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5. Estimation and sampling with 
general inclusion probabilities

5.1 Introduction

• Inclusion probabilities are central in (design-based) inference.
• First order inclusion probabilities:

πi = P(i € S) = P(Ii = 1) 
• Second order inclusion probabilities: .                   

πij = P(i,j € S) = P(Ii,j = 1)
in particular:πii =πi 

• Third, fourth, … order are defined accordingly but less used
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• Both second order inclusion probabilities and 
covariances describe the relation between inclusion 
indicators 

πij = E(Ii*I j) = Cov(Ii,Ij) + πi*πj
• But second order inclusion probabilities are used 

more in the theory of designbased survey-sampling.

• If two objects are likely to be similar the probability 
to get both in the sample should be small

• e.g. stratified sample with only two in each stratum
πij = 4/(NhNg) if in different strata i.e.  Corr = 0
πij = 2/(Nh*(Nh-1)) if in the same i.e. Corr = –1/(Nh-1) 
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Example of the computation
• Two-stage cluster sampling with unequal cluster sizes (not a 

simple formula in standard text-books):

• Consider N blocks (or villages) with Nk households in each 
(k=1,…N; Nk unknown in advance).

• n blocks are chosen with inclusion probabilities ρk. The 
households in them are listed and counted, Nk for k = 1, …n 
(and second order inclusion probabilities ρkl).

• Select nk households by SRS from the selected n blocks.  nk
may depend on Nk but not on Ni for i # k

• Inclusion probabilities:
πi(k)      = ρk nk/Nk
πi(k)j(k) = 2 ρk nk(nk -1)/(Nk (Nk-1))   
πi(k)j(l)  = ρkl nknl/(NkNl)             k # l



5

πps sampling
• Sampling with varying inclusion probabilities is 

usually called πps sampling (inclusion probabilities 
proportional to size. Nowadays it maybe proportional 
to anything, not necessarily size). 

• Internationally πps sampling is often done in 
connection with multistage sampling (as we saw 
above). (Not quite that often in Sweden with our good 
frames). 

• Common examples. Farms and environmental 
statistics proportional to area of the unit. Enterprises 
proportional to number of employees or turnover (last 
year)
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5.2 Estimation with general inclusion 
probabilities

• Horvitz-Thompson (HT) estimator:

ty,HT = ΣS yi/πi = ΣU Ιiyi/πi

• Often written: ty,HT = ΣS ωiyi,  where ωi=1/πi are called design-
weights

• Unbiased (Why?)

• Variance: E(ty,HT
2) – E2(ty,HT) =                                                                          

E(ΣΣUU IiIjyiyj/(πiπj)) - (ΣU yi)2 =                                                
ΣΣUU πijyiyj/(πiπj)) - ΣΣUU yi yj =                                                  

ΣΣUU ((πij - πiπj)/(πiπj)) yi yj

• This method always works for probability samples (if πij > 0)!              
But both second order inclusion probabilities and the double sum for large 
n may be difficult/complicated to compute
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• Note: The second order inclusion probabilities 
decide the variance

• When designing a sampling procedure you 
should worry about them

• People often talk about πps-sampling without 
worrying about the second order inclusion 
probabilities. To them they are just a nuisance 
when estimating the variance, not a tool to 
obtain efficient samples 
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Variance estimation
• The variance is:ΣΣUU ((πij - πiπj)/(πiπj)) yi yj

• Using thatE(ΙiΙj)= πij we easily see that
E[ΣΣSS ((πij - πiπj)/(πij πiπj)) yi yj]                  

is an unbiased variance estimator

= E[ΣΣUU ((πij - πiπj)/(πiπj)) (Ii Ij /πij) yi yj] =
ΣΣUU ((πij - πiπj)/(πiπj)) E[(Ii Ij /πij)] yi yj       

• Another expression is the Sen-Yates-Grundy(SYG) estimator:

½ ΣΣSS ((πiπj - πij)/πij) (yi/πi  - yj/πj)2

which is unbiased for fixed sample sizes
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½ ΣΣSS((πiπj - πij)/πij) (yi/πi  - yj/πj)2

• This Sen-Yates-Grundy formula is good to look at for advice  
on how to choose the inclusion probabilities 

• The first and second order inclusion probabilities decide the 
variance 

• Suppose that you have a constant sample size (often good for 
efficiency reasons but also for planning reasons)
– First, try to chose the πi proportional to yi (makes the 

second bracket small)
– Second, try to get πij close to πiπj (i.e. independent) when 

yi/πi differs much from yj/πj  (makes the first bracket small)
• E.g. stratified sampling: put similar units in the same strata and 

different units in different strata, which are sampled 
independently
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Sketch of proof of the unbiasedness of the
Sen-Yates-Grundy (SYG) estimator

Expand the square 

½ ΣΣSS ((πiπj - πij)/πij) (yi/πi  - yj/πj)2 = 

½ ΣΣSS ((πiπj - πij)/πij) [(yi/πi )2 + (yj/πj)2  - 2(yjyj/πjπj)]

The expected values of the two terms with the square ((yi/πi)2) are both 
0 since (if the sums include i=j)

.         E(ΣΣSS ((πiπj - πij)/πij) (yi/πi)2) = E(ΣΣUU ((πiπj - πij)/πij) Ii Ij (yi/πi)2) =

ΣΣUU (πiπj - πij) E( Ii Ij/ πij) (yi/πi)2) = ΣΣUU ((πiπj - πij)(yi/πi)2 =  

ΣU ( (πi Σj€U πj – Σj€U πij))  (yi/πi)2) = ΣU n(πi - πi) (yi/πi)2 = 0

Here we used that the sample size is fixed, which implies that Σjπij = nπi  
and Σj€U πj = n.

Thus only the cross product remains, giving the result

ΣΣSS ((πiπj - πij)/πij) (yjyj/πjπj)
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• These formulae (HT and SYG) give design-unbiased estimates 
for mean and variance, respectively, for any probability 
sample (SYG requires fixed sample size)

• This requires 
– strictly positivesecond order inclusion probabilities 
– computableinclusion probabilities for all units in the sample.

• Not always simple to compute the second order inclusion 
probabilities.

• The SYG-estimator is not always the best estimator/variance 
estimator but mostly fairly good or at least acceptable for all 
cases with fixed sample sizes
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Optimal sampling 
• Model for the data:     E(yi | xi) = µ(xi);           

Var(yi | xi) = σ2(xi)     and     independence.

• Then if you use an asymptotically optimal 
estimator you should draw samples with the 
inclusion probability πi proportional to σ(xi)  

• The second order inclusion probabilities are 
unimportant (if the sampling mechanism is 
mixing, a technical term which often holds) 

• The last conclusion is a consequence of the 
independence assumption



13

Optimal sampling

• Very often the variance depends on the 
unit size. 
– If Var(Y/X) is constant then Var(Y|X=x) = x2

(This situation is very common in economic 
statistics. E.g. the relative change in turnover 
seldom depends on the company size)

– if Y€Po(X=x) then Var(Y)=x

• In the first case it is optimal to use 
precisely proportional to size
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Pseudo-likelihood-function
• Likelihood estimation is model-based but what about sampling with 

varying inclusion probabilities (e.g. a medical study, where some patients 
are more likely to be included than others)

• Ordinary likelihood: L(Θ,y) = Πi€S f(yi|Θ)                                     
or ordinary loglikelihood:l(Θ,y) = Σi€S ln(f(yi|Θ))               
Maximising the likelihoodfunction gives a good estimate. 

• Now use a form of pseudo-likelihood, instead, where one weights with the 
inverse inclusion probabilities                                                                      

L(Θ,y) = Πi€S f(yi|Θ)1/πi

or for the logarithm

l(Θ,y) = Σi€S (1/πi) ln f(yi|Θ)
Maximising this pseudo-likelihoodfunction gives a good estimate

• But the variance can no longer be estimated using the Fisher information 
(1/ (second derivative of the likelihood function))

• Of course, the full likelihood can be used. But often much more difficult 
and extremely model-sensitive. This approach is mostly much more robust.
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5.3 Sampling with varying probabilities

5.3.1 Intentional
There are two main lines on how to draw samples 

with given inclusion probabilities
– Mimick simple random sampling. Introduce as little 

extra structure as possible i.e. getting πij close to πi∗πj . 
If the procedure is used with equal inclusion 
probabilities SRS should be obtained. (I.e. get the 
highest possible entropy).

– Use all the information you have. Model second order 
inclusion probabilities. Even the inclusion probabilities 
may contain extra information.
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Mimicking SRS
How to draw πps? Problems!

• Not easy if the sample fraction is not negligible!
• E.g. draw 2 units among 5 with probabilities 0.7, 0.3, 

0.5, 0.2 and 0.3
• First try. Draw one with half this probability and 

second with probability proportional to the remaining 
ones. 
E.g. π1 = 
0.35+2*0.15*0.7/1.7+0.25*0.7/1.5+0.1*0.7/1.8 = 
0.629

(small π will be too large and vice versa)
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Mimicking SRS
• E.g. draw 2 units among 5 with probabilities 0.7, 0.3, 0.5, 0.2 

and 0.3
• Second try. Conditional Poisson (also called 3P-sampling). Go 

through the units one by one and include the units 
independently with correct probabilities. If the sample contains 
less or more than two units reject it and try again. 
E.g. π1 = P(1€S | 2 units in sample) = 0.7 * 
(2*0.3*0.5*0.8*0.7 + 0.7*0.5*0.8*0.7 + 0.7*0.5*0.2*0.7) / 
(0.7*(2*0.3*0.5*0.8*0.7 + 0.7*0.5*0.8*0.7 + 
0.7*0.5*0.2*0.7) + 2*0.3*0.3*(0.5*0.8*0.7 + 0.5*0.2*0.7 + 
0.5*0.8*0.3) + 0.3*0.7*0.5*0.2 *0.7) = 0.744 

(Small πi will become too small). May take a long time until a 
sample of correct size is obtained 
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Mimicking SRS

Third try. 
• Order sampling(distributional Poisson) 

– Draw a uniform random number Zi for each unit. 
– Transform it in some way g(Zi ,πi) so that P(g(Zi ,πi) > 1) 

= πi. 
– Pick the n units with the largest transformed numbers. 

Not exactly correct, but almost, for a suitably 
chosen g. 

• Illustrative example (for the sake of illustration)                       
– Let g(Zi ,πi) = Zi /(1-πi)                           
– Then P(g(Zi ,πi) >1) =P(Zi /(1-πi) >1) = P(Zi >1-πi) = πi
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Mimicking SRS

Third try. 
• Order sampling(distributional Poisson). This choice of      

g(zi ,πi) above was not particularly good. The best choice in 
this category is Pareto Poisson, which is used at Statistics 
Sweden. 

• Pareto Poissonwhere g(zi ,πi) = πi (1-zi)/(zi (1-πi)) (Named 
since g(zi ,πi) then follows a Pareto distribution)

– Example: A sample n=2 with probabilities 0,7, 0,3 0,5, 0,2, 0,3
– Take five random numbers: 0,175, 0,832, 0,746, 0,312, 0,098
– Compute g(.): 0,50 (0,175*0,7/0,825*0,3),2,12,  2,96, 0,14,  0,05
– Select the two largest: In this case number 3 and 4
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Sampford (often used internationally) E.g. draw 2 units 
among 5 with probabilities 0.7, 0.3, 0.5, 0.2 and 0.3

1. Take one unit with probability proportional to πi (i.e with probability 
πi/Σπj)

0,35, 0,15, 0,25, 0,1, 0,15
Say that we get nr 3  

2.   Take n-1 units with replacementwith probabilities proportional to πi/(1-πi) 
(i.e. with probability    πi/(1-πi) / Σ (πj/(1-πj))

Proportional to 2,33, 0,43, 1, 0,25, 0,43  
i.e. 0,52, 0,10, 0,22, 0,06, 0,10
Say that we get nr 1

3. If the sample now contains exactly n different units, this is the sample. 
Sample contains 3 and 1, that is two different

4.      Otherwise restart from 1.

• It is not easy to show that this method will give the correct inclusion 
probabilities
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Mimicking SRS

• Many other methods have been suggested e.g. by 
Hajek, Sunter. All rather complicated. Systematic 
πps-sampling with random order (see below) is 
simpler, but gives lower entropy.

• Some persons have the goal to get a high ”entropy”, 
i.e. put in maximum amount of randomness given the 
inclusion probabilities and sample size. (Sampford 
gives maximum entropy). (Pareto Poisson is very 
close)



Estimation and variance estimation

• In this case one often uses a ratio estimator
Σ(Yi/πi) / Σ(1/πi) 
since the denominator may vary much

• For the variance estimation one may 
approximately use the variance formula for ratio 
estimator in SRS and assume Zi = Yi/πi and Xi = 
1/πi comes from a SRS sample.

• This works since as I said one tries to mimick 
SRS and to have no extrfa dependence.  
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Using more structure (not mimicking SRS)

• Systematic sampling was described earlier (and next page). 
Works and is good if an even spread is desired but not if one 
wants the probabilities to include close units to be substantial 
(or nearπi∗πj). (If the elements are ordered a good spread in 
that dimension is obtained. If the order is random this 
procedure once again mimicks SRS)

• Sometimes one may want to use the background knowledge 
more. In those cases where a good spread is desired, methods 
close to systematicπps (but where variance is possible to 
estimate) or a very fine stratification are better alternatives.
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Systematic πps-sampling

• Order the units in some sensible way using the information you 
want to employ (e.g. geografical, an important auxiliary variable 
or the probabilities themselves)

• Compute the cumulative inclusion probabilities Πk = Σi<k+1 πi

• Choose an arbitary startingpoint, U, uniformly in (0, ΠN /n) 
• Choose all units on the distance k*ΠN /n from it (i.e.  All units, 

where the cumulative sum Πi-1 < U + kΠN /n < Πi) for some 
0<k<n.

• This procedure gives a good spread over the variable you have 
ordered after and thus the variance is almost always less than 
for other πps-metoder (if there are no periods)
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Systematic sampling
• The variance under systematic sampling can not be 

estimated without a bias (within design-bases theory)
• But the variance you should have got with ordinary 

πps-methods can be estimated (even better than with 
πps design) 

• Under mild restrictions this is known to be an 
overestimate. Thus all intervals will be conservative. 
(The coverage probability is higher than the nominal 
confidence level).

• The variance may be estimated if you take e.g. M 
independent systematic samples i.e. M starting points  
< MkΠN /n and then units with the distance MkΠN /n.



26

Real time sampling

• The units arrive in a steady stream. Each 
time a unit arrives you must decide 
whether it should be in the sample before 
you know the others 
– Magnetic datatapes 
– Tourist statistics
– Sampling trees in a forest
– Visitors to a national park
– Customers leaving a shop 
– … 
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Some comments

• The second order inclusions are important 
– Trees very close to each other are probably quite 

similar due to the soil. It may be silly to take to many 
trees close to each other

– Or farms in the same village
– …

• The Intervjewer/sampler may have a tendency to 
select ”representative” persons/trees, which may 
affect the order they are counted in the list. 
Avoid giving some units the conditional inclusion 
probability 0. 
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Bulldozer method
• The units are ordered in some way (Real time sampling)
• Take the first with probability π1

• Update the following inclusion probabilities, in a suitable way 
(the expected value of the updated value must equal the original)
– Simplest example:  π2 <- π2 - (1-π1)I1 + π1(1-I1)  
if the first unit is taken and if this expression is between 0 and 1. 
if it is not also π3 (and π4? …) must be updated.

• Repeat successively for units 2 (updating 3), 3 (updating 4) 
a.s.o

• It is easily seen that the sum of the remaining inclusion 
probabilities and the observed inclusion indicators is always 
exactly n, meaning a fixed sample of size n.

• Using a good updating procedure can yield almost the desired 
second order inclusion probabilities
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Bulldozer method - Example
• Suppose the units pass the interviewer entering an amusement park. (An 

example of real time sampling. Take n=2 with probab 0,7, 0,3 0,5, 0,2, 0,3)
• Take the first with probability π1 (=0,7, suppose he is taken)
• Update the following inclusion probabilities, in a suitable way

– New probabilities 1, 0, 0,5, 0,2, 0,3
• Repeat successively 

– unit 2 is not aken p=0
– Take unit three with probability 0,5. Suppose not taken, update probabilities    

1, 0, 0, 0,4, 0,6
(if unit three was taken updated prob would be 1, 0, 1, 0, 0 i.e. the full sample 
had been taken)

– Take unit four with probability 0,4. Suppose taken, update probabilities            
1, 0, 0, 1, 0. 
i.e. full sample is taken

• It is easily seen that the sum of the remaining inclusion probabilities and 
the observed inclusion indicators is always exactly n, meaning a fixed 
sample of size n.

• Using a good updating procedure can yield almost the desired second order 
inclusion probabilities. Getting an even spread over the day and seldom 
close customers
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Example

• To show that this is a flexible approach:
• Suppose you want the correlations  ρ1 = ρ2 

= ρ3;   Σ1
3ρ1 = ρsum = -0,5;  ρκ = 0 for k > 3;

(The summing condition gives a fixed 
sample size but is possible to obtain only if 
π > 1/7) 

• We tried with ω1 = 0.446, ω2 = 0,327 and  
ω3 = 0,226, (ωk = 0 for k>3) in the updating 
equations      πk+l

k = πk+l
k-1 – ωl

k(Ik – πki
k-1)



31

π ρ1 ρ2 ρ3 ρsum

0,5 -0,159 -0,178 -0,162 -0,499

0,45 -0,153 -0,170 -0,173 -0,496

0,4 -0,160 -0,173 -0,166 -0,499

0,35 -0,151 -0,171 -0,174 -0,499

1/3 -0,151 -0,180 -0,166 -0,497

0,3 -0,149 -0,170 -0,176 -0,495

1/4 -0,144 -0,169 -0,173 -0,486

0,20 -0,139 -0,152 -0,165 -0,486

0,15 -0,139 -0,152 -0,165 -0,456

0,10 -0,111 -0,111 -0,111 -0,333

0,05 -0,0525 -0,0525 -0,5250 -0,1575

Note that in the two last rows the sum is the highest possible.   

ρk is exacly equal to 0 for k > 3.
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• The Bulldozer method is a special case of ”the 
splitting method” (Cube method) (Tillé and Deville).

• At each stage you make a random decision and then 
you change all inclusion probabilities. (keeping in 
mind that the expected unconditional inclusion 
probabilities are fixed.

• It is highly fashionable among sampling theorists 
nowadays
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5.3.2 Unintentionally varying probabilities

Occurs often naturally e.g.
– Frame of households but you want to sample individuals 

(e.g. Random digit dialling) 
– or vica versa
– Calling people at evenings (ask about how many evenings 

they were home last week) 
– Selecting all patients at a special date in a hospital (People 

with long convalescence periods have larger probabilities 
of being selected).

– Selecting customers/suppliers from a list of invoices 
sent/received during the year.

– Selecting customers of a shop (exit interviews)
– Visitors to an angling park/nature resort
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What to do about unintentional πps?
((Inclusion) probability proportional to size. 

Nowadays size can be any number)
• In many cases you can find a proxy for the inclusion probability e.g. 

number of evenings home, members of households etc. If you can, 
use it.

• If the proxy is such that the study-variable and the inclusion indicator 
are conditionally independent given the proxy, use the proxy as 
inclusion probability (e.g. poststratify or use weighted ML) and 
everything will be (almost) correct (easy if sampling fraction is 
small). 

• If you can’t find a good proxy, you have to resort to modelling (e.g. 
propensity scores) and if possible do some sort of follow-up study.

• If πi = 0 for some units, i, you are in real trouble! What to do?     
(State in quality declaration, Use model-based sampling)
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A more complicated example

A market researcher will stand outside a shop to interview a sample of 
customers.

She has selected two mondays, two tuesdays, …, two sundays randomly 
during a four week period. During each selected day she selects 
customers independently with a probability of 1/10. (It is obvious that 
the inclusion probabilities will depend on the number of visits). 
Determine the inclusion probabilities. (Assume for simplicity that no 
customer visits the shop more than once during the same day).

Ask about how often the customers have visited the shop last month or 
which day during a typical week
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Solution for some special cases:
• First look at a man visiting the shop once.  He will be 

selected if that day is selected (1/2) and if he is selected 
that day (1/10). Thus he will be selected with probability 
π1 = 1/20.

A woman visiting twice during different weekdays. The 
probability of being selected the first time is 1/20 and 
similarly the second time. (The weekdays are 
independent). The inclusion probability is thus π2 = 1/20 + 
1/20 – 1/400 = 39/400. 

A woman visiting twice during the same weekdays. The 
probability that she is selected the first (second) Monday is 
1/20. The probability that she is selected twice is 
(2/4)*(1/3) times 1/100. Thus the probability is 1/20 + 1/20 
– 1/600 = 59/600
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General solution
• A person visiting 3 or 4 times during the same weekday 

will be selected on that day with probabilities 
– p3 = P(both days with interviewer)*(2/10 – 1/100) +               

P(only one day with interviewer)*1/10 = 29/200  
– p4 = 2/10-1/100 = 18/100. 

• She will not be selected with probability qx = 1 – px.
• A person visiting x1 times on mondays, x2  on tuesdays, 

a.s.o  will not be selected with probability qx1 * qx2 * … * 
qx7. The first order inclusion probability is thus               
πx1, x2,x3, x4, x5, x6, x7= 1 –Πi qxi

• Since different person are included independently of each 
other the second order inclusion probabilities are just the 
product of the first order probabilities.



Adaptive sampling
• Adaptive sampling is  a special group of sampling methods, where

the sampled units depend on the outcom of previously sampled
units.

• E.g. Divide the Baltic into N areas of 1 km2. In the first round sample
ten areas with SRS and take a trawling haul. If you find whitefish in 
the haul select all four neighbouring areas. Continue till end.

• How to estimate e.g. how much whitefish you find in an average
haul. You can do it by forgetting all observations in the second step, 
but that seems to be a waste of information. But an average over all 
hauls obviously gives too high values.

• Inclusion probabilities n/N for blocks without whitefish nq/N for 
blocks with whitefish and q blocks with whitefish reached from that 
one (or more exactly a negative binomial probability NegBin(N, n, q) 

• I won´t go further into this but mention that the estimation depends
both on inclusion probabilities and Rao-Blackwellisation.
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5.4 
Are sampling with varying 

probabilities and HT-
estimation any good

?
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Basu´s elefants
• A circus-owner arrives a railway station with his herd of five elephants. He 

must estimate the weight in order to pay for the freight. There is only one 
scale and each weighing costs 1 rupie, but the owner has only one coin. He 
decides to weigh Mumbo, the middle elphant and multiply by 5. 

• The circus statistician protests. This is not a probability sample! Every 
elephant must have a positive probability. 

• But he admits that it should be more sensible to weigh the middle elephant 
than the two extremes so they decide on a compromise: Weigh the biggest 
Colonel Hathi or the smallest Jumbo with probabilities 0.01 and the next 
biggest or smallest, Tvumbo and  Dumbo with probability 0.04 each. 

• After looking into a random number table Mumbo is chosen and the 
director is happy: What did I say? Mumbo is weighed and the result is 2 
ton. The director estimates the total weight to 10 ton. 

• The statistician, however, says No! No! That is not an unbiased estimate; 
use the HT-estimate 2/0.9=2.22 ton. 

(What would the the estimate have been, if Colonel Hathi had been 
weighed (His weight is 5 ton?))
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When does HT behaves badly?
1. If the sample size varies the HT-estimate may be 

severely affected (or if ΣS 1/πi  is a bad estimator of 
the total population size).

• One often uses a ratio estimate instead                         
N(ΣS yi/πi )/(ΣS 1/πi).

• As a rule of thumbs: Use HT-estimates only when the 
sample size is fixed or varies marginally. 

• Sample size may in this discussion be replaced by other 
size measures. E.g. the number of employees in a firm. 
Use ratio estimators also in this case (or regression or 
prediction estimators see below)

2. Model-based methods are usually preferable for 
small sample sizes (cf Basu’s elephants)
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5.5 Other aspects

• Sampling with replacement is much easier than 
without.  

• One may show that without replacement 
strategies are always better (= more efficient) 
than with replacement strategies. (But for small 
sampling fractions almost equivalent)

• Some books talk much about methods with 
replacement e.g. The cumulative - size method 
or Lahiri’s method (A rejective method) for 
cluster sampling).
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Design - estimation formula

• With SRS we saw that much could be gained by 
ratio, regression or prediction, estimates

• For the designs stratification and fixed sample 
size πps, we suggested the Horvitz-Thompson 
estimator. 

• But one may combine different types of 
estimators and designs in other ways, getting 
even better procedures.
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Examples

A πps sample
1. Find a good regression/predictor, e.g.
Yi = f(Xi) + ei ; E.g.  a +b1X1i +b2X2i + b3X3i + ei

Estimate the parameters/function e.g. by 
(suitably weighted) GLS or non-parametric 
kernel estimation
Estimate the total by Σi f(Xi) + teHT

2. Use a HT-weighted ratio estimator               
TX(ΣS yi/πi )/(ΣS xi/πi ) (we saw this earlier with N 
as TX.)
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Remember

• A good sampling procedure involves the 
combination of a good sampling design 
and a suitable estimation formula.


