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The most interesting error 

• Ŷ – Y 

• That is, the difference between estimate and 
what you desire (truth, value obtained with 
the ideal method, population parameter, or 
however the desired aim is envisaged) 

• Is this difference regularly published? 

• What is the established term for this 
difference? 
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Why variance? 

• Why do we base our statistical theories on 
concepts like variance, bias etc, which are 
advanced constructs? 
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Why in this course? 

• Measurement errors can rarely be observed 

• You have to draw conclusions (make 
inference) about something unobservable 

• Models play a crucial role in this inference 
process  

• Quantitative research usually faces 
measurement errors 

• Rather neglected in practical work 
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Scenarios 

1. True values/gold standard values of a random 
subsample of sample  

2. Dependent or independent measurements of 
a random subsample of sample  

3. One sample with several variables measured 
once, although with measurement error 
(most common and least favourable 
situation) 
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Gold standard 

• Gold standard (error-free) measurements 

– In-depth reinterviews with probing 

– Assumption: error in second measurement is 
negligible or relatively inconsequential 

– Record check studies 

– Direct observation (or close to it) 

– However, gold standard has sometimes been 
shown to be ‘silver standard’ at best. See 
references in Biemer’s book, page 67 
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• Direct estimation of measurement bias 
requires true values or gold standard 
measurements 

• If you have a sample of values with 
measurement errors, yi, and true scores for 
each, τi, then the difference yi -τi  is like a new 
variable. The variance of the difference is the 
same as the variance of yi (why?) 
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Classical Test Theory 

• The following pages describe the ‘classical test 
theory model’ 

• From psychometrics 

• No gold standard required 

• Used in surveys 

• In other applied areas of statistics other 
models are more popular (ANOVA type of 
models) 

Stockholm University, autumn semester 
2012 

8 



Conceptual Development 

• Hypothetical distribution of responses for 
each individual in the population  

• Individuals represent “clusters” of “potential” 
responses 
– Analogous to 2-stage sampling 

• The response process is analogous to two-
stage cluster sampling using SRS at each stage 

• The first-stage design can be more complex 
than SRS, classical test theory will still be 
useful 
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10 

Clusters are Persons 
Responses are Nested within Persons 
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Sample Persons and then Response from 
within Persons 
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‘True score’ 

• Not the same true value 

• True score is average of responses from 
individual i 

• Can be influenced by for example change of 
mode of interview or by pictures on the 
questionnaire 
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• Individuals may be viewed as equal size clusters 
of potential responses to a question; i.e., Primary 
Sampling Units (PSUs) 

• n  = number of persons in the sample 

• m = number of observations made on each 
person  

• A response to an interview question essentially 
selects a response from an individual randomly 
and independently (m = 1 response) 

• For an interview-reinterview survey, cluster 
sample size is m = 2 
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A Measurement Model Based Upon Two-Stage 
Cluster Sampling: “Census Bureau” Model 

• First stage  =  individual in the population, i = 
1, ..., N 

• Second stage, infinite number of possible 
measurements (or trials) on the individual 

• SRS at both stages (can be relaxed) 

• Negligible sampling fraction at second stage 
(i.e., m/M <<1 or essentially unlimited number 
of hypothetical responses within person) 
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‘Parallel measures’ 

• All measurements (ie what people may say as 
an answer to a question) are indicators of the 
same construct (ie same variable) 

• They are taken from the same distribution 

 

• Then they are independent and identically 
distributed (iid). Tall order. 

Stockholm University, autumn semester 
2012 

15 



16 

A Measurement Model Based Upon Two-Stage Cluster 
Sampling: “Census Bureau” Model (cont’d) 

• Want to estimate 

 

• where τi is average of the  
infinite number of responses from 
individual i 

• (Well, we would have wanted the true 

value…) 
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Review of Formulas for Two-Stage 
Cluster Sampling (Cochran, 1977, Chapter 10) 
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Review of Formulas for Two-Stage 
Cluster Sampling (cont’d) 
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For Measurement Error Applications 

SV SRV
Var( ) (1 ) (1 )1 2S S

y -f -f
n nm n nm

   

The formulas on previous slide can be directly applied to 

the measurement error problem. 

( ) (y)ˆVar y v

SV   =         i.e., “sampling variance  

SRV =        i.e.,  “simple response variance” 
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Some implications 

SV SRV
Var( )y +  

n nm


• The variance of a mean or proportion from a SRS contains 

variation due  to both sampling variance and response variance 

(note what  happens when m = 1) 

• Sampling variance decreases as n increases, i.e., precision 

inversely proportional to sample size 

 

•  Measurement variance decreases as both n and m increases;  

i.e., better precision with multiple measurements on each unit 
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Reliability ratio 

SV
R

SV SRV



is the reliability ratio 

If  SRV=0 then R=1 (i.e. maximum value) 

The smaller R is, the more the estimate will be improved 

by repeated measures, because then SRV is larger 
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Estimation of SRV 

• Why do we want to estimate the SRV when 

this component is already accounted for in 

the usual estimate of Var(p)? 

– SRV increases Var(p) 

– SRV has implications for other analysis as well 

E. g. measurement error may have implications 

for estimation of coefficients in some models 
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Special Formulas for Proportions 
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Total Mean Square Error of P 
for m = 1 

2MSE( ) [Bias( )] Var( )p p p 
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This can be rewritten as 
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Estimation of Simple Response Variance (m=2) 
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reinterview for all cases) 

Then, 
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Note also that 

2 2 2 2( ) ( ) ( )i i iVar y E y P E y P P P
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Some ‘science thinking’ 

• Is the model that the brain is a “random 
machine” realistic and credible? 

• First, model misspecification, would that 
result in. As for the iid assumption, suppose 
the two measurements are correlated. How is 
the estimated variance affected?  

• If the identical distribution assumption is 
violated? 

 
Stockholm University, autumn semester 

2012 
29 



• If the assumptions are mildly violated, is the 
test theory model useful anyway? 
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