Register-based statistics production

Administrative data used for statistical purposes

Bo Sundgren 2010

Part 2: Extra material

Tables with means and ratios for different domains of study

Chart	7.5	Table	forming	the basis	for sever	ral diff	feren	t tabl	es	Char	t 7.6	
Sex (1)	Level (2)	$\sum w_i$ (3)	$\sum_{\substack{i \in V_i \\ \text{salary}_i \\ (4)}} w_i \cdot$	$\sum w_i \cdot extent_i$ (5)	∑ w _i • sala			(4)/(5) (8)		A CALL CONTRACTOR	salary by evel of co s	
Wom.	1	4677	40635041		617015	17 1	3 191	13 274		Level	Women	Men
Wom.	2	33084	360320838	25085	4742115	47 1	4 334	14 364	0.76	1	13 274	13 690
Wom.	3	7762	106558725	6416	1290633	65 1	6 627	16 607	7 0.83	2	14 364	14 936
Wom.	4	10763	175129111	9313	2021685	95 1	8 784	18 805	5 0.87	3	16 607	16 815
Wom.	5	817	17415674	771	183336	90 2	2 431	22 58	3 0.94	4	18 805	23 063
Men	1	869	10905658	3 797	117951	51 1	3 579	13 690	0.92	5	22 583	27 564
Men	2	5758	73156416	6 4898	850835	j24 1	4 777	14 930	6 0.85	The t	able abc	ive is
Men	3	2717	42580548	3 2532	456325	70 1	6 796	16 81	5 0.93		ed using	
Men	4	5930	125232247	5430	1362220	43 2	2 971	23 063	3 0.92		(8) in the table in Chart 7.5	
Men	5	675	18050648	8 655	185948	309 2	7 531	27 56	4 0.97	Char		
Chart	7.7 0	Calcul	ation of	standardi	sed mea	n sala	ries					
Age	ISCO		werage ry, women	Average salary, men	Number of women	Number of men	Grade de 1969 de	otal nber	Standa weighti	A-97.000 - 44.440.84	Women:	Men:
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8) = (7) /	5 688	(3) • (8)	(4) • (8
17-24	2330)	13 660	14 100	276	75		351	0.00)62	84.41	87.13
***					•••			••				
60-64	7130)	13 826	13 900	10	63		74	0.00)13	18.09	18.19
Te	otal		15 680	18 860	4 523	1 165	5 (688	1.00	000	16 256	16 505

Calibration of weights in register-based surveys: compensating for missing values

10 10 10 10 10 10 10 10 10 10 10 10 10 1	(2) Sex	the second start of the second start	(4) Employed	(5) Industry		(7) d,	<i>x₁</i> Sex=F	<i>x₂i</i> Sex=M	<i>x</i> ₃i District=1	<i>x₄</i> Employed=1	Wi
1	F	1	0	null	Low	1	1	0	- 1 -	1	0.98276
2	Μ	1	1	A	Low	1	0	1	1	1	1.15517
3	F	1	1	A	Low	1	1	0	1	1	1.13793
4	M	1	1	Α	Medium	1	0	1	1	1	1.15517
5	F	1	1	A	Medium	1	1	0	1	1	1.13793
6	Μ	1	1	Missing	Low	0	0	1	1	1	0.00000
7	F	1	1	D	Medium	1	1	0	1	1	1.13793
8	М	1	1	D	High	1	0	1	1	1	1.15517
9	F	1	1	D	Medium	1	1	0	1	1	1.13793
10	Μ	1	0	null	Medium	1	0	1	1	1	1.00000
11	F	2	0	nuti	Low	1	1	0	0	0	1.00000
12	Μ	2	1	D	Low	11	0	1	0	0	1.17241
13	F	2	1	D	Low	11	1	D	0	0	1.15517
14	M	2] 1	D	Medium	1	0	1	0	0	1.17241
15	F	2	1	D	Missina	0	1	0	0	0	0.00000
16	M	2	1	A	Low	1	0	1	0	0	1.17241
17	F	2	1	A	Medium	1	1	0	0	0	1.15517
18	F	2	1	A	Medium	1	1	0	0	0	1.15517
19	М	2	0	null	Medium	1	0	1	0	0	1.01724

Two ways of handling missing values

	Industry A Number of persons	Industry D Number of persons	Industry A Per cent	Industry D Per cent
High education	0	1	0.0%	16.7%
Medium education	4	3	57.1%	50.0%
Low education	3	2	42.9%	33.3%
All	7	6	100.0%	100.0%

 Based on the shaded columns in 7.10, giving weight 0 to persons with missing values

	Industry A, weighted number of persons	Industry D, weighted number of persons	Industry A Per cent	Industry D Per cent
High education	0.0	1.2	0.0%	16.7%
Medium education	4.6	3.4	57.0%	49.7%
Low education	3.5	2.3	43.0%	33.6%
All	8.1	6.9	100.0%	100.0%

• Based on adjusted weights after calibration

Estimation methods to correct for overcoverage: the problem

Overcoverage in the Population Register

The first sign that there is overcoverage in Statistics Sweden's Population Register came from demographic studies on mortality. Among a few categories of foreign-born persons, mortality was strangely low. Furthermore, it was found that the share of families, with no information on disposable income, was high among certain categories of immigrants.

Overcoverage in the Swedish Population Register has been estimated by Greijer (1995, 1996, 1997a, 1997b), who analysed nonresponse in the Labour Force Surveys and in a census on foreign-born persons based on a postal questionnaire. Using this information, it was possible to estimate overcoverage among different categories of foreign-born persons.

Data in statistical registers can also be used to give indications of overcoverage. A foreignborn person without income in any register can have left Sweden without reporting this to the tax authorities.

Overcoverage can cause serious errors in register-based statistics. For instance, the average income for those born in different countries can be misleading. For persons born in certain countries, the underestimation can be around 20%.

Estimation methods to correct for overcoverage: strategy

How should we control overcoverage and improve quality? The strategy for correcting errors caused by overcoverage can include the following:

- By being watchful when carrying out macro editing, it is possible to find unreasonable estimates in the register-based statistics. The question should be asked, whether overcoverage could be the cause of these extreme estimates.
- If overcoverage is suspected, available sample surveys and other sources can be used to help estimate this overcoverage.
- Overcoverage can be estimated for different categories in the register once enough information on the extent and character of the overcoverage has been collected.
- 4. The weights can then be adjusted to correct for the estimated overcoverage. Before adjustment, all weights are equal to 1; after adjustment, the weights for the different categories for which there is overcoverage will be less than 1. Use *calibration methods* (Section 7.5) to adjust the weights when overcoverage is described by many variables.
- 5. The adjusted weights are stored in the base register (in this case the Population Register).
- All other statistical products using the base register will then use the weights. In this
 way, all the statistics produced will be consistently corrected for the estimated effect
 of overcoverage.

Estimation methods to correct for overcoverage: example of solution

		Number of persons before correction (1)	Estimated overcoverage (2)	Number of persons after correction for overcoverage (3)
Country of birth	Europe	584	6.7%	545
	Not Europe	416	14.7%	355
	Total	1000	10.0%	900
Years in Sweden	Few	819	7.2%	760
	Many	181	22.7%	140
	Total	1000	10.0%	900
Income	Low	101	40.6%	60
	High	899	6.6%	840
	Total	1000	10.0%	900

PIN				Weights dk	X ₁ Country Europe	X _{2i} Country Not Eur	x ₃₁ Few years	x _{4i} High income	Adjusted weight, w	Conc	$\sum d_t s$
1	Europe	Few	High	1	1	0	1	1	0.992	545	584
2	Not Eur	Few	High	1	0	1	1	1	0.916	355	416
3	Europe	Few	Low	1	1	0	1	0	0.657	760	819
4	Europe	Few	High	1	1	0	1	1	0.992	840	899
5	Not Eur	Many	High	1	0	1	0	1	0,770		
6	Not Eur	Few	Low	1	0	1	1	0	0.581		
							****		***		
1000	Not Eur	Few	High	1	0	1	.1.	1	0.916		
Total				1 000	584	416	819	899	900		

Methods to correct for level shifts in time series

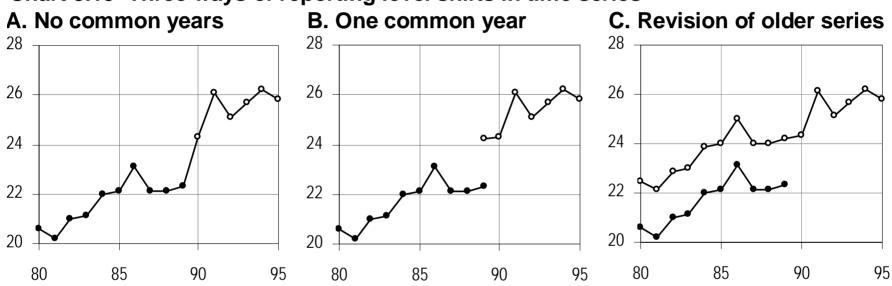


Chart 8.19 Three ways of reporting level shifts in time series

Methods to correct for level shifts in time series

- Correcting for level shifts in time series is called linking time series. We differentiate between linking at macro level and linking at micro level.
- Linking at macro level has the disadvantage that it can be difficult to ensure consistency among several linked series, and there may be many of them.
- Linking at micro level does not have this disadvantage, since all possible time series are linked at the same time, and all these series will be consistent. Linking at micro level is carried out by calculating revised weights in data matrices for the years or periods that have been revised. The old time series values are given by the original weights, while the revised weights can be used to calculate the linked series.

Estimation with combination objects: calendar year registers

rson	Address	Municipality	From date yyyymmdd	To date yyyymmdd	Weight = Time at the ad- dress, years
IN1	Address 1	1	20050101	20050517	136/365 = 0.37
INI	Address 2	2	20050518	20051231	229/365 = 0.63
PIN2	Address 3	1	20050101	20051231	365/365 = 1.00
IN3	Address 4	2	20050101	20050314	73/365 = 0.20
IN3	Address 5	1	20050315	20050925	194/365 = 0.53
IN3	Address 6	2	20050926	20051231	365/365 = 0.27
IN4	Address 7	2	20050101	20050605	156/365 = 0.43
PIN4	Address 8	1	20050606	20051231	209/365 = 0.57

nicipality	Absolute frequency	Relative frequency
1	0.37 + 1.00 + 0.53 + 0.57 = 2.47	62%
2	0.63 + 0.20 + 0.27 + 0.43 = 1.53	38%
Total	4.00	100%

Estimation with combination objects: occupation (1)

Job id	Person	Legal unit	Occupation	ISCO	Extent
J1	PIN1	LeU1	Statistician	2211	100
J2	PIN1	LeU2	Farmer	6111	15
J3	PIN1	LeU3	Politician	1110	10
J4	PIN2	LeU4	Hospital orderly	5132	30
J5	PIN2	LeU5	Cleaner	9122	20
J6	PIN3	LeU6	Shop assistant	5221	10
J7	PIN4	LeU6	Shop assistant	5221	50
J8	PIN5	LeU6	Shop assistant	5221	20
J9	PIN6	LeU6	Shop assistant	5221	100
Total					

Person	Legal unit	Principal occupation	ISCO	Extent	Weight alt 1
PIN1	LeU1	Statistician	2211	100	1
PIN2	LeU4	Hospital orderly	5132	30	1
PIN3	LeU6	Shop assistant	5221	10	1
PIN4	LeU6	Shop assistant	5221	50	1
PIN5	LeU6	Shop assistant	5221	20	1
PIN6	LeU6	Shop assistant	5221	100	1
Total					6

Main occupation	ISCO	Number	Per cent
Statistician	2211	1	16.7
Hospital orderly	5132	1	16.7
Shop assistant	5221	4	66.7
Total		6	100.0

Estimation with combination objects: occupation (2)

Combination object	Person	Occupation	Extent	Weight alternative 1	Weight alternative 2
1	PIN1	Statistician	100	1	0.80
2	PIN1	Farmer	15	0	0.12
3	PIN1	Politician	10	0	0.08
4	PIN2	Hospital orderly	30	1	0.60
5	PIN2	Cleaner	20	0	0.40
6	PIN3	Shop assistant	10	1	1.00
7	PIN4	Shop assistant	50	1	1.00
8	PIN5	Shop assistant	20	1	1.00
9	PIN6	Shop assistant	100	1	1.00
Total				6	6.00

		Altern	ative 1	Alterna	Alternative 2		
Occupation	ISCO	Nr.	Per cent	Nr.	Per cent		
Politician	1110	0.00	0.0	0.08	1.3		
Statistician	2211	1.00	16.7	0.80	13.3		
lospital orderly	5132	1.00	16.7	0.60	10.0		
Shop assistant	5221	4.00	66.7	4.00	66.7		
Farmer	6111	0.00	0.0	0.12	2.0		
Cleaner	9122	0.00	0.0	0.40	6.7		
Total		6.00	100.0	6.00	100.0		

Estimation with combination objects: occupation (3)

Person	Occupation	Weight alt 1	Weight alt 2	Weight alt 3
PIN1	Statistician	1	0.80	1.00
PIN1	Farmer	0	0.12	0.15
PIN1	Politician	0	0.08	0.10
PIN2	Hospital orderly	1	0.60	0.30
PIN2	Cleaner	0	0.40	0.20
PIN3	Shop assistant	1	1.00	0.10
PIN4	Shop assistant	1	1.00	0.50
PIN5	Shop assistant	1	1.00	0.20
PIN6	Shop assistant	1	1.00	1.00
Total		6	6.00	3.55

		Alterna	tive 1	Alterna	tive 2	Alternative 3		
Occupation	ISCO	Nr.	Per cent	Nr.	Per cent	Nr.	Per cent	
Politician	1110	0.00	0.0	0.08	1.3	0.10	2.8	
Statistician	2211	1.00	16.7	0.80	13.3	1.00	28.2	
Hospital orderly	5132	1.00	16.7	0.60	10.0	0.30	8.5	
Shop assistant	5221	4.00	66.7	4.00	66.7	1.80	50.7	
Farmer	6111	0.00	0.0	0.12	2.0	0.15	4.2	
Cleaner	9122	0.00	0.0	0.40	6.7	0.20	5.6	
Total		6.00	100.0	6.00	100.0	3.55	100.0	

Estimation with combination objects: industrial classification (1)

Local unit	Industry 1	%	year 1: Data I Industry 2	%	Industry 3	%	Nr. of employees
Locar unit	muusuy	/0	industry z	/0	muusuy 5	/0	ni. or employees
LU1	DJ	100					218
LU2	DH	51	DJ	49			293
LU3	DJ	40	DH	30	DK	30	156

Chart 9.14b Business Register year 2: Data matrix for local units

Local unit	Industry 1	%	Industry 2	%	Industry 3	%	Nr. of employees
LU1	DJ	100					221
LU2	DJ	52	DH	48			314
LU3	DJ	36	DH	34	DK	30	143

hart 9.14c Number of employees by industry, traditional estimates

Industry	Year 1	Year 2
DH	293	0
DJ	374	678
DK	0	0
Total	667	678

The number of employees is sorted by principal industry, which is the most common way of presenting time series based on industrial classification from the Business Register.

This leads to abrupt changes in the series here.

Estimation with combination objects: industrial classification (2)

Year 1					Year 2					
Local unit	Industry	Weight, w	Nr. empl, yi	w; y;	Local unit	Industry	Weight, w	Nr. empl, yi	w, y,	
LU1	DJ	1.00	218	218	LU1	DJ	1.00	221	221	
LU2	DH	0.51	293	149.43	LU2	DH	0.48	314	150.72	
LU2	DJ	0.49	293	143.57	LU2	DJ	0.52	314	163.28	
LU3	DJ	0.40	156	62.4	LU3	DJ	0.36	143	51.48	
LU3	DH	0.30	156	46.8	LU3	DH	0.34	143	48.62	
LU3	DK	0.30	156	46.8	LU3	DK	0.30	143	42.9	
Total		3.00		667	Total		3.00		678	

Chart 9.16	Number of emp	loyees by industry,	estimated with	combination objects	5
------------	---------------	---------------------	----------------	---------------------	---

199.34
435.76
42.90
678.00

The time series in Chart 9.16 have been calculated with the weights w_i.

The series here have a higher quality than those in Chart 9.14c, with relevant changes and no level shifts.

Estimation with combination objects: transformation of weights

Reg	Register of local units		ster of local units Aggregated data				Register of local units				
Year 1 Weights			Models	Transformed weights based on model							
Local unit	Industry	based on turnover	Employees Turnover SEK m		a	dapte	ed for estimation of number of employees				
LU3	DJ	0.4	DJ	0.5	LU3	DJ	$\frac{0.4 \cdot 0.5}{(0.4 \cdot 0.5 + 0.3 \cdot 0.6 + 0.3 \cdot 0.7)} = 0.34$				
LU3	DH	0.3	DH	0.6	LU3	DH	$\frac{0.3 \cdot 0.6}{(0.4 \cdot 0.5 + 0.3 \cdot 0.6 + 0.3 \cdot 0.7)} = 0.30$				
LU3	DK	0.3	DK	0.7	LU3	DK	$\frac{0.3 \cdot 0.7}{(0.4 \cdot 0.5 + 0.3 \cdot 0.6 + 0.3 \cdot 0.7)} = 0.36$				

Estimation with combination objects: importing many multi-valued variables: traditional methodology

Chart 9.18a Population Register

Person	Sex	Age
PIN10	F	32

Chart 9.18b Education Register

Person	Educ 1	Points 1	Educ 2	Points 2	
PIN10	Ed1	180	Ed2	120	

PIN10 has two degrees on the same level in different fields; Educ 2 is the most recent.

Chart 9.18c Activity Register, with extent of job in November

Person	Local unit	Extent
PIN10	LU11	80%
PIN10	LU12	20%

Traditionally, only the local unit of the principal activity is used.

Chart 9.18d Occupation Register

Person	Local unit	Occup.
PIN10	LU11	Oc1
PIN10	LU12	Oc2

Traditionally, only the occupation of the principal activity is used.

Chart 9.18e Business Register

Local unit	Industry	Weight 1	Industry	Weight 2
LU11	DH	70%	DJ	30%
LU12	DK	100%		

Chart 9.18f Activity Register, industry and occupation are imported

Person	Local unit	Industry	Occup.
PIN10	LU11	DH	Oc1
PIN10	LU12	DK	Oc2

Traditionally, only the local unit and occupation of the principal activity are used.

Person	Sex	Age	Education	for person Pl Occupation		Industry	EmpNov
PIN10	oun	rige	Ed2	- Cont	11111	DH	Yes

Estimation with combination objects: importing many multi-valued variables: all information used

Chart 9.19a	Population I	Register
Person	Sex	Age
PIN10	F	32

Chart 9.19b Education Register

Person	Education	WEdu
PIN10	Ed1	0.6
PIN10	Ed2	0.4

Weights for education are created using the length of the educational programme expressed as education 'points'.

Chart 9.19c Activity Register, with extent of job in November

Person	Local unit	WLU
PIN10	LU11	0.8
PIN10	LU12	0.2

For the object *Person*, weights for the multi-valued variable *Local unit* are created using the variable *Extent*

Chart 9.19d Occupation Register

Person	Local unit	Occup.
PIN10	LU11	Oc1
PIN10	LU12	Oc2

Occupation is linked to the relation between *Person* and *Local unit*, the weight for *Occupation* is the same as that for *Local unit*.

Chart 9.19e Business Register

Local unit	Industry	Wind	
LU11	DH	0.7	
LU11	DJ	0.3	
LU12	DK	1.0	i

Using information in the Business Register, a register is created with the combination object *Local unit* • *Industry* and the weights for different industries.

Chart 9.19f Combination objects: Person · Education · Local unit · Industry

Person	Sex	Age	Educ.	Local unit	Occup	Industry	EmpNov	W _{Edu}	W _{LU}	Wind	W _{Comb} Ob
PIN10	F	32	Ed1	LU11	Oc1	DH	Yes	0.6	0.8	0.7	0.336
PIN10	F	32	Ed1	LU11	Oc1	DJ	Yes	0.6	0.8	0.3	0.144
PIN10	F	32	Ed1	LU12	Oc2	DK	Yes	0.6	0.2	1.0	0.120
PIN10	F	32	Ed2	LU11	Oc1	DH	Yes	0.4	0.8	0.7	0.224
PIN10	F	32	Ed2	LU11	Oc1	DJ	Yes	0.4	0.8	0.3	0.096
PIN10	F	32	Ed2	LU12	Oc2	DK	Yes	0.4	0.2	1.0	0.080
Total									ing Cologer		1.000

Estimation with combination objects: importing many multi-valued variables: comparison of methods (1)

Age	F	М	Total	The estimates for single-valued	Age	F	M	Total
20-49	1	0	1	variables such as sex and age are	20-49	1	0	1
50-64	0	0	0	not affected by the weights that are	50-64	0	0	0
65	0	0	0	formed for the multi-valued vari- ables.	65-	0	0	0
Total	1	0		abios.	Total	1	0	1
radition	al esti	imatic		Estimation with weights:	Estimation Occup.			hts mber
Oc1				0.8 =	Oc1).8
Oc2			0	0.336 + 0.144 + 0.224 +0.096	Oc2		0.2	
Total		umilianse	1		Total			1
raditiona Educ			nber	Estimation with weights:	Estimation Educ.	with		hts nber
Ed1			0	0.6 = 0.336 + 0.144 + 0.120	Ed1		().6
								r i ner
Ed2			1		Ed2		().4
Ed2 Total			1 1		Ed2 Total			
Total Chart 9.2	20d G	Bainfu	1 Illy emp	oloyed in November by industrial c	Total lassificatio).4 1
Total Chart 9.2 raditiona	20d G al esti	Sainfu matio	1 ully emp		Total Iassification	with	weig).4 1 jhts
Total Chart 9.2 Traditiona	20d G al esti	Bainfu matio Nur	1 Illy emp n mber	Estimation with weights:	Total Iassification Estimation Industry	with	weig Nui).4 1 hts nber
Total Chart 9.2 Fraditiona Industr DH	20d G al esti	Bainfu matio Nur	1 ully emp		Total lassification Estimation Industry DH	with	weig Nui 0).4 1 hts nber .56
Total Chart 9.2 Fraditiona Industr DH DJ	20d G al esti	Bainfu matio Nur	1 Illy emp n mber	Estimation with weights:	Total lassification Estimation Industry DH DJ	with	weig Nui 0).4 1 hts nber .56 .24
Total Chart 9.2 Fraditiona Industr DH	20d C alesti ry	Sainfu matio Nur	1 Illy emp n n ber 1	Estimation with weights:	Total lassification Estimation Industry DH	with	weig Nui 0 0).4 1 hts nber .56

Estimation with combination objects: importing many multi-valued variables: comparison of methods (2)

Educ.	Oc1	Oc2	Total	Estimation with	Educ.	Oc1	Oc2	Total
Ed1	0	0	0	weights:	Ed1	0.48	0.12	0.60
Ed2	1	0	1	0.48 = 0.336 + 0.144	Ed2	0.32	0.08	0.40
Total	1	0	1		Total	0.80	0.20	1
Traditiona Industry	Ed1	Ed2	Total	Estimation with	Estimation Industry	Ed1	Ed2	Total
			employe	d in November by educa				
				weights: 0.336 is taken directly from the data matrix in Chart 9.19f				
DH	0	1	1		DH	0.336	0.224	0.560
DJ	0	0	0		DJ	0.144	0.096	0.240
DK	0	0	0		DK	0.120	0.080	0.200
Total	0	1	1		Total	0.600	0.400	1
Traditiona	l estim	ation		d in November by occu	Estimatio	n with v	veights	i dia si Sassi
Industry	Oc1	Oc2	Total	Estimation with	Industry	Oc1	Oc2	Total
DH	1	0	1	weights	DH	0.56	0.00	0.56
DJ	0	0	0	0.56 = 0.336 + 0.224	DJ	0.24	0.00	0.24
	0	0	0		DK	0.00	0.20	0.20
DK	U							

Estimation with combination objects: consistency between estimates from different registers (1)

1. Register on persons			2. Job	Register	
Person	Job	Enterprise	Local unit	Person	Ext
PIN1	J1	EU1	LU11	PIN1	0.3
PIN2	J2	EU1	LU11	PIN2	1.0
PIN3	J3	EU2	LU21	PIN3	1.0
PIN4	J4	EU2	LU21	PIN4	1.0
PIN5	J5	EU2	LU22	PIN5	1.0
	.16	FU2	11/22	PIN1	0.2

Person PIN1 has two jobs, J1 and J6, PIN1 works 50% of a full-time employed position.

The information of the proportions of Industries within each Local Unit will be imported into registers 1 and 2 when combination objects are created and the aggregated weight will be called wind in Chart 9.23 below.

3. Local unit Register									
Local unit	Enterprise	Industry 1	%	Industry2	%				
LU11	EU1	Α	60	В	40				
LU21	EU2	С	100						
LU22	EU2	D	100						
		4. Enterp	rise Regi	ster					
Enterprise	Local unit 1	Local unit 2	Industry1	%	Industry2	%			
EU1	LU11		A	60	В	40			
EU1	LU21	LU22	С	62.5	D	37.5			

Estimation with combination objects: consistency between estimates from different registers (2)

Chart 9.22	Traditional	estimation	in a	register	system	after	integration
------------	-------------	------------	------	----------	--------	-------	-------------

1. Emple	oyment Re	gister –	persons
Person	Industry	Extp	weight
PIN1	Α	0.5	1
PIN2	А	1.0	1
PIN3	С	1.0	1
PIN4	С	1.0	1
PIN5	D	1.0	1
Total		4.5	5

2. Job Register										
Job	Enterprise	Local unit	Person	Ext_J	Industry	weight				
J1	EU1	LU11	PIN1	0.3	А	1				
J2	EU1	LU11	PIN2	1.0	A	1				
J 3	EU2	LU21	PIN3	1.0	С	1				
J4	EU2	LU21	PIN4	1.0	С	1				
J5	EU2	LU22	PIN5	1.0	D	1				
J6	EU2	LU22	PIN1	0.2	D	1				
Tota	I			4.5		6				

In all the registers in Chart 9.22 the variable Industry refers to the *principal* Industry. Every register also has only one row per object (person, job, local unit or enterprise unit).

The variable Ext_J, Extent for Job, in the Job Register is imported into all other registers. Derived variables Ext_P, Extent for Person, Ext_{LU}, Extent for Local Unit and Ext_{EU}, Extent for Enterprise Unit, are created by aggregation.

With these four registers, volume of work by Industry, can be estimated by summing up the variables:

Ext_P, Ext_J, Ext_{LU} and Ext_{EU}

Due to different aggregation errors, the estimated tables with volume of work by Industry will be different if different registers are used.

These different tables are compared in Chart 9.24 below.

3. Local unit Register									
Local unit	Industry	Ext _{LU}	weight						
LU11	A	1.3	1						
LU21	С	2.0	1						
LU22	D	1.2	1						
Total		4.5	3						

4. Enterprise Register									
Enterprise	Local unit	Industry	Ext _{EU}	weight					
EU1	LU11	Α	1.3	1					
EU2	LU21	С	3.2	1					
Total			4.5	2					

Estimation with combination objects: consistency between estimates from different registers (3)

1	1. Employment Register – persons					2. Job Register								
Per- son	Indu- stry	Exte	Whad	W.mb	$W_{P} =$ $W_{had} +$ W_{Aab}	$Ext_P \cdot W_P$	Job	Enter- prise	Local unit	Person	Ext ₂	Indu- stry	Wind	$Ext_J \cdot w_{had}$
PINT	А	0.50	0.6	0.6	0.36	0.18	J1	EU1	LU11	PIN1	0.30	А	0.6	0.18
PINT	В	0.50	0.4	0.6	0.24	0.12	J1	EU1	LU11	PIN1	0.30	в	0.4	0.12
PIN1	D	0.50	1	0.4	0.4	0.20	J2	EU1	LU11	PIN2	1.00	A	0.6	0.60
PIN2	Α	1.00	0.6	1	0.6	0.60	J2	EU1	LU11	PIN2	1.00	в	0.4	0.40
PIN2	В	1.00	0.4	1	0.4	0.40	J3	EU2	LU21	PIN3	1.00	С	1	1.00
PIN3	С	1.00	1	1	1	1.00	J4	EU2	LU21	PIN4	1.00	С	1	1.00
PIN4	С	1.00	1	1	1	1.00	J5	EU2	LU22	PIN5	1.00	D	1	1.00
PIN5	D	1.00	1	1	1	1.00	JG	EU2	LU22	PIN1	0.20	D	1	0.20
Total					5	4.5	Tota	l.					6	4.5

Comments on the Job Register:

The register contains data on six jobs corresponding to 4.5 full-time jobs.

lobs J1 and J2 are divided into two combination objects each, as LU11 is active in both Industry A and B. The weights 0.6 and 0.4 for these two industries are taken from the *Local unit Register*. *Cxt*₂ refers to the extent of the work for each job.

Comments on the Employment Register:

 $f Ext_i \cdot w_{pup}$ is summed up for person PIN1 in the lob Register, the result obtained is 0.18 + 0.12 + 0.20 = 0.50. This value becomes Ext_p for PIN1 in the Employment Register.

Fhree combination objects for three Industries are ormed for PIN1. Both Industry and job/local unit are multi-valued variables for persons.

The weights for combination objects are formed by multiplying w_{out} with w_{sob} , where w_{bot} is taken rom the *Job Register* and w_{sob} is calculated as every job's share of all jobs that the person has. or PIN1, job J1 has the weight 18+,12/(.18+.12+.20) = 0.6

	3. L	ocal unit Re	egister	
Local unit	Indu- stry	Ext_{LU}	Wind	Ext _{LU} • w _{inc}
LU11	А	1,3	0.6	0.78
LU11	В	1.3	0.4	0.52
LU21	С	2.0	1	2.00
LU22	D	1.2	1	1.20
Total			3	4.5

4. Enterprise Register									
Enter- prise	Local unit	indu- stry	Ext_{EU}	Wind	Ext _{EU} • W _{ind}				
EU1	LU11	А	1.3	0.6	0.78				
EU1	LU11	в	1.3	0.4	0.52				
EU2	LU21	С	3.2	0.625	2.00				
EU2	LU22	D	3.2	0.375	1.20				
Total				2	4.5				

Estimation with combination objects: consistency between estimates from different registers (4)

Table 1 Number	of full-time	employe	Table 2 Number of persons by Industry					
	Traditi	onal estim	ation, Chart	9.22	Estimation with combination	Traditional, Chart 9.22	With combination objects	
Industry Employment Register	Job Register	Local unit Register	Enterprise Register	objects Register 1–4 in Chart 9.23	Employment Register	Employment Regis- ter in Chart 9.23		
Α	1.5	1.3	1.3	1.3	0.78	2	0.96	
В	0.0	0.0	0.0	0.0	0.52	0	0.64	
С	2.0	2.0	2.0	3.2	2.00	2	2.00	
D	1.0	1.2	1.2	0.0	1.20	1	1.40	
Tot	4.5	4.5	4.5	4.5	4.5	5	5.00	

The traditional estimation method thus results in inconsistencies in the register-based statistics produced. Furthermore, differences in population and variable definitions should lead to further inconsistencies in real registers.

There is a fourth reason for why register-based statistics from different products can be inconsistent. The table above shows the effects of content-related differences. Table 1 describes *full-time employees*, while Table 2 describes *persons*. With statistics on persons and labour market statistics, it is common to describe persons but, with economic statistics, it is more common to measure volumes and full-time employees.

Estimation with combination objects: linking of time series

Relationship between old and new codes	Old code	Code key	New code	Comments		
One-to-one	1 •	•	А	No problems, the old code 1 is recoded to the new code A		
	2 .			No problems, the old codes 2 and 3 are		
Many-to-one	3 •		В	combined to the new code B		
0			С	Causes problems, how should the old code 4 be divided into the new codes C		
One-to-many	4 🗪		• D	and D?		
	5 👞	_	E	Same problem as mentioned above, how should:		
Many-to-many	6 •		F	 – old code 5 be divided up into E and F? – old code 6 be divided up into E and F? 		

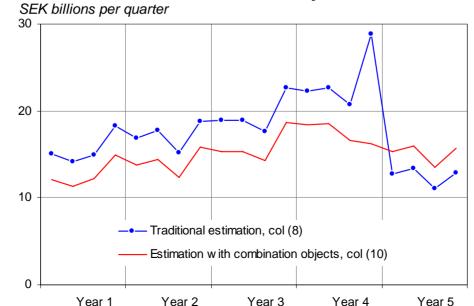
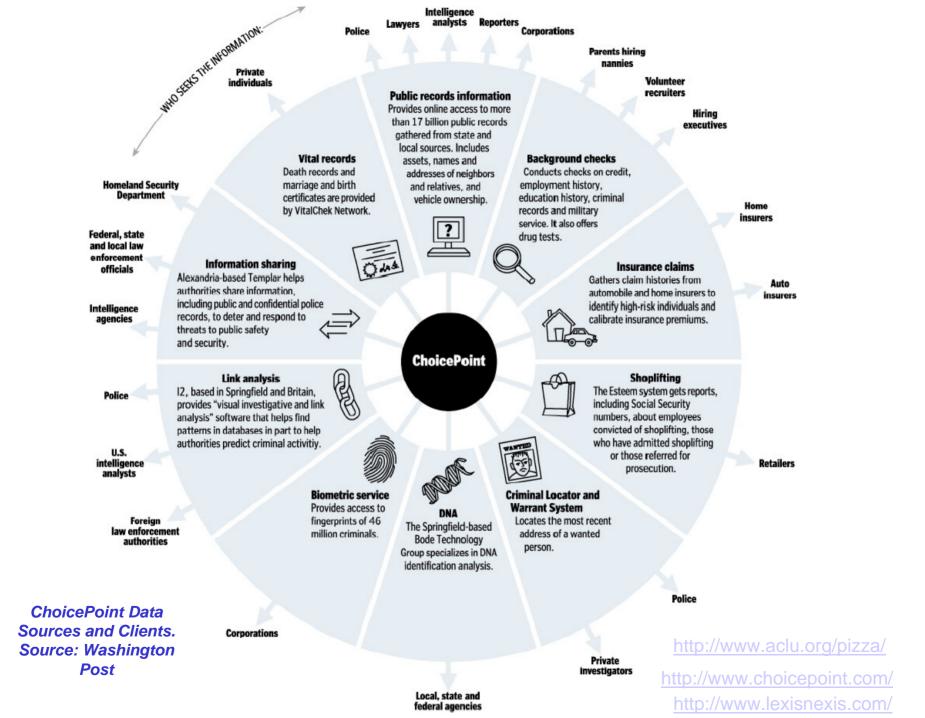

Inc condition for the method we describe in this section is that there exists a register for a articular point in time or period in which every object is classified according to both the ew and the old classifications.

Chart 9.14a	Page 154						
Local unit	Industry 1	%	Industry 2	%	Industry 3	%	Nr. of employees
LU1	DJ	100					218
LU2	DH	51	DJ	49			293
LU3	DJ	40	DH	30	DK	30	156

Chart 9.14b Business Register year 2: Data matrix for local units

Local unit	Industry 1	%	Industry 2	%	Industry 3	%	Nr. of employees
LU1	DJ	100					221
LU2	DJ	52	DH	48			314
LU3	DJ	36	DH	34	DK	30	143

Chart 9.26 Turnover in an industry, two estimates



Page 164

Registers...

• ... US version: "war against terrorism"

http://www.aclu.org/pizza/ http://www.choicepoint.com/ http://www.lexisnexis.com/

