
Urvalsmetoder och Estimation 10

Sampling and Estimation 10

2012-03-09

2

11.4 Hansen Hurwitz plan –
Subsampling in the non-response

• In a recent mail study on the number of dogs in Sweden, a random 
sample from the ordinary population was drawn and asked about their 
pets.

• In the first round a large non-response was observed after reminders 
(inclusion probability π1. A subsample of the non-respondents were 
selected with inclusion probability π2, and they were later contacted by 
phone). 

• Estimate total by ΣR1 Y i/π1 + ΣR2 Y i/π1π2
(Assuming no non-response in the second phase)

• This gave a much lower estimate than the estimate without the second 
phase  ΣR1 Y i/π1 / ΣR1 1/π1

• Why? Do you think?
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11.5 Editing
• Editing (Checking the answers) (Granskning) is an 

important topic in surveys in itself. For Statistics Sweden it 
accounts for 40 % of all data collection costs for business 
statistics. 

• A good practice is to look at the sample. For each unit 
assess a probability of being incorrect and an estimate of 
the effect on the total estimate if incorrect. 
– Often only those with high probabilities and high potential effects 

are checked

• Another procedure is sampling:
– Classify. Use this classification as an auxiliary varible for 

stratification. 
– Take a subsample in each stratum and call back to all in the 

sample. 
– Estimate the effect of calling back to the full sample

12. Large sample properties

12.1 Central limit theorem for 
independent variables.

• You have read about the central limit 
theorem (clt) and the law of large numbers. 
Do you know what the clt says? 



• One variant is:  
• Let X1, X2, X3, … be a sequence of independent 

and identically distributed random variables with 
expected value m and variance σ2. Then 

where  Φ is the standard normal distribution 
function.

• This is perhaps the most well known version and 
the result is what is called convergence in 
distribution

∞→Φ→≤−Σ
naszz

n

nmX
P i )()

)(
( 2/1 σ

• There are bounds for the rate of convergence (named after 
Berry & Esseen). The difference between the right and left
hand side is always less than

• A general value on c is 2.05, but it may be much smaller

for some distributions.

• When we construct confidence intervals we look at the 
points where the distribution function is 0,025 (α/2) or 
0,95 (1-α/2) This expression tells us
– what the maximal error in confidence level is 

– that it decreases as n-1/2.

– That generally speaking convergenc is slower for distributions 
with heavier tails
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• Another variant with different distributions is: 

• Let Xi, i = 1, 2, … be a sequence of independent 
random variables  
– with means mi and variancesσi

2 and 

– with a bounded third absolute moments (i.e. there is a 
numberη such that E(|Xi – mi |3) < η for all i) and  

– the total variance

• In that case

If you try to use these theorems on sampling, you 
will meet some problems. Which?

∞→∞→Σ nasi
2σ

∞→Φ→≤
Σ

Σ−Σ
naszz

mX
P

i

ii )()
)(

( 2/12σ

12.2 CLT and sampling
12.2.1 Differences; sampling and iid

• The random variables X1, X2, X3, … arenot 
independent

• It is impossible for n to tend to infinity since it can 
never be higher than N and when it is close to N 
the sum is certainly not Gaussian. 

A special variant of the clt is thus needed. 



Needed changes

• Drawing from a finite population implies a 
certain type of dependence. 

• Both the population size N and the sample 
size n must tend to infinity. 

• Since the consecutive addition of elements 
to the population changes it, we must allow 
for distributions varying with n. 

12.2.2 A central limit theorem for sampling

• Let Ui ; i=1, 2, … be a sequence of populations with sizes Ni and 
bounded normalized absolute third moments

• Let Ni and ni be such that both ni and (Ni – ni) tend to infinity as i tends 
to infinity 

• Take a srs sample Si from each population with size ni.

• Then

• Hajek was the first to give a practically useful formulation of a central 
limit theorem for sampling. There exist much sharper versions 
nowadays and also theorems dealing with the rate of convergence.
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Sketch of a proof for model-based 
sampling (using the ordinary clt)

• Let Y1, Y2, Y3, … and X1, X2, X3, … be two independent iid 
sequences both with the same distribution F, which has three moments.

• Let the population U consist of {Y1, Y2, …. Yn, X1, X2, … XN-n) and 
the sample of the first n. 

• Then the mean in the sample,      and of the remaining units,     are 
independent and both tend to normal distributions. 

• A linear combination of two independent normal variables is also 
normal. 

• Thus

must also have an asymptotic normal distribution

• The proof for designbased is much more complicated
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12.2.3 An example: The Wilcoxon rank sum

• We have two independent samples x1, …, xn and  y1, …, ym of iid 
random variables and we want to test whether they come from the 
same population

• The combined sample of N = n+m units is ordered and the ranks of all 
x-units is added giving a rank sum.

• If the distributions were the same, all orderings are equally likely. In 
other words the x-ranks is a sum of a simple random sample of size n 
from U={1, 2, …, N}

• The mean, variance and absolute third moment of the values in U are 
(N+1)/2, (N+1)(N-1)/12 and (N-1)2(N+1)2/(32N). The conditions of 
the theorem applies. 

• The limiting distribution of the Wilcoxon rank sum statistic is thus 
normal with mean m(N+1)/2 and ((N-m)/(N-1))*m(N-1)(N+1)/12= 
m(N-m)(N+1)/12



12.3 What about the variance 
estimator?

• 10.3.1 The standard iid case.

• In the iid case, what do we know about the 
variance estimator?

• It is consistent i.e.                                 . When and 
why?
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• It is consistent i.e.                                 . When and 
why?

• The law of  large numbers, since

• The first term here is an arithmetic mean of a sum 
of random variables (X2) and the LLN says that it 
converges to E(X2) = σ2 + m2, in probability, if 
Var(X2) exists.

• Since the mean of X also converges (to m in 
probability), the whole expression converges to 
σ2.
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What about intervals (for iid)?
• Since                                                 , 
• also 

• Remember: It is only for originally normal 
variables that one can use t-distributions.
– Otherwise one has to use the central limit theorem to 

obtain normality and when n is large s2 has converged. 
– But on the other hand it is reasonable to use wider 

intervals when the variance is estimated. Thus use t-
values or something larger. 
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12.3.2 Variance estimation and 
intervals for sampling

How much of the results for the 
iid case holds also for sampling 

from finite populations

?

Everything holds!
• Under the same conditions as above (a sequence of populations with 

uniformly bounded relative absolute third moments)

• Then     s2
S/ s2

U -> 1  w. p. 1
• And

• But the convergence is sometimes slow and t-intervals are seldom 
used. 

• Many books use only a number 2 and do not call the intervals 
confidence intervals, since the coverage probabilities can differ much 
from exactly 0,95. 

• The usual rules of thumbs for when a normal approximation is allowed 
from standard statistical text-books seldom applies, since variables are 
often very skew (in particular economic variables incomes, turnover, 
number of employees etc) (But for binary variables (proportions) they 
can be used).
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The following is a Berry-Esseen type version holding for 
every finite population and SRSwor. It treats the case when 
the distribution is normalised with the estimated variance. In 
the real life you almost never knows the true variance.
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The same theorem with the true variance σ instead of the 
estimated standard deviation s was shown already 1975 by 
Höglund.

Not covered

• Area sampling

• Small area estimation

• Analyses of survey data

• Adaptive sampling

• …



• Thanks for your patience

•Good luck!


