u>

Optimisation with linear inequality constraints - R-function constrOptim

- Constrained optimisation problem:
 - -xp-dimensional vector, $g: \mathbb{R}^p \to \mathbb{R}$ function
 - We search x^* with $g(x^*) = \max g(x)$
 - Subject to $Ux^* c \ge 0$, $U \in \mathbb{R}^{n \times p}$, $c \in \mathbb{R}^n$ (linear inequality constraints; rows of U are u_i^T)
- The R-function constroptim uses log barrier functions
- constrOptim calls repeatedly optim for function \tilde{g} with barrier; barrier adapted between iterations: $\mu^{(t)}$ decreases
- E.g. $\tilde{g}(x) = g(x) + \mu^{(t)} \sum_{i=1}^{n} \log(u_i^T x c_i)$ (for maximisation; $g(x) - \mu^{(t)}$... for minimisation)

Optimisation with linear inequality constraints – barrier method

- Example: Quadratic regression for fertilizer-yield-relationship with fertilizer $x \in [0,1.2]$. Experiment planned with
 - proportion w_i of observations using $x_i \in [0,1.2]$ (can be chosen by experimenter), i=1,2,3; $w_3=1-w_1-w_2$.
- Parameters to be optimised: $y = (x_1, x_2, x_3, w_1, w_2)^T$
- D-optimal design maximises $g(y) = \det(\sum_{i=1}^{3} w_i f(x_i) f(x_i)^T)$ subject to

$$x_i \ge 0$$
, $1.2 - x_i \ge 0$, $i = 1, 2, 3$, $w_1 \ge 0$, $w_2 \ge 0$, $1 - w_1 - w_2 \ge 0$

• Construct $m{U}$ and $m{c}$ such that constraints can be written as $m{U} m{y} - m{c} \geq m{0}$

Optimisation with linear inequality constraints – barrier method

- $\mathbf{y} = (x_1, x_2, x_3, w_1, w_2)^T$, $w_3 = 1 w_1 w_2$
- D-optimal design maximises $g(\mathbf{y}) = \det\left(\sum_{i=1}^{3} w_i \mathbf{f}(x_i) \mathbf{f}(x_i)^T\right)$ subject to $x_i \ge 0$, $1.2 - x_i \ge 0$, $w_1 \ge 0$, $w_2 \ge 0$, $1 - w_1 - w_2 \ge 0$
- $Uy c \ge 0$ with

2020-11-06

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{pmatrix}, c = \begin{pmatrix} 0 \\ -1.2 \\ 0 \\ -1.2 \\ 0 \\ 0 \\ 0 \\ -1.2 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

Optimisation with linear inequality constraints - R-function constrOptim

• R-code:

```
• U <- matrix(0, nrow=9, ncol=5)
  U[1,1] \leftarrow U[3,2] \leftarrow U[5,3] \leftarrow U[7,4] \leftarrow U[8,5] \leftarrow 1
  U[2,1] \leftarrow U[4,2] \leftarrow U[6,3] \leftarrow U[9,4] \leftarrow U[9,5] \leftarrow -1
           \leftarrow c(rep(c(0, -1.2), 3), 0, 0, -1)
   startv \leftarrow c(0.2, 0.3, 0.4, 0.2, 0.2)
   # Nelder-Mead as inner optimisation method:
           <- constrOptim(startv, f=g, grad=NULL, ui=U, ci=d,</pre>
   res
                               control=list(fnscale=-1))
   round(res$par, 3)
```

- Result: 0.000 0.597 1.200 0.331 0.333
- Note: In this case, the solution is algebraically known based on optimal design theory

Optimisation with linear inequality constraints – barrier method

- Limitations of barrier method (Lange, 2010, page 301):
 - Iterations within iterations necessary
 - No obvious choice how fast $\mu^{(t)}$ should go to 0
 - A too small value $\mu^{(t)}$ can lead to numerical instability

Other topics

About the cress experiment – Problem 3.3

 Design chosen has some optimality property assuming a quadratic regression with some robustness if other model valid

 Regressions: quadratic; cubic; cubic without linear term

Gradient free optimisation – Simulated annealing

- Start value $x^{(0)}$; Stage j=0,1,2,... has m_j iterations; set j=0
- Given iteration $x^{(t)}$, generate $x^{(t+1)}$ as follows:
- 1. Sample a candidate x^* from a proposal distribution $p(\cdot|x^{(t)})$
- 2. Compute $h(x^{(t)}, x^*) = \exp(\frac{g(x^*) g(x^{(t)})}{\tau_j})$ $g(x^{(t)}) g(x^*)$ for minimisation
- 3. Define next iteration $x^{(t+1)}$ according to

$$x^{(t+1)} = \begin{cases} x^*, & \text{with probability } \min\{h(x^{(t)}, x^*), 1\} \\ x^{(t)}, & \text{otherwise} \end{cases}$$

- 4. Set t < -t+1 and repeat 1.-3. m_i times
- 5. Update $\tau_j = \alpha(\tau_{j-1})$ and $m_j = \beta(m_{j-1})$; set j < -j+1; go to 1

 au_j is temperature; function lpha should slowly decrease it Function eta should be increasing

Markov Chain Monte Carlo (MCMC) – Metropolis-Hastings algorithm

- Metropolis-Hastings (MH) algorithm:
- A starting value $x^{(0)}$ is generated from some starting distribution
- Given observation $x^{(t)}$, generate $x^{(t+1)}$ as follows:
- 1. Sample a candidate x^* from a proposal distribution $g(\cdot|x^{(t)})$
- 2. Compute the MH ratio $R(x^{(t)}, x^*) = \frac{f(x^*) g(x^{(t)} | x^*)}{f(x^{(t)}) g(x^* | x^{(t)})}$
- 3. Sample $x^{(t+1)}$ according to

2020-11-06

$$x^{(t+1)} = \begin{cases} x^*, & \text{with probability min} \{R(x^{(t)}, x^*), 1\} \\ x^{(t)}, & \text{otherwise} \end{cases}$$

4. If more observations needed, set t <- t+1; go to 1

Remarks

