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Perform the solutions individually and send your report until November 27 to me. Try to
keep this deadline. However, if you have problems with it, there will be a final deadline on
January 25 for all assignments. Please include your name in the filename(s) of your solution
file(s).

Problem 4.1

We want to determine the D-optimal design for cubic regression where the independent variable
x is allowed to have values between 0 and 10. Four different xi ∈ [0, 10], i = 1, 2, 3, 4, can be
chosen by the experimenter and the proportion of observations done at each xi is wi ≥ 0 with∑4

i=1wi = 1. The D-optimal design maximises

det

(
4∑

i=1

wif(xi)f(xi)
>
)
, with f(x) = (1, x, x2, x3)>,

under the restrictions mentioned above.

a. Determine a matrix U and a vector c such that the constraints can be written in the form
Uy − c ≥ 0, where y is the vector of parameters to be optimised over.

b. Determine the D-optimal design using constrOptim. Does the result make sense?

c. Write an R-function for a function g̃ where log barriers µ · b(y) at all constraints are added
to the function g (which is to be maximised). The value µ could be a parameter in the
function such that you easily can modify it.

d. Choose some reasonable values for µ and compute the optimal value of g using uncon-
strained optimisation, e.g with optim. Hint: Check first how large values of g are to get
the µ’s roughly right. Report results for a sequence of decreasing µ. Do you obtain similar
results as in b. when using small µ?
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Problem 4.2

We consider again as in Problem 3.3 the experiment investigating how the growth of garden cress
depends on a (potentially) toxic fertilizer. The data is on the homepage in the file cressdata.txt
(columns: observation number, fertilizer concentration, yield).

We want to estimate now a third-degree polynomial (cubic), again using least squares with
L1 In contrast to the penalized objective function in Problem 3.3, we use now the constrained
objective function

Minimise g(β) = ‖Xβ − y‖22 subject to ‖β̃‖1 ≤ t, (1)

where X is the design matrix with columns 1, fertilizer, fertilizer2, fertilizer3, β̃ = (β1, β2, β3)
>

is the parameter vector without intercept, β = (β0, β1, β2, β3)
> is the complete parameter vector

and y is the yield-data. (We do this time not regularise the intercept, see e.g. Lange (2010),
page 310.) The constant t ≥ 0 is now the regularisation constant. t and λ (in Problem 3.3) are
related such that a t in the constrained problem corresponds to an λ in the penalised problem
which gives the same solution.

Note that now, t =∞ corresponds to the least squares estimation, where the solution for β
of the optimisation problem is (X>X)−1X>y.

a. Write the constraint ‖β̃‖1 ≤ t in terms of eight linear constraints u>i β + ci ≥ 0 (or as
Uβ − c ≥ 0 with a matrix U with 8 rows).

b. Write an expression for the objective function minus log barriers, g̃(β) = g(β)− µ · b(β).
Determine the gradient of g and of g̃. (Note: You do not have to implement the gradient
of g̃.)

c. Compute the Lasso-estimate using constrOptim for t = 1000, 100 and two other t’s. Test
two different methods for the inner iteration in optim, e.g. Nelder-Mead and BFGS. For
the non-Nelder-Mead-method, specify explicitly the gradient when calling constrOptim.
(Note: here you need the gradient of g, not of g̃.) Check ‖β̃‖1 for the solutions: is the
solution on the boundary of the set of feasible points or in the inner of the set?
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