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Course schedule 

● Topic 1: Stochastic gradient descent and quasi-Newton 

algorithms

Lectures: March 23; Time 10-12, 13-15 (online, Zoom)

● Topic 2: Particle swarm optimisation and stochastic 

gradient descent with momentum

Lectures: April 13; Time 10-12, 13-15 

● Topic 3: Simulated annealing and genetic algorithms 

Lectures: April 27; Time 10-12, 13-15 

Course homepage: 

http://gauss.stat.su.se/phd/oasi/optimisation2.html

Includes reading material, lecture notes, assignments
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Today’s schedule 

● Some remarks connected to L1 and L2

● Simulated annealing

– Why does simulated annealing work?

– Generalisation of optimisation problem

– Convergence result

● Genetic algorithms

– Idea of algorithm

● Reflections
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Some remarks connected to L1 and L2

2021-04-27 Optimisation algorithms in Statistics II L3 4



Quasi-Newton method

● The BFGS (quasi-Newton) method has iteration

𝒙(𝒕+𝟏) = 𝒙 𝒕 − 𝑴(𝑡) −1
𝒈′ 𝒙 𝒕

and
𝑴(𝑡+1) = 𝑴(𝑡) −

𝑴 𝑡 𝒛 𝑡 𝑴 𝑡 𝒛 𝑡 𝑇

𝒛 𝑡 𝑇
𝑴 𝑡 𝒛 𝑡

+ 𝒚(𝑡)𝒚(𝑡)
𝑇

𝒚(𝑡)
𝑇
𝒛(𝑡)

● For higher dimensional problems, computation of inverse 

could be computationally intensive, but can be avoided by 

applying the Sherman-Morrison-Woodbury formula

● Defining 𝑳(𝑡) = 𝑴(𝑡) −1
, the matrix update can be done by

𝑳(𝑡+1) = 𝑰 − 𝑟𝑘𝒛
𝑡 𝒚 𝑡 𝑇

𝑳 𝑡 𝑰 − 𝑟𝑘𝒚
𝑡 𝒛 𝑡 𝑇

+ 𝑟𝑘𝒛
𝑡 𝒛 𝑡 𝑇

with 𝑟𝑘 = 1/(𝒚 𝑡 𝑇
𝒛 𝑡 )

● Starting value could be 𝑳(0) = 𝑴(0) = 𝑰
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Sherman-Morrison-Woodbury formula

● Sherman-Morrison formula: Let 𝑨 ∈ ℝ𝑛×𝑛 be an invertible 

matrix and 𝒖, 𝒗 ∈ ℝ𝑛 vectors. Matrix 𝑨 + 𝒖𝒗𝑻 is invertible if 

and only if 𝒗𝑻𝑨−𝟏𝒖 ≠ −𝟏 and then,

(𝑨 + 𝒖𝒗𝑻)−1= 𝑨−1 − 𝑨−1𝒖𝒗𝑻𝑨−1

1+𝒗𝑻𝑨−𝟏𝒖
.

Note: 𝒖𝒗𝑻 is an ℝ𝑛×𝑛–matrix with rank 1

● Sherman-Morrison-Woodbury formula: Let 𝑨 ∈ ℝ𝑛×𝑛 be an 

invertible matrix and 𝑼,𝑽 ∈ ℝ𝑛×𝑘 matrices. Matrix 𝑨 + 𝑼𝑽𝑻 is 

invertible if and only if 𝑰 − 𝑽𝑻𝑨−𝟏𝑼 ∈ ℝ𝑘×𝑘 invertible. Then,

(𝑨 + 𝑼𝑽𝑻)−1= 𝑨−1 − 𝑨−1𝑼 𝑰 − 𝑽𝑻𝑨−𝟏𝑼
−𝟏
𝑽𝑻𝑨−1.

Note: 𝑼𝑽𝑻 is an ℝ𝑛×𝑛–matrix with rank k

● The formulae can speed up iterative programs if n large and 

k small, since inversion might be costly (example: BFGS)
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Particle swarm optimisation – choice of 
hyperparameters using empirical studies

● Example: Problem 3.2 from OASI

– one global and three other local optima

– use different swarm sizes (e.g. 10, 20, 50, 100) and 
different average percentage of informants (e.g. 0.1, 0.2, 
0.5, 1), run 100 times each, and report percentage 
identifications of global maximum

– here: fixed function given to be optimised 

● In general, one might want to compare algorithms for a set 

of easy and difficult optimisation problems

● For comparability, often ”standard optimisation problems” 

used; see e.g. Liang et al. (2013)

● Can be mathematical functions or statistical optimisation 

problems
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Comparisons of algorithms or hyper-
parameter choices using empirical studies

● After choosing some standard optimisation problems, one 

needs to define a success criterion (example in Clerk, 2016)

● Possibility: count runs of algorithm leading to a solution 

𝑥𝑠 with 𝑔 𝑥𝑠 < 𝑔 𝑥∗ + 𝛿; here 𝑥∗ true position of global 

minimum, and 𝛿 small (ideally 𝛿 < 𝑔 𝑥𝐿 − 𝑔(𝑥∗) for any local 

minimum 𝑥𝐿)

● If the true success rate for an algorithm is p, we observe a 

Bin(1, 𝑝)-random variable in each run

➢ Success rate has sd
𝑝 1−𝑝

𝑛
when doing n runs

● E.g. 𝑝 = 0.8, 𝑛 = 100 → sd = 0.04.  
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Simulated annealing

AlphaOpt (2017). Introduction To Optimization: Gradient Free Algorithms (2/2) –

Simulated Annealing, Nelder-Mead (0:15-1:35)
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Simulated annealing

● Start value x(0); Stage j=0,1,2,… has 𝑚𝑗 iterations; set j=0

● Given iteration x(t), generate x(t+1) as follows:

1. Sample a candidate x* from a proposal distribution p(·|x(t))

2. Compute ℎ 𝑥 𝑡 , 𝑥∗ = exp(
𝑔 𝑥 𝑡 −𝑔 𝑥∗

𝜏𝑗
)

3. Define next iteration x(t+1) according to 

𝑥(𝑡+1) = ൝
𝑥∗, with probabilitymin{ℎ 𝑥(𝑡), 𝑥∗ , 1}

𝑥(𝑡), otherwise

4. Set t <- t+1 and repeat 1.-3. 𝑚𝑗 times 

5. Update 𝜏𝑗 = 𝛼(𝜏𝑗−1) and 𝑚𝑗 = 𝛽(𝑚𝑗−1); set j <- j+1; go to 1

𝜏𝑗 is temperature; function 𝛼 should slowly decrease

Function 𝛽 should be increasing
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Simulated annealing

● Initially, also “bad” proposals are accepted

● With decreasing temperature, accept only improvements

● This helps to explore first and avoids convergence to a local 

minimum too early

● Algorithm has therefore chances to find the global optimum 

in presence of multiple local optima

● method=“SANN” of R function optim is “a variant of 

simulated annealing” (documentation of optim)

– Initial temperature seems to be important choice (can be 
changed e.g. by control=list(temp=0.01); default 10 

might be bad)
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Markov Chain Monte Carlo (MCMC) –
Metropolis algorithm

● Metropolis alg. (symmetric proposal 𝑝 𝑥 𝑡 𝑥∗ = 𝑝 𝑥∗ 𝑥(𝑡) ):

● A starting value x(0) is generated from some starting 

distribution

● Given observation x(t), generate x(t+1) as follows:

1. Sample candidate x* from symmetric proposal dist. p(·|x(t))

2. Compute ratio 𝑅 𝑥 𝑡 , 𝑥∗ =
𝑓 𝑥∗

𝑓 𝑥 𝑡

3. Sample x(t+1) according to 

𝑥(𝑡+1) = ൝
𝑥∗, with probabilitymin{𝑅 𝑥(𝑡), 𝑥∗ , 1}

𝑥(𝑡), otherwise

4. If more observations needed, set t <- t+1; go to 1
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Simulated annealing and Metropolis 
algorithm

● For fixed temperature 𝜏, simulated annealing algorithm is a 

Metropolis algorithm (Metropolis et al., 1953)

● Kirkpatrick et al. (1983) proposed the name simulated 

annealing for using it as optimisation method

● ℎ 𝑥 𝑡 , 𝑥∗ = exp
𝑔 𝑥 𝑡 −𝑔 𝑥∗

𝜏𝑗
=

exp −
𝑔 𝑥∗

𝜏𝑗

exp −
𝑔 𝑥(𝑡)

𝜏𝑗

=
𝑓 𝑥∗

𝑓 𝑥(𝑡)
= 𝑅(𝑥(𝑡), 𝑥∗)

● Key ingredient of Metropolis and simulated annealing alg.: 

Markov chain 𝒙 𝒕 has stationary distribution f

● (this means: if 𝑥 𝑡 has distribution f, then 𝑥 𝑡+1 has same 

distribution); for a proof see e.g. Koski (2009)

● Consequence: distribution of 𝑥 𝑡 converges to f

● Requirement for all: 𝑥 𝑡 irreducible and aperiodic chain
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Simulated annealing: stationary 
distribution for fixed temperature 𝜏

● Fixed temperature 𝜏: Markov chain 𝑥 𝑡 has stationary 

distribution with density proportional to 𝑓 𝑥 = exp −
𝑔 𝑥

𝜏
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Simulated annealing: proposal
distribution

● Step 1 in simulated annealing iteration rule:

1. Sample a candidate x* from a proposal distribution p(·|x(t))

● Proposal distribution could be uniform distribution on a 

neighbourhood of x(t); for a unidimensional optimisation 

problem: xs <- xt + runif(n=1, min=-1, max=1)

● Instead of Unif[-1,1], a distribution on a smaller or larger 

neighbourhood could be used

● But also, normal distribution 𝑁(0, 𝜎2) or other symmetric 

distribution around 0 might be added to x(t) instead

● An option is to narrow the neighbourhood (e.g. to reduce 𝜎2

in the 𝑁(0, 𝜎2) proposal) with decreasing temperature
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Optimisation problem

● Generic optimisation problem:

– 𝒙 p-dimensional vector, 𝑔: ℝ𝑝 → ℝ function

– We search 𝒙∗ with 𝑔 𝒙∗ = min𝑔(𝒙)

● Now, we consider also optimisation problems which cannot 

exactly be formulated according to the generic one

● Especially, function 𝑔 might be defined on another space 

than ℝ𝑝

● Generalized optimisation problem:

– 𝒙 p-dimensional vector, 𝑔: 𝕊 → ℝ function for some set 𝕊

– We search 𝒙∗ with 𝑔 𝒙∗ = min𝑔(𝒙)
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Example: Multiple linear regression

● Generalized optimisation problem:

– 𝒙 p-dimensional vector, 𝑔: 𝕊 → ℝ function for some set 𝕊

– We search 𝒙∗ with 𝑔 𝒙∗ = min𝑔(𝒙)

● Multiple linear regression with q predictors

● Desired to choose best model based on criterion like AIC

● There are 2𝑞 possible models

● If q small, AIC of all models can be computed (exhaustive 

search); for q larger, this is impossible (e.g. q=50, 1ms to 

compute an AIC → more than 35 000 years needed!)

● One model can be represented as element of 𝕊 = 0, 1 𝑞

(1=predictor included in model, 0 otherwise)

2021-04-27 Optimisation algorithms in Statistics II L3 17



Example: Multiple linear regression

● Generalized optimisation problem:

– 𝒙 p-dimensional vector, 𝑔: 𝕊 → ℝ function for some set 𝕊

– We search 𝒙∗ with 𝑔 𝒙∗ = min𝑔(𝒙)

● Optimisation problem: Which model gives best AIC?

● Model 1: (1, 0, 0, 0, 1, 1, 0, 1, …)

Model 2: (1, 1, 1, 0, 1, 1, 0, 0, …)

● Which models are ”close” to each other? (Need metric on 

𝕊 = 0, 1 𝑞) What is a neighbourhood of a model?

● Apply simulated annealing with neighbourhood e.g. being all 

models which differ by one predictor (for proposal dist.)

● Uniform distribution on neighbourhood can be used
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Example: Multiple linear regression

● Generalized optimisation problem:

– 𝒙 p-dimensional vector, 𝑔: 𝕊 → ℝ function for some set 𝕊

– We search 𝒙∗ with 𝑔 𝒙∗ = min𝑔(𝒙)

● Arbitrary starting model generated (e.g. uniform distribution 

on 𝕊 = 0, 1 𝑞, xs <- rbinom(q, size=1, prob=0.5))

● See example in Givens and Hoeting, Section 3.3, with 27 

predictors
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Convergence of simulated annealing

● Convergence proofs see the generated sequence either as 

sequence of homogeneous Markov chains (one for each 𝜏) 

or as one inhomogeneous Markov chain

● For discrete 𝕊 = 𝑥1, 𝑥2, 𝑥3, … and g having a finite set M of 

global minima, simulated annealing converges with 

probability 1/|M| to each of the M global minima (references 

for proofs in Givens and Hoeting, 2013); main idea:

● Stationary distribution proportional to: exp −
𝑔 𝑥

𝜏
or to 

exp −
𝑔 𝑥 −𝑔𝑚𝑖𝑛

𝜏
with 𝑔𝑚𝑖𝑛 = min 𝑔 𝑥

● Therefore, if P is distribution according to stationary dist., 

𝑃 𝑥𝑖 = exp −
𝑔 𝑥𝑖 −𝑔𝑚𝑖𝑛

𝜏
/{ 𝑀 + σ𝑥𝑗∉𝑀

exp −
𝑔 𝑥𝑗 −𝑔𝑚𝑖𝑛

𝜏
}
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𝜏 → 0:

→
1

|𝑀|
(𝑥𝑖 ∈ 𝑀)



Convergence of simulated annealing

● To achieve convergence to a global minimum (possibly in 

the presence of local minima) in practise, one needs:

● Run iterations for each fixed temperature long enough such 

that convergence to the stationary distribution is achieved

● Cool the temperature slowly enough such that the iterations 

have time to escape from local minima

● Example from Givens and Hoeting (2013; p.73):

– 5 stages with 60 iterations, then

– 5 stages with 120 iterations, then

– 5 stages with 220 iterations

– From one stage to the next, 𝜏
is decreased by 10%, 
tau <- 0.9*tau; final 𝜏 is 
0.915 = 0.206*initial 𝜏
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Recall: Maximising information of 
experimental designs

● Regression model y=X β + ε (where ε has iid components)

● X design matrix (depends on choice of observational points) 

● Covariance matrix of Least Squares estimate 𝜷 is 

Cov 𝜷 = (𝑿𝑻𝑿)−𝟏· 𝑐𝑜𝑛𝑠𝑡

● Choose design of an experiment such that 𝑿𝑻𝑿 “large”

● D-optimality: 𝑔("design") = det(𝑿𝑻𝑿)

● We search design∗ with 𝑔 design∗ = max𝑔(design)
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Example: Maximising information of 
experimental designs

● Regression model y=X β + ε, Cov 𝜷 = (𝑿𝑻𝑿)−𝟏· 𝑐𝑜𝑛𝑠𝑡

● We search design∗ with 𝑔 design∗ = max𝑔(design)

● Example: cubic regression, 𝑦 = 𝛽0 + 𝛽1𝑤 + 𝛽2𝑤
2 + 𝛽3𝑤

3 + 휀, 

w can be chosen in [-1, 1], but practical circumstances 

require here a distance between design points of 0.05

● Therefore, we allow design points {-1, -0.95, -0.9, …, 1} 

and at most one observation can be done at each point

● Each observation has a cost; and we want to minimise the 

penalized D-optimality #observations ∗ 0.2 − log det 𝑿𝑻𝑿

●

𝑿 =

1 𝑤1 𝑤1
2 𝑤1

3

1 𝑤2 𝑤2
2 𝑤2

3

… … … …
1 𝑤𝑛 𝑤𝑛

2 𝑤𝑛
3
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Example: Maximising information of 
experimental designs

● Example: cubic regression, 𝑦 = 𝛽0 + 𝛽1𝑤 + 𝛽2𝑤
2 + 𝛽3𝑤

3 + 휀, 

w can be chosen in [-1, 1], but practical circumstances 

require here a distance between design points of 0.05

● Therefore, we allow design points {-1, -0.95, -0.9, …, 1} 

and at most one observation can be done at each point

● A design can be represented by a vector in 𝕊 = 0, 1 41 where 

0 means that no observation is done at a design point and 1 

means that one observation is made there

● How can a reasonable neighbourhood on 𝕊 look like here?
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Simulated annealing

+ Very easy to implement

+ Theoretical property is good: theoretically, we can 

guarantee convergence to a global optimum even in the 

presence of local optima

+ Can even handle some non-standard optimisation problems

– In practice, convergence can be “maddeningly slow” 

– One needs to play around with cooling schedule to ensure 

convergence in practice

• We need to run the algorithm “long enough” at each 
temperature (to ensure stationary distribution)

• We need to cool the temperature slowly enough (to allow 
escaping from local optima)
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Genetic algorithms
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Genetic algorithms

● Example: Optimisation problem 𝑔: 𝕊 = 0, 1 𝑞 → ℝ

● Like for PSO, several candidate solutions are considered in 

parallel at each iteration

● All candidate solutions at an iteration are called generation

● One candidate solution is called individual or organism

● An individual has its chromosome; a coordinate called gene

● Generation i (at iteration i):

Individual 1: (1, 0, 0, 0, 1, 1, 0, 1, 0, 1)

Individual 2: (1, 1, 1, 0, 1, 1, 0, 0, 0, 1)

…

Individual n: (1, 0, 1, 0, 0, 1, 1, 0, 1, 1)

● Each individual has a fitness which is the objective function
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Genetic algorithms

● Idea is to select parents (at random, but individuals with 

better fitness might have higher chance for being selected)

● Then, genetic operator of crossover is applied

● Finally, some genes might be mutated

● Generation t:

● Individual 1: (1, 0, 0, 0, 1, 1, 0, 1, 0, 1), fitness 10

Individual 2: (1, 1, 1, 0, 1, 1, 0, 0, 0, 1), fitness 8.7

Individual 3: (0, 1, 1, 1, 1, 1, 1, 0, 0, 0), fitness 4.5

Individual 4: (1, 0, 1, 0, 0, 1, 1, 0, 1, 1), fitness 1.9
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Genetic algorithms

● Generation t:

● Individual 1: (1, 0, 0, 0, 1, 1, 0, 1, 0, 1), fitness 10

Individual 2: (1, 1, 1, 0, 1, 1, 0, 0, 0, 1), fitness 8.7

Individual 3: (0, 1, 1, 1, 1, 1, 1, 0, 0, 0), fitness 4.5

Individual 4: (1, 0, 1, 0, 0, 1, 1, 0, 1, 1), fitness 1.9

● Selection (probability according to fitness):

● Individual 1: (1, 0, 0, 0, 1, 1, 0, 1, 0, 1), fitness 10

Individual 2: (1, 1, 1, 0, 1, 1, 0, 0, 0, 1), fitness 8.7

Individual 1: (1, 0, 0, 0, 1, 1, 0, 1, 0, 1), fitness 10

Individual 3: (0, 1, 1, 1, 1, 1, 1, 0, 0, 0), fitness 4.5
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Genetic algorithms

● Selected parents:

● Individual 1: (1, 0, 0, 0, 1, 1, 0, 1, 0, 1), fitness 10

Individual 2: (1, 1, 1, 0, 1, 1, 0, 0, 0, 1), fitness 8.7

Individual 1: (1, 0, 0, 0, 1, 1, 0, 1, 0, 1), fitness 10

Individual 3: (0, 1, 1, 1, 1, 1, 1, 0, 0, 0), fitness 4.5

● Crossover applied to first two and to last two:

● New indiv. 1: (1, 0, 0, 0, 1, 1, 0, 0, 0, 1)

New indiv. 2: (1, 1, 1, 0, 1, 1, 0, 1, 0, 1)

New indiv. 3: (1, 0, 0, 1, 1, 1, 1, 0, 0, 0)

New indiv. 4: (0, 1, 1, 0, 1, 1, 0, 1, 0, 1)
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Genetic algorithms

● New individuals after crossover:

● New indiv. 1: (1, 0, 0, 0, 1, 1, 0, 0, 0, 1)

New indiv. 2: (1, 1, 1, 0, 1, 1, 0, 1, 0, 1)

New indiv. 3: (1, 0, 0, 1, 1, 1, 1, 0, 0, 0)

New indiv. 4: (0, 1, 1, 0, 1, 1, 0, 1, 0, 1)

● Some genes are mutated:

● New indiv. 1: (1, 0, 0, 0, 1, 0, 0, 0, 0, 1)

New indiv. 2: (1, 1, 1, 0, 1, 1, 0, 1, 0, 1)

New indiv. 3: (1, 0, 1, 1, 1, 1, 1, 1, 0, 0)

New indiv. 4: (0, 1, 1, 0, 1, 1, 0, 1, 0, 1)

● This is now generation t+1

● Again fitness calculation, selection, crossover, and 

mutation is done; etc.
2021-04-27 Optimisation algorithms in Statistics II L3 31



Genetic algorithms

● Size of population: Givens and Hoeting write about 10-200 

and another rule for binary genes, it should be between 1 

and 2 times the chromosome length

● Selection: randomly, e.g. probability proportional to fitness

● Crossover: Pick randomly a position where the chromosome 

of two parents is splitted (e.g. uniform distribution on all 

q-1 possible split positions)

● Mutation: Change each gene with probability µ, 

independently; µ should not be too small and not too large; 

e.g. µ=0.01 in example from Givens and Hoeting (2013) 
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Example: classification

● A dataset 𝒙1, 𝒙2, … , 𝒙𝑞 is supposed to be divided into p

groups (subsets) such that some criterion is minimized, e.g. 

the within-group sum of squares

● This is a classification problem from unsupervised learning

● If p=2, we can optimize over 𝕊 = 0, 1 𝑞 and apply simulated 

annealing or a genetic algorithm

● If p>2, we can apply the algorithms as well using 

𝕊 = 1, 2, … , 𝑝 𝑞, i.e. individuals have chromosomes like 

(8, 4, 2, 2, 3, 8, 4, 1, 7, 2, …)   

2021-04-27 Optimisation algorithms in Statistics II L3 33



About theoretical results

● SGD: 

E 𝒙 𝑡 − 𝒙∗
2

2
≤ 𝛼𝑠

𝑚{1−𝛼 max 𝐿𝑖 }
+ 1 − 𝛼𝑚{1 − 𝛼max 𝐿𝑖 }

𝑡 𝒙 0 − 𝒙∗
2

2

● PSO: 0 < 𝑐 <
12 𝑤2−1

5𝑤−7
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Stochastic gradient descent method –
empirical examples from OASI-L2

● Constant step size α(𝑡) = 𝛼

● Step size 

– 𝛼 = 0.0006 (black)

– 𝛼 = 0.002 (red)

– 𝛼 = 0.006 (blue)

● Compare with theoretical result:
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Theoretical behaviour of bound 
in Theorem 2 for expected 
distance to optimum for s=0.5, 
m=2, max(Li)=2, ε0=1



Particle swarm optimisation –
stability analyses

● 𝑐 = 𝑐1 = 𝑐2

● −1 < 𝑤 < 1 and 

0 < 𝑐 < 2(𝑤 + 1)

● Sequence 𝒛(𝑡+1) is order-2 stable if:

−1 < 𝑤 < 1 and 

0 < 𝑐 <
12 𝑤2 − 1

5𝑤 − 7

● Default in R–package pso based on Clerc and Kennedy 

(2002):

𝑤 =
1

2 ln 2
= 0.721, 𝑐 = 𝑐1 = 𝑐2 =

1

2
+ ln 2 = 1.193
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