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11.4 Hansen Hurwitz plan —
Subsampling in the non-response

* In arecent mail study on the number of dogs ie&m, a random
sample from the ordinary population was drawn asied about their
pets.

* Inthe first round a large non-response was oleseafter reminders
(inclusion probabilityr,. A subsample of the non-respondents were
selected with inclusion probabilitg, and they were later contacted by
phone).

o Estimate total byg, Y/ + 2, Y/TUTG,

(Assuming no non-response in the second phase)

e This gave a much lower estimate than the estimat®ut the second
phaseZy, Y./ / 5,1/
e Why? Do you think?

11.5 Editing

» Editing (Checking the answers) (Granskning) is an
important topic in surveys in itself. For Statistics Sweden it
accounts for 40 % of all data collection costs for business
statistics.

» A good practice is to look at the sample. For each unit
assess a probability of being incorrect and an estimate of
the effect on the total estimate if incorrect.

— Often only those with high probabilities and hgtential effects
are checked

» Another procedure is sampling:

— Classify. Use this classification as an auxiliaayible for
stratification.

— Take a subsample in each stratum and call baak ito the
sample.

— Estimate the effect of calling back to the fulirgde

12. Large sample properties

12.1Central limit theorem for
independent variables.

* You have read about the central limit
theorem (clt) and the law of large numbers.
Do you know what the clt says?




e One variant is:

» Let X;, Xy, Xs, ... be a sequence of independent
and identically distributed random variables with
expected value m and varianee Then

(M Z)—»CD(Z) as N o

where @ is the standard normal distribution
function.

» This is perhaps the most well known version and
the result is what is called convergence in
distribution

» There are bounds for the rate of convergence (named after
Berry & Esseen). The difference between the right and left
hand side is always less than

cOE(| X =mP)/(a®yn)

* A general value on c is 2.05, but it may be much smaller
for some distributions.

* When we construct confidence intervals we look at the
points where the distribution function is 0,0282) or
0,95 (1a/2) This expression tells us

— what the maximal error in confidence level is
— that it decreases ag’/a

— That generally speaking convergenc is slower for idistions
with heavier tails

» Another variant with different distributions is:

e LetX;,i=1, 2, ... be asequence of independent
random variables
— with means mand variances;? and

— with a bounded third absolute moments (i.e. there is a
numbem such that E(|X— m |3) <n for all i) and

— the total varianceZd” - asn - o
e In that case

z(;(Oz)z]'j?_z)_»dJ(z) as Nn-oo

If you try to use these theorems on sampling, you
will meet some problems. Which?

12.2 CLT and sampling

12.2.1 Differences; sampling and iid

e The random variables,, X,, X,, ... arenot
independent

* Itis impossible for n to tend to infinity sindecan
never be higher than N and when it is close to N
the sum is certainly not Gaussian.

A special variant of the clt is thus needed.




Needed changes

» Drawing from a finite population implies a
certain type of dependence.

» Both the population size N and the sample
size n must tend to infinity.

» Since the consecutive addition of elements
to the population changes it, we must allow
for distributions varying with n.

12.2.2 A central limit theorem for sampling

Let U, ; i=1, 2, ... be a sequence of populations with sikiesnd
bounded normalized absolute third moments

W <n for some number 7
Let N, and nbe such that both and (N- n) tend to infinity as i tends
to infinity
Take a srs samplg fBom each population with size.n

Then
ZSXJ _nixui .
(ni(l\ll\il_—ni))l/zai = Z) - cD(Z)aSI —

Hajek was the first to give a practically usefoirhulation of a central
limit theorem for sampling. There exist much sharmgsions
nowadays and also theorems dealing with the ratemfergence.

Sketch of a proof for model-based

Samp"ng(using the ordinary clt)

o LetYy, Y, Y, ..o and X, X,, Xg, ... be two independent iid
sequences both with the same distribution F, whachthree moments.

* Let the population U consist of {YY,, .... Yy, X4, X5, ... Xy.n) @nd
the sample of the first n.

e Then the mean in the sampye,  and of the m@nwunits,x, are
independent and both tend to normal distributions.

¢ Alinear combination of two independent normaliables is also
normal.

e Thus

1

1 N-n
F]ZSYi _N(ZsYi 2 X)) =

1
N 2 _NZU—SXi

must also have an asymptotic normal distribution
* The proof for designbased is much more complicated

12.2.3 An example: The Wilcoxon rank sum

We have two independent samplgs.x, x, and Y, ..., Y, of iid
random variables and we want to test whether tleyecfrom the
same population

The combined sample of N = n+m units is orderedithe ranks of all
X-units is added giving a rank sum.

If the distributions were the same, all orderiags equally likely. In
other words the x-ranks is a sum of a simple randample of size n
from U={1, 2, ..., N}

The mean, variance and absolute third momenteo¥étues in U are
(N+1)/2, (N+1)(N-1)/12 and (N-2N+1)%(32N). The conditions of
the theorem applies.

The limiting distribution of the Wilcoxon rank sustatistic is thus
normal with mean m(N+1)/2 and ((N-m)/(N-1))*m(N-N¢1)/12=
m(N-m)(N+1)/12




12.3 What about the variance
estimator?

 10.3.1 The standard iid case.

e In the iid case, what do we know about the
variance estimator?

e Itis consistenti.es® - g% asn - o. When and
why?

* Itis consistenti.es® - o2 asn - . When and
why?
* The law of large numbers, since

1

n-1

* The first term here is an arithmetic mean of a sum
of random variables (¥ and the LLN says that it
converges to B?) = &2+ n¥, in probability, if
Var(X?) exists.

» Since the mean of X also convergesntm

probability), the whole expression converges to
02,

£= = 3(X, - X)?2= Ll(zxf/n—iz)
n_

What about intervals (for iid)?

. Since X/_T L N@©Y)ad s o,
oln
also X -m

 Remember: It is only for originally normal
variables that one can use t-distributions.
— Otherwise one has to use the central limit theorem to
obtain normality and whemis larges? has converged.

— But on the other hand it is reasonable to use wider
intervals when the variance is estimated. Thus use t-
values or something larger.




12.3.2 Variance estimation and
Intervals for sampling

How much of the results for the
iid case holds also for sampling
from finite populations

?

Everything holds!

Under the same conditions as above (a sequermepafations with
uniformly bounded relative absolute third moments)

Then 4, ->1 w.p.1
And

<2) - ®(z)asi » o

But the convergence is sometimes slow and t-iaterare seldom
used.

Many books use only a number 2 and do not calirttezvals
confidence intervals, since the coverage probaslitan differ much
from exactly 0,95.

The usual rules of thumbs for when a normal apipmation is allowed
from standard statistical text-books seldom appsgxe variables are
often very skew (in particular economic variablesoimes, turnover,
number of employees etc) (But for binary varialff@®portions) they
can be used).

The following is a Berry-Esseen type version holding for
every finite population and SRSwor. It treats the case when
the distribution is normalised with the estimated variance. In
the real life you almost never knows the true variance.

n Vs_yu _
sup P({ C=n/N) s <sx-P(x)

-~y FIN
cc 2yl (Blozndlis, 1999
\/(N—n)n 3
— g
N

The same theorem with the true variandestead of the
estimated standard deviation s was shown already 1975 by
Hoglund.
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Small area estimation
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 Thanks for your patience

e Good luck!




