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Perform the solutions individually and send your report until April 12 to me. Try to keep this
deadline. However, if you have problems with it, there will be a final deadline on August 31 for
all assignments.
Please send me one pdf-file with your report (alternatively, Word is ok, too), and additionally,
please send me your code in one separate plain-text file (an R-markdown, .rmd, is possible
but not required).

Problem 1.1

Consider a simple logistic regression

p(x) = P (Y = 1|x) =
1

1 + exp(−β0 − β1x)
.

and the estimation of β = (β0, β1)
> using maximum likelihood based on n observations.

The scaled negative log-likelihood g(b) = 1
n

∑n
i=1 gi(b) and its derivative g′(b) = 1

n

∑n
i=1 g′

i(b)
are described in a separate document (the link is among the reading on the course homepage).
Let R be a discrete random variable, uniformly distributed on the set {1, . . . , n}.

a. Show that the scaled negative log-likelihood is L-smooth and determine a constant L
fulfilling the Lipschitz property of the derivative.

b. Show: When we apply SGD, we see an improvement in expectation from iteration t to
iteration t+ 1 if

α < f(b(t)) :=
2‖g′(b(t))‖22

LE‖g′
R(b(t))‖22

.

c. Compute ‖g′(b)‖22 and E‖g′
R(b)‖22 and determine a constant s such that E‖g′

R(b)‖22 ≤ s.

d. For the dataset in Table 1 (used in the first part of the course), compute L and s numer-
ically. Produce a contour plot of function f in Part b. and explain the meaning of the
contour lines in this plot.
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xi 0 0 0 0.1 0.1 0.3 0.3 0.9 0.9 0.9
yi 0 0 1 0 1 1 1 0 1 1

Table 1: Data for Problem 1.1d and 1.3b and c

Problem 1.2

Consider least squares for a linear regression model

y = Xβ + ε

with the function

g(b) =
1

n
‖Xb− y‖22

to be minimised. Show that g is L-smooth and m-strongly convex. Present expressions for L
and m.

Problem 1.3

We consider again maximum likelihood estimation for simple logistic regression as in Problem
1.1 and use the same example dataset.

a. Program your own quasi-Newton algorithm using the BFGS method using a step-size
halving line search.

b. Run the program for the dataset in Table 1 and report the number of iterations used.

c. (optional) Compare with the number of iterations used by the steepest ascent/descent
method when the same starting value for (β0, β1)

> is used.
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