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Seminar on web panel surveys

(in Swedish)

• All of you are invited to a seminar, February 3rd, 

13.00-16.30

• But the language i Swedish. 

http://gauss.stat.su.se/wpu/ 

• Send your application by e-post to: 

joakim.malmdin@scb.se,

• Tell the organiser that you are a student and that 

Stockholm university statistical department should 

pay for you
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Preliminary programme

• 13.00–13.05 Välkommen 

• 13.05–13.35 Inledning Gösta Forsman, Trafikverket 

• 13.35–14.10 Webbpaneler i praktiken Henrik Kronberg, Norstat 

• 14.15–14.40 Vad säger omvärlden? ISO-standarden för 

accesspaneler samt skrifter från Esomar och AAPOR. Bengt 

Larsson, SMIF 

• 14.40–15.05 Kaffe 

• 15.05–15.45 Är icke-sannolikhetsurval aldrig representativa? Jan 

Wretman, Stockholms universitet 

• 15.50–16.15 Att bedöma webbpaneler och 

webbpanelundersökningar - numeriska mått och verbala 

beskrivningar. Meddelas senare 

• 16.15–16.30 Avslutande diskussion. Frågor och synpunkter till 

kommittén. Diskutant – meddelas senare 
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3. Regression type estimators

3.1 Estimation using auxiliary variables

• A population U is given

• An auxiliary variable: Xi; i € U is known

• Study variable Yi  unknown

• Take a sample S, observe Yi; i € S

• Using Y from the sample and X from the 
population try to find a good estimator
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Some methods to use auxiliary 

information
• We will now concentrate on the estimation 

phase

• The sample will be assumed taken and we 

will for simplicity assume SRS                
(Everything works for other sampling schemes 

too, but more complicated).

• Design-based approach 

• Estimator of the population total
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Some estimation techniques 

using auxiliary variables

• Difference estimators

• Ratio estimators

• Regression estimators

• Generalised regression estimators

• Prediction estimators
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3.2 Difference estimators

• Suppose that we can make a prior guess of the 
unknown Yi-value for all units using the auxiliary 
variables. Here we call the guess Xi. 

• For example last years value or last years value 
plus inflation. 

• Look at the differences: Ei = Yi – Xi

• Estimate the total difference Te by te = S Ei as in 
SRS

• Estimate the total Ty by tyD = Tx + te, where Tx is 
known 

• Estimate variance accordingly Var*(tyD) = Var*(te ) 
= ((N-n)/N) S(Ei - te )

2/(n-1)
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Are difference estimators good?

• The variance is                                               

Var(tyD) = Var(Tx + te) = Var(te) =Var(ty - tx)  = 

Var(ty) + Var(tx) - 2Cov(ty,tx) 

• We gain if:  2Cov(ty,tx) > Var(tx) 

• If the guess is good we have  Var(ty) ~ Var(tx)                

then we gain if  (ty,tx) = (Y,X) > 1/2 

(The reverse martingale property allows us to omit 

the correction for finite population)

• Otherwise if (Y,X) > x/2 y
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Are difference estimators good?

• Not used so often as a basic approach

• Often used in secondary analyses and 

longitudinal approaches

• One problem is that it often needs small 

changes i.e. X has the same level as Y.

• Another problem is that there often are large 

variances in X

• Difference estimators are good as a building 

blocks for other estimators
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The recommended situation is when the data lies on a straight 

line with slope one (or slightly more than one)

Y

X



Optimal

• Var(ty - atx)  = Var(ty) + a2Var(tx) – 2aCov(ty,tx) = 
Var(ty) + a2Var(tx) – 2a (Y,X)Var(ty)Var(tx) 

• This is minimised when      a = (Y,X)                
(if the variances are equal), but we do not know 
the correlation or if the variances are equal.

• Thus the recommendation is use only for high 
covariances and similar variances. 

• Otherwise (see regression estimators below with 
estimated parameters.
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3.3 Ratio estimators

• In difference estimators we looked at the 

difference TY = TX + TY-X and estimated it 

by tyD = TX + ty-x = TX + ty - tx 

• Here we look at the ratio instead                

tyR = TX * ty / tx

• Sensible only for positive variables
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Are ratio estimators good?

• Works best if both the mean and the vari-

ance of Y given X increase linearly with X

• May be slightly biased.                             
(Problem since ty/tx  is a convex function in tx )

• To compute the approximate bias and 

variance we need the theorem Gauss 

approximation in two dimensions.
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But first 

Gauss approximation in one dimension
(or Taylor linearisation or the -method)

• If X is a random variable with variance and f a 

twice differentiable function
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Gauss approximation in two dimensions: If X and Y

are random variables with variances and f is twice 

continuously differentiable then
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We use the second expression on                   

tyR = TX * ty / tx    and get       Bias(tyR) = 

N
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The bias is thus of order N/n and may be large 

in particular if the variance coefficient of X 

(Var1/2(X)/E(X)) is large (i.e. E(X) close to 0).
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• We use the first expression on tyR = TX * ty / tx  and 

get Var(tyR) = 

))(2(

)(

)(),(
2

)(

)()(

)(

)(
(

2

2

2

222

34

2

2

2

N

nN

mmmmn

mN

tE

tEttCov

tE

tEtVar

tE

tVar
T

yx

xy

x

x

y

yy

x

yxy

x

yx

x

y

x

Equivalently and easier to remember:            

RelVar(tyR) ~ RelVar(ty) + RelVar(tx) - 2RelCov(ty tx)

Where RelVar stands for the relative variance or 

coefficient of variation and RelCov for relative 

covariance                                                                   
(The Var for difference estimator is replaced by RelVar)
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Variance estimator

• One may use the above expression for the 
variance and replace all unknown 
parameters by their estimates                     
mx by tx/n;        my by ty/n;             y

2 by  

s(y-ty/n)2/(n-1);       x
2 by s(y-tx/n)2/(n-1); 

and      xy
2 by s(y-ty/n)(x-tx/n)/(n-1): 

• We will show another expression later 
Var*(tY,R) = N(N-n)/n S (E

*
i – SE*

i/n)2/(n-1)

with Ei
* = Yi - (ty / tx) Xi).
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Are ratio estimators good?

• Much more often used (than difference estimator).

• One gains if the correlation is larger than ½            
(if the relative variances (= variation coefficients) 
are the same)

• Multiplicative relations are more often 
encountered in practice than additive         
(All size dependent variables)

• Variance often increases with size, often 
linearly.
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The best situation is when the data lies on a straight line 

through the origin and has a linearly increasing variance      

(or curves slightly upwards)

Y

X
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3.4 Regression estimator

• Same set up: A population U  and a known 
auxiliary variable: Xi; i € U

• Take a sample S, observe a study variable 
Yi; i € S

• Idea: Using the sample, find a relation 
between X and Y. Try to use this relation 
and that X is known in the estimation phase
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Regression estimator

• Simple linear relation: Estimate a and b in 

the relation  Yi = a + bXi + i by a*and b* 

• Predict Yi
* = a* + b* Xi;    i € U-S

• Estimate population total by                               

TY
* = S Yi + U-S Yi

*

= a* N + b* TX 

The second equality holds if a and b are 

estimated by Simple Linear Regression 



23X-values in frame



24X-values in frame (except sample)

(X,Y)-observations in 

sample



25X-values in frame (except sample)

(X,Y)-observations in 

sample

Estimated 

regression line
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(X,Y)-observations in 

sample

Estimated 

regression line

Predicted (X,Y*)-values 

of units not in sample
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Predict the total by summing all Y and Y*-

values in population

(X,Y)-observations in 

sample

Estimated 

regression line

Predicted (X,Y*)-values 

of units not in sample
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Regression estimator  

Further comments

• Is it sensible with Simple Linear Regression? 
Parameters can be estimated in other ways, and 
the method works then too.

• One method is the Asymptotically Optimal 
Regression Estimator. This approach minimises 
the asymptotic error variance (Montanari, (1987), 
ISR, 55). Based on the estimated covariance 
matrix of (ty,tx).

ty,Mont= ty,+ (Cov*(ty,tx)/Var*(tx) (Tx – tx)

• But usually only marginally better and may be 
much worse for small sample sizes (same for SRS)
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Variance and variance estimation

• Suppose first we know a and b

• Write   Ei = Yi - (a +b Xi)

• Then TY
* = a N + b TX + (N/n) S Ei

• In that case the variance of the estimator is just the 
variance of te = (N/n) S Ei, the standard estimate 
from SRS with E instead of Y. (cf difference estimators)

• Var*(te ) = N(N-n)/n U (Ei – UEi/N)2/(N-1)

• And the variance estimator is                         
Var*(te ) = N(N-n)/n S (Ei – SEi/n)2/(n-1)
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Variance and variance estimator (cont.)

• The variance with unknown a and b is 
approximately the same                             
Var(tY,reg ) ~ N(N-n)/n U (Ei – U Ei /N)2/(N-1)

• In variance estimation one usually just replaces a 
and b by their estimates (a* and b*). 

• The variance estimator (with known a and b) was 
Var*(te ) = N(N-n)/n S (Ei – SEi/n)2/(n-1)

• The variance can be estimated by replacing  Ei  = 
Yi - (a +b Xi)   by      Ei

* = Yi - (a* +b* Xi)  i.e.   

• Var*(tY,reg ) = N(N-n)/n S (E
*
i – SE*

i/n)2/(n-1)
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Are regression estimates good?

• Improves the asymptotic variance as soon as the 
correlation is different from zero (compared to mean 
estimate, difference or ratio estimator. The decrease 
depends on the the ”explained variance” R2) 

• May be worse for small sample sizes

• The procedure works even if the ”true” relation is not 
linear. The estimate may become slightly biased
(Since the estimate b* and the mean tx may be dependent or since the 
regression estimator can’t be computed, if all sampled x-values have 
the same value. Extremely unlikely but enough to destroy exact 
unbiasedness)

• Care must be taken when the sample is taken with varying 
inclusion probabilities. (Not today’s topic). (The best line 
may be different in sample and the remaining population)
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The best situation is when the data lies on a straight line with 

constant variance

Y

X
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3.5 General regression estimates 

(GREG) 1

• Previously: only one (continuous) X-variable

• What is said can easily be generalised to several 

auxiliary variables using multiple linear regression

• X-values can be discrete, categorical (dummy-

variables) or derived (e.g.: x2 or x1*x2)

• Everything holds with Ei = Yi - (a + j bj
* Xij)      

in the approximate variance estimation expression
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Weighted general regression estimates 

• Different weighting in the regression (optimally weights 
should be proportional to Var(yi|xi). ”Model-assisted 
approach”)

Ordinary:     b* = 

yi-ybar)(xi-xbar) / xi-xbar)2    

Weighted:    b* =

yi-ybar)(xi-xbar)/Var(yi|xi)) / xi-xbar)2 Var(yi|xi))      

if intercept is unknown

• Other weights are sometimes used

• Weights may cause problems when the relation is not 
linear. The slope is estimated for points where the weight 
is high, but is used for all points. 

• A general regression estimator is always unbiased but this 
does not hold for a weighted GREG-estimator.



• Difference estimators can be thought of as 

regression estimators with known slope (equal to 

one)

• Ratio estimators can be thought of as regression 

estimators, where the intercept is known (0) and 

the weights are proportional to xi                                

(Holds for Poisson distribution and often for 

economic variables from e.g. firms)
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Are general regression estimators 

good?

• Asymptotically never worse than simple estimators or 

regression estimators with a subset of the auxiliary 

variables

• With many auxiliary variables the random error increases 

due to estimation problems of the regression coefficients. 

(In particular if many auxiliary variables are irrelevant or 

are only weakly related to Y).

• The variance estimator underestimates the true variance

• Avoid regression estimator when there are ”outliers” in the 

population with a set of X-values which differ much from 

the others or if there are influential outliers in the sample.
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An alternative expression for the 

variance estimator of the ratio estimator

• As we said the ratio estimator can be viewed as a 

regression estimator with known intercept a=0. 

• The variance estimator of the regr. estimator was

Var*(tY,reg ) = N(N-n)/n S (E
*
i – SE*

i/n)2/(n-1)

with Ei
* = Yi - (a* +b* Xi) 

• Thus a variance estimator for the ratio estimator is                                                          

Var*(tY,reg ) = N(N-n)/n S (E
*
i – SE*

i/n)2/(n-1)

with Ei
* = Yi - (0 +b* Xi)    where                             

b* = ty / tx = S Yi / S Xi                                                        
(This is the alternative expression we mentioned above)
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3.6 Prediction estimates

• For regression estimates we wrote                             

TY
* = S Yi + U-S Yi

*                                                          

where Yi
* was the ordinary best linear predictor 

(BLUE)

• One may try to use the same formula with other 

predictors.

• Sensible if the predictor is good. But a bias that is 

unimportant for predicting one single unit may 

become disastrous when summed over the whole 

population.
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Prediction estimates

• Idea of a difference estimator:      ”Suppose that we have 

prior guesses of the values for all units, Xi. These guesses 

are called Yi
*”

• Replace the guess Xi by Yi
*, in the full population

• Look at the difference Ei = Yi – Yi
*

• Estimate the total difference Te by te

• Estimate the total Ty by tyPred = TY* + te

• Estimate variance accordingly Var*(tyPred) = Var*(te ) 

(asymptotically valid under mild restrictions)

• Example: 0-1-variables, proportions



40X-values in frame

0-1 values



41X-values in frame except in sample

X,Y-values in sample



42X-values in frame except in sample

X,Y-values in sample

Estimated probability of 

1,  e.g. by logistic 

regression
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X,Y-values in sample

Estimated probability of 

1, e.g. by logistic 

regression

Predicted probabilities in the 

remaining population

Estimate sum of predicted and true Y-values
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• The prediction is not necessarily unbiased from a 
design-based perspective (in particular if the 
chosen (logistic) model does not hold)

• They ought thus to be corrected, to be almost 
unbiased for any population and large samples                                                  
tY,pred = U Yi 

* + (N/n) S (Yi - Yi
*)

• Note that Yi 
* is computed also for units in the 

sample.

• If one believed in the logistic model and used 
modelbased inference the second term would not 
be needed.
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• Prediction estimators can also be seen as 

approximate difference estimators

• Treat the prediction Yi 
* as the auxiliary 

variable (as we did for the regression 

estimator) and write                                      

tY,pred = U Yi 
* + (N/n) S Ei

where Ei
* = Yi - Yi

*

• The variance of this can be estimated by 

Var*(tY,pred ) = N(N-n)/n S (E
*
i – SE*

i/n)2/(n-1)
(exactly as for the regression and ratio estimators)
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Are prediction estimators good?

Similar comments as for (general) regression 

estimators:

– Asymptotically never worse than ordinary mean

– But if the sample is small and the estimated function 

uncertain one may loose efficiency.  

– The better the model fit, the better the estimator

– Be careful with varying inclusion probabilities, outliers 

in the X-population and influential observations in the 

sample

– ...


