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Guest lecturer

• Frida Videll, Statistics Sweden, talks about 
Swedish Labour Force Survey. (She is head 
of the statistical methods for that survey)

• 27/2 at 15.00



3

3. Regression type estimators

3.1 Estimation using auxiliary variables
Setup

• A population U is given
• An auxiliary variable: Xi; i € U is known
• Study variable Yi  unknown
• Take a sample S, observe Yi; i € S
• Using Y from the sample and X from the 

population try to find a good estimator
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Some methods to use auxiliary 
information

• We will now concentrate on the estimation 
phase (design-based)

• The sample will be assumed taken and we 
will for simplicity assume SRS                
(Everything works for other sampling schemes 
too, but formulas will be more complicated).

• Design-based approach 

• Estimator of the population total
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Some regression-type estimation 
techniques using auxiliary variables

• Difference estimators

• Ratio estimators

• Regression estimators

• Generalised regression estimators

• Prediction estimators
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3.2 Difference estimators

• Suppose that we can make a prior guess of the 
unknown Yi-value for all units using the auxiliary 
variables. Here we call the guess Xi. 

• For example last years value or last years value 
plus inflation. 

• Look at the differences: Ei = Yi – Xi

• Estimate the total difference Te by te = ΣS Ei as in 
SRS

• Estimate the total Ty by tyD = Tx + te, where Tx is 
known 

• Estimate variance accordingly Var*(tyD) = Var*(te ) 
= ((N-n)/N) ΣS(Ei - te )2/(n-1)
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Are difference estimators good?

• The variance is                                               
Var(tyD) = Var(Tx + te) = Var(te) =Var(ty - tx)  = 
Var(ty) + Var(tx) - 2Cov(ty,tx) 

• We gain if:  2Cov(ty,tx) > Var(tx)   
• If the guess is good we have  Var(ty) ~ Var(tx)                

then we gain if  ρ(ty,tx) =ρ(Y,X) > 1/2 
(The correction for finite population does not change 

this)
• Otherwise if ρ(Y,X) > σx/2σy  

• Or equivalently if b*= Cov(Y,X)/Var(X) > ½



8

Are difference estimators good?

• Not used so often as a basic approach

• Often used in secondary analyses and 
longitudinal approaches

• One problem is that it often needs small 
changes i.e. X has the same level as Y.

• Another problem is that the variance of X 
may be large 

• Difference estimators are good as a building 
blocks for other estimators
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The recommended situation is when the data lies on a straight 
line with slope one (regression coefficient is 1, which means 

that the slope seems to be slightly more than one)
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Optimal

• Var(ty - atx)  = Var(ty) + a2Var(tx) – 2aCov(ty,tx) = 
Var(ty) + a2Var(tx) – 2aρ(Y,X)Var(ty)Var(tx) 

• This is minimised when      a = ρ(Y,X)                
(if the variances are equal), but we deo neither  
know the correlation nor if the variances are equal.

• Thus the recommendation is use only for high 
covariances and similar variances. 

• Otherwise (see regression estimators below with 
estimated parameters.
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3.3 Ratio estimators

• In difference estimators we looked at the 
difference TY = TX + TY-X and estimated it 
by tyD = TX + ty-x = TX + ty - tx 

• Here we look at the ratio instead                
tyR = TX * ty / tx

• Sensible only for positive variables
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Are ratio estimators good?

• Works best if both the mean and the vari-
ance of Y given X increase linearly with X

• May be slightly biased.                             
(Problem since ty/tx  is a convex function in tx )

• To compute the approximate bias and 
variance we need the theorem Gauss 
approximation in two dimensions.
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But first 

Gauss approximation in one dimension
(or Taylor linearisation or the ∆-method)

• If X is a random variable with variance and f a 
twice differentiable function
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Gauss approximation in two dimensions: If X and Y
are random variables with variances and f is twice 
continuously differentiable then
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We use the second expression on                   
tyR = TX * ty / tx    and get       Bias(tyR) = 

N

nN

mm

m

n

N

tE

ttCov

tE

tEtVar
T

x

xy

x

yx

x

xy

x

yx
x

−−≈

+≈

)2(

)
)(

),(

)(

)()(
(

22

2

23

σσ

The bias is of order N/n and may become large 
in particular if the variance coefficient of X 
(Var1/2(X)/E(X)) is large (i.e. E(X) close to 0).
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• We use the first expression on tyR = TX * ty / tx  and 
get Var(tyR) = 
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Equivalently and easier to remember:            
RelVar(tyR) ~ RelVar(ty) + RelVar(tx) - 2RelCov(ty tx)

Where RelVar stands for the relative variance or 
coefficient of variation and RelCov for relative 
covariance                                                                   
(The Var for difference estimator is replaced by RelVar)
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Variance estimator
• One may use the above expression for the 

variance and replace all unknown 
parameters by their estimates                     
mx by tx/n;        my by ty/n;             σy

2 by  
Σs(y-ty/n)2/(n-1);       σx

2 by Σs(y-tx/n)2/(n-1); 
and      σxy

2 by Σs(y-ty/n)(x-tx/n)/(n-1): 

• We will show another expression later 
Var*(tY,R) = N(N-n)/n ΣS (E*

i – ΣSE*
i/n)2/(n-1)

with Ei
* = Yi - (ty / tx) Xi).



18

Are ratio estimators good?
• Much more often used (than difference estimator).

• One gains if the correlation is larger than ½            
(if the relative variances (= variation coefficients) 
are the same)

• Multiplicative relations are more often 
encountered in practice than additive         
(All size dependent variables)

• The variance often increases with size, often 
linearly.
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The best situation is when the data lies on a straight line 
through the origin and has a linearly increasing variance      

(or curves slightly upwards)
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3.4 Regression estimator

• Same set up: A population U  and a known 
auxiliary variable: Xi; i € U

• Take a sample S, observe a study variable 
Y i; i € S

• Idea: Using the sample, find a relation 
between X and Y. Try to use this relation 
and that X is known in the estimation phase
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Regression estimator

• Simple linear relation: Estimate a and b in 
the relation  Yi = a + bXi + εi by a*and b* 

• Predict Yi
* = a* + b* X i;    i € U-S

• Estimate population total by                               
TY

* = ΣS Y i + ΣU-S Y i
*

= a* N + b* TX 

The second equality holds if a and b are 
estimated by Simple Linear Regression 



22X-values in frame



23X-values in frame (except sample)

(X,Y)-observations in 
sample



24X-values in frame (except sample)

(X,Y)-observations in 
sample

Estimated 
regression line
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(X,Y)-observations in 
sample

Estimated 
regression line

Predicted (X,Y*)-values 
of units not in sample
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Predict the total by summing all Y and Y*-
values in population

(X,Y)-observations in 
sample

Estimated 
regression line

Predicted (X,Y*)-values 
of units not in sample



27

Regression estimator  
Further comments

• Is it sensible with Simple Linear Regression? 
Parameters can be estimated in other ways, and 
the method works then too.

• One method is the Asymptotically Optimal 
Regression Estimator. This approach minimises 
the asymptotic error variance (Montanari, (1987), 
ISR, 55). Based on the estimated covariance 
matrix of (ty,tx).
ty,Mont= ty,+ (Cov*(ty,tx)/Var*(tx) (Tx – tx)

• But usually only marginally better and may be 
much worse for small sample sizes (same for SRS)
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Variance and variance estimation

• Suppose first we know a and b
• Write   Ei = Yi - (a +b Xi)
• Then TY

* = a N + b TX + (N/n) ΣS Ei

• In that case the variance of the estimator is just the 
variance of te = (N/n) ΣS Ei, the standard estimate 
from SRS with E instead of Y. (cf difference estimators)

• Var*(te ) = N(N-n)/n ΣU (Ei – ΣUEi/N)2/(N-1)
• And the variance estimator is                         

Var*(te ) = N(N-n)/n ΣS (Ei – ΣSEi/n)2/(n-1)
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Variance and variance estimator (cont.)

• The variance with unknown a and b is 
approximately the same                             
Var(tY,reg ) ~ N(N-n)/n ΣU (Ei – ΣU Ei /N)2/(N-1)

• In variance estimation one usually just replaces a 
and b by their estimates (a* and b*). 

• The variance estimator (with known a and b) was 
Var*(te ) = N(N-n)/n ΣS (Ei – ΣSEi/n)2/(n-1)

• The variance can be estimated by replacing  Ei  = 
Y i - (a +b Xi)   by      Ei* = Yi - (a* +b* X i)  i.e.   

• Var*(tY,reg ) = N(N-n)/n ΣS (E*
i – ΣSE*

i/n)2/(n-1)
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Are regression estimates good?
• Improves the asymptotic variance as soon as the 

correlation is different from zero (compared to mean 
estimate, difference or ratio estimator. The decrease 
depends on the the ”explained variance” R2) 

• May be worse for small sample sizes
• The procedure works even if the ”true” relation is not 

linear. The estimate may become slightly biased
(Since the estimate b* and the mean tx may be dependent or since the 
regression estimator can’t be computed, if all sampled x-values have 
the same value. Extremely unlikely but enough to destroy exact 
unbiasedness)

• Care must be taken when the sample is taken with varying 
inclusion probabilities. (Not today’s topic). (The best line 
may be different in sample and the remaining population)
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The best situation is when the data lies on a straight line with 
constant variance
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3.5 General regression estimates 
(GREG) 1

• Previously: only one (continuous) X-variable

• What is said can easily be generalised to several 
auxiliary variables using multiple linear regression

• X-values can be discrete, categorical (dummy-
variables) or derived (e.g.: x2 or x1*x 2)

• Everything holds with Ei = Yi - (a + Σj bj
* X ij)      

in the approximate variance estimation expression
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Weighted general regression estimates 
• Different weighting in the regression (optimally weights 

should be proportional to Var(yi|xi). ”Model-assisted 
approach”)

Ordinary:     b* = 
Σ(yi-ybar)(xi-xbar) / Σ(xi-xbar)2    

Weighted:    b* =
Σ((yi-ybar)(xi-xbar)/Var(yi|xi)) / Σ((xi-xbar)2 Var(yi|xi))      
if intercept is unknown

• Other weights are sometimes used
• Weights may cause problems when the relation is not 

linear. The slope is estimated for points where the weight 
is high, but is used for all points. 

• A general regression estimator is always unbiased but this 
does not hold for a weighted GREG-estimator.



• Difference estimators can be thought of as 
regression estimators with known slope (equal to 
one)

• Ratio estimators can be thought of as regression 
estimators, where the intercept is known (0) and 
the weights are proportional to xi                                

(Holds for Poisson distribution and often for 
economic variables from e.g. firms)
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Are general regression estimators 
good?

• Asymptotically never worse than simple estimators or 
regression estimators with a subset of the auxiliary 
variables

• With many auxiliary variables the random error increases 
due to estimation problems of the regression coefficients. 
(In particular if many auxiliary variables are irrelevant or 
are only weakly related to Y).

• The variance estimator underestimates the true variance

• Avoid regression estimator when there are ”outliers” in the 
population with a set of X-values which differ much from 
the others or if there are influential outliers in the sample.
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An alternative expression for the 
variance estimator of the ratio estimator

• As we said the ratio estimator can be viewed as a 
regression estimator with known intercept a=0. 

• The variance estimator of the regr. estimator was
Var*(tY,reg ) = N(N-n)/n ΣS (E*

i – ΣSE*
i/n)2/(n-1)

with Ei
* = Yi - (a* +b* X i) 

• Thus a variance estimator for the ratio estimator is                                                          
Var*(tY,reg ) = N(N-n)/n ΣS (E*

i – ΣSE*
i/n)2/(n-1)

with Ei
* = Yi - (0 +b* X i)    where                             

b* = ty / tx = ΣS Y i /ΣS X i                                                        
(This is the alternative expression we mentioned above)
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3.6 Prediction estimates

• For regression estimates we wrote                             
TY

* = ΣS Y i + ΣU-S Y i
*                                                          

where Yi
* was the ordinary best linear predictor 

(BLUE)

• One may try to use the same formula with other 
predictors.

• Sensible if the predictor is good. But a bias that is 
unimportant for predicting one single unit may 
become disastrous when summed over the whole 
population.
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Prediction estimates

• Idea of a difference estimator:      ”Suppose that we have 
prior guesses of the values for all units, Xi. These guesses 
are called Yi*”

• Replace the guess Xi by Yi
*, in the full population

• Look at the difference Ei = Yi – Y i
*

• Estimate the total difference Te by te
• Estimate the total Ty by tyPred= TY* + te
• Estimate variance accordingly Var*(tyPred) = Var*(te ) 

(asymptotically valid under mild restrictions)

• Example: 0-1-variables, proportions



39X-values in frame

0-1 values



40X-values in frame except in sample
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41X-values in frame except in sample

0

1

X,Y-values in sample

Estimated probability of 
1,  e.g. by logistic 
regression
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0

1

X,Y-values in sample

Estimated probability of 
1, e.g. by logistic 
regression

Predicted probabilities in the 
remaining population

Estimate sum of predicted and true Y-values
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• The prediction is not necessarily unbiased from a 
design-based perspective (in particular if the 
chosen (logistic) model does not hold)

• They ought thus to be corrected, to be almost 
unbiased for any population and large samples                                                  
tY,pred= ΣU Y i 

* + (N/n) ΣS (Y i - Y i
*)

• Note that Yi 
* is computed also for units in the 

sample.
• If one believed in the logistic model and used 

modelbased inference the second term would not 
be needed.
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• Prediction estimators can also be seen as 
approximate difference estimators

• Treat the prediction Yi * as the auxiliary 
variable (as we did for the regression 
estimator) and write                                      
tY,pred= ΣU Y i 

* + (N/n) ΣS Ei

where Ei* = Yi - Y i
*

• The variance of this can be estimated by 
Var*(tY,pred) = N(N-n)/n ΣS (E*

i – ΣSE*
i/n)2/(n-1)

(exactly as for the regression and ratio estimators)
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Are prediction estimators good?
Similar comments as for (general) regression 

estimators:
– Asymptotically never worse than ordinary mean

– But if the sample is small and the estimated function 
uncertain one may loose efficiency.  

– The better the model fit, the better the estimator

– Be careful with varying inclusion probabilities, outliers 
in the X-population and influential observations in the 
sample

– ...


