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Perform the solutions individually and send your report until April 26 to me. Try to keep this
deadline. However, if you have problems with it, there will be a final deadline on August 31 for
all assignments.
Please send me one pdf-file with your report (alternatively, Word is ok, too), and additionally,
please send me your code in one separate plain-text file (an R-markdown, .rmd, is possible
but not required).

Problem 2.1

Consider a unidimensional minimisation problem where the minimum is attained at 0. Consider
further a particle in the PSO algorithm with x(1) = 0 and x(2) = −2 (v(2) = −2). For this

particle, we have p
(t)
best = g

(t)
best = 0 for all t (the starting value happened to identify already

the minimum; the stagnation assumption is fulfilled here). We consider a standard PSO with
parameters w, c1 = c2 =: c which generates the sequence x(t), t = 1, 2, . . . for this particle.

a. Compute the sequence E[x(t)] for iteration number t = 1, 2, . . . , 40 and plot E[x(t)] versus
t for different combinations of w and c. Use the pairs (0.721, 1.193) (default in R-package
pso), (0.9, 1.193), (0.721, 2.2), (0.2, 3) for (w, c) and at least one further pair of your choice.

b. Simulate the sequence x(t), t = 1, 2, . . . , 40, around 1000 times. Compute the Monte Carlo
estimate for Var(x(t)) for each t = 3, . . . , 40 (which is simply the variance of the say 1000
simulated values for x(t)). Plot the estimated variance versus iteration number. Do this
for the (w, c)-pairs which you have used in a.

c. Based on your results from a. and the empirical results from b.: Can you confirm the
theoretical results about order-1 and order-2 stability?
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Problem 2.2

An iterative algorithm is given with the iteration rule

x(t+1) = x(t) + Rt+1(x
∗ − x(t−1)) + St+1(x

∗ − x(t−2)),

where Ri are independent Unif[0, r]-distributed random variables (r ≥ 0), Si are independent
Unif[0, s]-distributed random variables (s ≥ 0), and x(1), x(2), x(3) are given starting values and
x∗ is a fixed value.

a. Consider for simplicity unidimensional values for x(t) and x∗. Determine (with help of R)
the pairs (r, s) (0 ≤ r ≤ 2, 0 ≤ s ≤ 2) which ensure an order-1 stable sequence (x(t)) and
show them in a plot.

b. What does the results from a. say for the multidimensional case? It could be either when

x(t+1) = x(t) + Rt+1(x
∗ − x(t−1)) + St+1(x

∗ − x(t−2)),

or when
x(t+1) = x(t) + Rt+1 ⊗ (x∗ − x(t−1)) + St+1 ⊗ (x∗ − x(t−2)),

where ⊗ denotes the component-wise product and the components of the random vectors
Ri,Si are all independent, uniformly distributed, Unif[0, r],Unif0, s], respectively. Discuss
it briefly; no derivations or programming are expected for this Part b.
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