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Analytical one-dimensional optimisation

If we want to maximise a one-dimensional function, for example g(z) = 4 + x — 22, we use the
first and second derivative. We set the first derivative to 0 and solve the equation. Solutions
are then investigated with the second derivative: if it is negative, we have found a maximum; if
it is positive, we have found a minimum; if it is 0, we cannot be sure what it is and have to do
further investigations.

Example for analytical two-dimensional optimisation

Suppose we want to determine the values = and y such that the following function becomes

maximal:
g(z,y) = —32% — 4y2 + :cy?’.

In this case, it is possible to calculate these values analytically. In the figure, you can see a
contour plot of this function with x and y at the two axis and the function value shown in terms
of contours.
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Here, we have a two-dimensional case, but we can generalise the computation from the one-
dimensional case. Corresponding to the first derivative is the gradient, corresponding to the
second derivative is the Hessian matrix. We compute them now for this example.

Gradient

The gradient is a vector; each component is the derivative with respect to one variable. The
derivative with respect to = is —6x + y> and with respect to y it is —8y + 3xy%. The gradient is

therefore: ,
g(( Y >) o ( —8y+3$y2 ) '

The gradient at a point (xo,%0) " can be interpreted as the direction of steepest increase of g in
this point.

Hessian

The Hessian matrix is the collection of second order derivatives. Here, we have the second
derivative with respect to z (—6), the second derivative with respect to y (3y?), and the derivative
with respect to « and then to y (—8 + 6zy). The Hessian matrix is then

wl —6 3y?
g (<y>)_<3y2 —8—363:3/)'

The Hessian matrix at a point (z9,y0)' gives information about the local curvature of g in this
point.

Set gradient to 0

We get two equations, —6x 4+ y3 = 0 and —8y + 3zy? = 0. The first gives » = y3/6 which we
plug in into the second: 8y = y°/2. So y = 0 or 16 = y*. This gives three possibilities for y:
y = —2,0,2. Using z = y3/6, we identify the following three points where the gradient is the

0-vector:
—4/3 0 4/3
() (o) (%)

Investigate the Hessian matrix

We compute the Hessian matrix for the second and the third point (the first point is similar to

the third):
()7 )

One can check that the condition for negative definitness is fulfilled for this matrix and conse-
quently, we have shown that we have a local maximum at (0,0).

g 43 —6 12
g(< 2 >):<12 8)’

The eigenvalues of this matrix are —12.89, 14.89 (can be computed manually, more exactly they
are 1 + 1/193; you can check the result with the R-function eigen). Since one eigenvalue is
negative, the other positive, the Hessian matrix is indefinite, and the point (4/3,2)" is a saddle
point of g.

The results found here analytically can be confirmed in the figure above.



Recall: Definite symmetric matrices

Let A be a symmetric n x n-matrix (AT = A). Then:

e A is called positive definite if x Ax > 0 for all n-dimensional vectors x # 0. This is
fulfilled if and only if all n eigenvalues are positive.

A is called negative definite if x" Ax < 0 for all n-dimensional vectors x # 0. This is
fulfilled if and only if all n eigenvalues are negative.

A is called positive semi-definite if x' Ax > 0 for all n-dimensional vectors x. This is
fulfilled if and only if all n eigenvalues are > 0.

A is called negative semi-definite if x' Ax < 0 for all n-dimensional vectors x. This is
fulfilled if and only if all n eigenvalues are < 0.

A is called indefinite if XIAXl > 0 and XQTAXQ < 0 for two n-dimensional vectors xi
and xo. This is fulfilled if and only if at least one eigenvalue is positive and at least one
eigenvalue is negative.

Recall: Conditions for maximum, minimum, and saddle point

Let g : IR™ — IR be an at least two times continuously differentiable function. Let xg be a
vector where the gradient of g is 0. Then:

e Xy is a local maximum if the Hessian matrix at xq is negative definite.
e X( is a local minimum if the Hessian matrix at xg is positive definite.

e x( is a saddle point if the Hessian matrix at xq is indefinite.

Notation

Instead of writing ¢’(x) for the gradient and ¢”(x) for the Hessian, the notation Vg(x) and H(x)
is often used in literature.



