A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. ..

A Neural Network Primer

David W Croft
ConpuServe [76600, 102]
Internet Croft DN@Porti a. Cal tech. Edu
nodem (818) 793-2426
Pasadena, CA

Revi sion 2
1994 January 12th

Thi s paper gives the basics of the subject of neural networks. It is
recommrended for those new to the subject of neural networks and only
assunes that the reader has a know edge of basic al gebra.

Pl ease feel free to distribute this paper as you wi sh but please
distribute the entire paper without deletions and Iimt your
corrections and additions to the space below the bottomline after
the | ast paragraph of the original text. If you wish for your
correction or nodification to be changed in the body of the original
text, please send your reconmmendation to one of ny conputer addresses
above.

A function is a nysterious black box with inputs and an out put.

The above function has 2 inputs, X and Y, and one output, Z

Mysterious bl ack boxes that take in inputs and produce an output are
called "functions". Sonetines we don't know what goes on inside the
function to produce the output fromthe inputs so that's why we cal

t hem "bl ack boxes".

The above table maps out a possible function. It is called the "O"
function. Note that Zis zero when X and Y are both zero and Z is one
whenever X "or" Y is a one. Mapping out a function in a table as is
shown above is known as creating a "truth-table".

1 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. .

R RO
R OR
ROO

The function mapped out in the truth-table above is known as the
"And" function. Note that Z equals 1 only when X "and" Y both equal
1

Note that the nunerical values we have used so far for X, Y, and Z
have been Iimted to only "0" and "1". Wen you only use two val ues
like this you are using a "binary" or "bool ean” nunber system

"Bi nary" and "bool ean" basically nmean "two values”. Different ways of
expressi ng bool ean values are "1" and "0", "On" and "Of", "H gh" and
"Low', "True" and "False", and "Firing" and "Resting".

Let's say we wanted to make the nysterious black box function "And"
not so nysterious. W could do so by describing the inner guts of the
box so we could tell how the output is mathematically produced from

t he out put.

Z:=(075* X+0.75*Y>1.0)

In the above equation

"+" s addition,

"*" is nmultiplication

">=" is an inequality synbol which neans "is greater than or equal to",
"()" neans "cal cul ate everything in the parentheses first", and

=" nmeans "is set to the val ue"

Note that nultiplication is always done before any addition in an
equation so that 0.75 * 1.0 + 0.75 * 1.0 equals 1.5 and not 1.3125
which it would be if we added 1.0 to 0.75 first then nultiplied by
0.75 and 1.0. That is, "0.75 * X+ 0.75 * Y'" is the sane as "(0.75 *
X) +(0.75* Y)", but "0.75 * X+ 0.75 * Y' is not the same as
"0.75 * (X+ 0.75) * Y.

The part of the equation in the parentheses is either true or false.
That is, 0.75 * X+ 0.75 * Y is either greater than or equal to 1.0
or it ain't. Since that part is either true or fal se depending on our

inputs X and Y, Z will be "set to the value" of true or false. If Z
gets set to "true", we'll call it a "1" and if it gets set to
"false", we'll call it a "0". This brings us back to our

bool ean/ bi nary nunber system of only two val ues, one and zero.
Z:=(075* X+0.75* Y>1.0)

Let's try values of zero for X and Y in the above equation and see
what the output Z becones.

(0.75* 0.0 +0.75 * 0.0 >=1.0)

(0.0 +0.0>=1.0)

(0.0 >>=1.0)

false (since 0.0 is not greater than or equal to 1.0)
0

NNNNN
I n

Now let's try X =0 and Y = 1.

Z:=(0.75* 0.0+ 0.75* 1.0 >= 1.0)
Z:=(0.0+0.75>= 1.0)
Z:=(0.75>=1.0)

2 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. ..

Z
Z

fal se
0

Now let's try X =1 and Y = 0.

Z:=(0.75* 1.0+0.75* 0.0 >=1.0)
Z:=(0.75+0.0>1.0)
Z:=(0.75>=1.0)

Z = fal se

Z : =0

Now let's try X and Y equal 1.

Z:=(075*1.0+0.75* 1.0 >=1.0)
Z:=(0.75+0.75 >=1.0)
Z:=(1.5>=1.0)

Z = true

Z =1

Here is a table of our results.

As you can see, this is the truth-table of the "And" function we saw
earlier. Thus, the equation Z :=(0.75 * X+ 0.75 * Y >=1.0)
descri bes the "And" function. This equation is called the "transfer
function" because it "transfers" the inputs X and Y into the out put
Z.

In our equation, X and Y are both nultiplied by 0.75. The nmultipliers
of 0.75 are known as "wei ghts" because they "weight" (as in nake
lighter or heavier) the inputs. In this particul ar equation, the

"wei ghts" could be said to be making the inputs "lighter" because
they are nultiplying their values by three-fourths, or 0.75.

In our equation, our inputs X and Y are both multiplied by weights of
0.75 then added together as in "0.75 * X + 0.75 * Y'. This is known
as the "wei ghted sum of the inputs”.

In our equation, the weighted sumof the inputs ("0.75 * X + 0.75 *
Y*) had to be greater than or equal to a value of 1.0 in order for Z
to be "true" or "1". We'll call the value of 1.0 the "threshold

val ue" because anything |l ess than the threshold val ue causes Z to be
"fal se" or "0".

In our equation, the output Z can either be true or false, 1 or 0. In
neural terms, we'll say that the output Zis "firing" if it equals
true (1) and that it is "resting" if it equals false (0).

Qur equation, Z := (0.75 * X+ 0.75 * Y >= 1.0) can now be re-worded
as "the output is firing if the weighted sumof the inputs is greater
than or equal to the threshold value. O herwise, it is resting.” This
is what neurons do -- fire or not fire dependi ng on whether the sum
of their weighted inputs is greater than sone threshold val ue.

Now | ets take a | ook at what happens if we change the val ues of the

3 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. ..

wei ghts in our equation fromO0.75 to 1.5.
Z:=(1.5* X+ 1.5*Y>1.0)

Let's try values of zero for X and Y in the above equation and see
what the output Z becones.

+1.5* 0.0 >=1.0)

1.0)

=1.0)
since 0.0 is not greater than or equal to 1.0)

N NNNN
I mnn

Now let's try X =0 and Y = 1.

Z:=(15* 00+ 1.5* 1.0>=1.0)
Z:=(00+1.5>=1.0)
Z:=(1.5>=1.0)

Z .= true

Z =1

Now let's try X =1 and Y = 0.

5 1.0 + 1.5 * 0.0 >= 1.0)
5+0.0>1.0)

5>=1.0)

NNNNN
[T L | |

Now let's try X and Y equal 1.

+1.5* 1.0 >=1.0)
>=1.0)

NNNNN
I n

Here is a table of our results.

As you can see, this is the truth-table of the "Or" function we saw
earlier. Thus, the equation Z :=(1.5 * X+ 1.5* Y >=1.0)
describes the "O" function.

Not e that we changed our function fromthe "And" function to the "O"
function just by changing the weights fromO0.75 to 1.5.

4 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. .

The above is the truth-table for the "NO" function. Note that the
output in each case is the opposite of what it would be for the "O"
function given the sane inputs. That is why we call it the "Not O"
or "NO" function.

The neural transfer function equation for the "NO" functionis Z :=
(1.5* X+ 1.5* Y<=1.0). Note that this equation is exactly the
same as the "Or" function equation with only one difference: the
"greater than or equal to" inequality synmbol (">=") has been repl aced
by the "l ess than or equal to" inequality synbol ("<="). That is, for
this function, the output Zis only true/1/firing when the weighted
sum of the inputs is |less than or equal to, not greater than or equa
to, the threshold value of 1.0.

We can change the "<" to a ">" in the equation sinply by multiplying
both sides of the inequality equation in the parentheses by a
negati ve val ue.

Z = (1.5 * X+ 1.5* Y <= 1.0)
Z:=(-1.0* (1.5* X+ 1.5*Y) >-1.0* 1.0)
Z:= -1.5 % X+ -1.5* Y >= 1.0)

You could confirmthat the first equati on above with the "<" is just
the sane as the last equation above with the ">" by trying various
values of X and Y in both equations and seeing that they both give

t he sane Z each tine.

But now suppose we add a constant of 2 to both sides of the

i nequal ity.

Z = (-1.5* X+ -1.5 * Y >= -1.0)
Z:=(20+-1.5* X+-1.5* ¥Y>=20+-1.0)
Z:=(20+ -1.5* X+ -1.5* Y >= +1.0)

Note that we have not changed the function by adding 2 to both sides

since the output Z for each given X and Y input is still the sane but
that we have changed the threshold value from-1.0 to +1.0. The extra
termin the weighted sumof the inputs of 2.0 can be considered as a

constant, non-variable input of 1.0 with a weight of 2.0.

Z:=(+2.0* 1.0+ -1.5* X+ -1.5* Y >= +1.0)

The reason that we mani pul ated the al gebra to change the "<" to a ">"
and the "-1.0" threshold value to a "+1.0" is because our equation
must be constrained to a format which neurons "like". That is, the

bi ol ogi cal / physi cal inplenmentation of neurons is generally that they
only "fire" when the weighted sumof the inputs is greater than, not
| ess than, or equal to sone positive, not negative, threshold val ue.

W' Il use the synmbol "C' for the constant input to distinguish it
fromthe variable inputs of X and Y.

Z
Z

(42.0 * 1.0 + -
(42.0* C+ -

5* Y >= +1.0) becones
5* Y >= +1.0)

1.5 * X+ -1,
1.5 * X+ -1,

VWhile we're at it, we make up some synbols for the nultiplying

wei ghts for each of the inputs. Let's use "W" for the weight on the
constant input "C' and "W." and "W2" for the weights of the variable
inputs "X' and "Y" respectively.

5 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. ..

Z:=(W*C+W* X+W*Y>=10)

Qur neural black box now | ooks like the follow ng where the inputs
are multiplied by the weights when they enter the function

| |
Yoo -mmm - - SW2- - - >

R e T
We'll then go on to nmake up a synbol for the threshold value of 1.0
and call it "T".

Z:=(W*C+W * X+W*Y>=T)

You may have noticed the inequality equation (the part of our neura
equation in the parentheses) maps out the equation of a line.
Consi der t hat

W *C+W * X+ W * Y > T becones
W * Y>> -W* X-W*C+T
Y>(-W/ W) *X+(-W/ W) *C+T/ W

Y > M* X+ K
where M the slope of the line, is (-W/ W)
and K, the Y-axis intersection of the line, is (-WO/ W) * C+ T/

If we plot out this equation for the "And" function which has an
equati on of

Z:=(W*C+ W* X+ W*Y>= T)
Z = (0.0+ 0.75 * X+ 0.75 * Y >=1.0)
Z:=(0.75* Y>= -0.75* X- 0.0 + 1.0)
Z:=(Y>=-1.0* X+ 1.33)

Y

N

+

| +
1 * +

| +

* +

| +

* +

| +
0 *---*---*_.__.*___4> X

0 1

But since we're dealing with an inequality equation, Zis "true"
whenever Y is greater than or equal to -X + 1.33. This creates a
shaded regi on above the line in the X-Y plane where Zis "true" as
synmbolized by "+" and a shaded region below the line where Z is
"fal se" as synbolized by "-"

Y

6 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. .

AN

1. 33 *++++++ttt+ttt+++

| - +++++++Ht o+
1.00 *---+++++++++++++
|----- +++++++++++
0.67 *------- +++++++++
[--------- +++++++
0.33 *------mmo-- +++++
=== - +++
0 00 *___*___*___*___*> X
1.0

Note that Z is "true" for the coordinates (X, Y) = (1,1) but "fal se"
for (0,0), (0,1), and (1,0). This agrees with the truth-table for the
"And" function that we saw earlier.

(Xxv) | Z
(0,0) | O
(0,1) | O
(1,0) | O
(1,1) | 1
Simlarly, the graph of the "Or" function follows.
Z:=(W*C+ W* X+ W* Y>> T)
Z = (0.0 +1.5* X+ 1.5* Y>=1.0)
Z:=(15*Y>-1.5* X-0.0+1.0)
Z:=(Y>-1.0* X+ 0.67)

Y

N
1. 33 *++++++++++++++++

++++++
1. 00 *++++++++++++++++

++++++
0. 67 *++++++++++++++++

| -+ttt
0. 33 *--- +++++++++++++

|----- +++++++++++
0.00 *---* oo 444*44+44> X

0.0 1.0

Note that Z is "false" for the coordinates (X Y) = (0,0) but "true"
for (0,1), (1,0), and (1,1). This agrees with the truth-table for the
"Or" function that we saw earlier.

(Xv) | 2
(0,0) | ©
(0,1) | 1
(1,0) | 1
(1,1) | 1

Simlarly, the graph of the "NO" function foll ows.
(w* C+ W* X+ W*Y>= T)

Z =
Z:=(20*1.0+-1.5* X+-1.5*Y>1.0)

7 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. .

(-1.5* Y>> 1.5* X- 2.0+ 1.0)
(Y<=-1.0* X+ 0.67)

Note that the inequality flipped from">" to "<" because we
multiplied both sides by a negative nunber (1/W2 = 1/-1.5).

1.33 *-cmmm e -
1.00 *--cmmmmma o -
0.67 *--c-mmmme e -

0.33 *4+++------------
R

0.00 *4++*++4+*---* .- _*> X
0.0 1.0

Note that Z is "true" for the coordinates (X,Y) = (0,0) but "fal se"
for (0,1), (1,0), and (1,1). This agrees with the truth-table for the
"NOr" function that we saw earlier.

(Xv) | 2
(0,0) | 1
(0,1) | ©
(1,0) | ©
(1,1) | ©

Below is the truth-table for the "NAnd" or "Not And" function. Note
that the output Z is the opposite of what we had for the "And"
function given the sane inputs.

The equation for the "NAnd" function is
Z:=(075* X+0.75* Y<=1.0)

which is the same as that of the "And" function except that the
inequality synmbol is flipped from">=" to "<=". W now mani pul ate the
equation to get it into our neural equation format of Z := (W * C +
W * X+ W *Y>=T).

(0.75* X+ 0.75 * Y <= 1.0)
(-0.75* X+ -0.75 * Y >=-1.0)
(220* C+-0.75* X+ -0.75 * Y >= +1.0)

N N N
I n

8 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. .

W then mani pul ate the neural equation for the "NAnd" function to put
it into a format which nmakes it easy to graph.

Z:=(20*C+-0.75* X+ -0.75* Y >= +1.0)
Z:=(-0.75* Y>> +0.75 * X+ -2.0* C+ 1.0)
Z:=(-0.75* Y>> +0.75* X+ -1.0)
Z:=(Y<=-1.0* X+ 1.33)

Y

N
1.33 *--oiiii - -

R
1.00 *4+++-----c-c----

R o o R
0.67 *++++++++--------

+++++H - - - - - -
0.33 *++++++++++++- - - -

++++++H - -
0. 00 *+++*+++*+++*++4+*> X

0.0 1.0

Note that Zis "false" for the coordinates (X Y) = (1,1) but "true"
for (0,0), (0,1), and (1,0). This agrees with the truth-table for the
"NAnd" function that we saw earlier.

(Xv) | 2
(0,0) | 1
(0,1) | 1
(1,0 | 1
(1,1) | ©

Below is the truth-table for the "XO" function. Note that the out put
Zis only "1" when one the inputs X or Y is exclusively (by itself,
one and only one of the two inputs) "1". That is why it is called the
"exclusive or" or "XOr" function. You will notice that when both of
the two inputs are "1" the output is "0".

Unfortunately, this equation cannot be inplenented using our neural
equation format of "the output is firing if and only if the weighted
sum of the inputs is greater than or equal to some positive threshold
value". To see this, you mght try to pick conbinations of W), C, W,
X, W2, Y, and T in the equation

Z:=(W*C+W* X+W*Y>=T)

to produce the "XO" function. This would be inpossible as will be
expl ai ned by the graph of "XO" bel ow

9 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. .

Y

N

1.33 *+++++tt--------
e o 0

1.00 *+++++++--------
e o 0

0.67 *+++++++--------
........ +H++++++

0.33 *------- +H++++++
........ +H++++++

0.0 *---* - *ppprippirs X
0.0 1.0

Looking at this graph, we see that we cannot divide the regions where
Zis true ("+") fromthe regions where Zis false ("-") by a single
line. That is, no matter where we place a |line on the graph, we
cannot have all of the "+"s on one side of the line and all of the
"-"s on the other side. This is known as the problem of I|inear
inseparability. That is, you cannot separate the regions by a single
line. Thus, you cannot use our neural equation of

Z:=(W*C+W* X+W*VY>=T)
to generate linearly inseparable functions.

The solution to problemof linearly inseparability is to create these
functions using conbinati ons of neural equations. Below are the
graphs of the "Or" function and the "NAnd" function. They have
certain regions where in both graphs Zis firing ("+"). This
intersection of where both are firing is shown in the third, nerged
graph bel ow t hem

Y Y
N N
1. 33 *++++++++++++++++ 1.33 *-cmmmm e mee e -
+++++++ R R
1. 00 *++++++++++++++++ 1.00 *++++-------mmm -
++++++H+ S
0. 67 *++++++++++++++++ And 0.67 *++++++++--------
- - A e
0. 33 *-- - +++++++++++++ 0. 33 *++++++++++++-- - -
------ ++++++++HH++ +H++++ - -
0.00 *---* oo *qpirppi4> X 0. 00 *+++* +++* +++* +++*> X
0.0 1.0 0.0 1.0
Y
N
1.33 *-c-emmmmmcmenan
R R L
1.00 *4+4++------------
B
equal s 0.67 *+++ttttt--------
T o
0.33 *---+++++++++----
------ +++++++ - -
0.0 *---F---*gdd¥ x> X
0.0 1.0

10 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. ..

Note that we used the "And" function to nerge the two functions
together. W chose the "And" function to do this because the out put
of the "And" function is "1" if and only if both inputs are "1".
Thus, the nmerged out put graph has z Z of "1" at a location if and
only if both of the input graphs had a Z of "1" at that |ocation.

Note al so that while the merged graph does not | ook exactly like the
graph we originally presented for the "XO" function, it does produce
the sanme output Z for the possible inputs of (X, Y) equals (0,0),
(0,1), (1.0), and (1,1).

This can al so be seen using truth-tables. Note that the final result
is the truth-table for the "XO" function.

X Y| z1 X Y| z2 X Y| z3
0 0| O 0 0| 1 0 0| O
0 1|1 Ad 0 1|1 = 0 1] 1
1 0] 1 1 0] 1 1 0] 1
1 1] 1 1 1] 0 1 1] 0

Qur black box for the "XOr" function now has three neurons init. A
col l ection of neurons connected together is a "network" of neurons.
Thus, the "XOr" function has been created using a "neural network".

| “NAnd" -------- “XOr" Function |
| 1.0-->2.0--->| | |
| | I I
X --->|----> -0.75--> Neuron |-->Z2-- |
|\ | I \ I
Y---->[-\--> -0.75--5] | \ "And" eeeee-- |
NV e ->0. 75- - >| | |
| A\ | Neuron |-->Z3-->|-->Z
| VA Ot e -->0. 75- - 5| | |
|\ -->1.5--5] R |
| \ | Neuron |-->Z1-- |
| -->1.5-->| |
| I

Qur neural network equation can be created by conbi ni ng neura

equati ons.
Z1 =X "O" Y
Z2 := X "NAnd" Y
Z =273 := 71 "And" Z2
Z:=(X"O" Y) "And" (X "NAnd" Y)
Z:=(15* X+1.5*Y>=1.0) "And"

(220+ -0.75* X+ -0.75* Y >=1.0)
Z:=(075* (1.5* X+1.5*Y>1.0) +

0.75* (220 +-0.75* X+ -0.75* Y>=1.0) >=1.0)

11 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. ..

Let's try X and Y = "1".
Z:=(075* (1.5*1.0+1.5* 1.0>1.0) +
0.75* (220+ -0.75* 1.0 + -0.75 * 1.0 >=1.0) >=1.0)
Z:=(075* (1.5 +1.5>=1.0) +
0.75* (220 +-0.75 +-0.75 >=1.0) >=1.0)
Z:=(075* (3.0>1.0) +
0.75* (0.5 >=1.0) >=1.0)
Z:= (0775 * (true) +
0.75 * (false) >=1.0)
Z:=(075*1+0.75* 0>10)
Z:=(0.75+0.0>1.0)
Z :=(false)
Z:=0

This agrees with our truth-table for the "XO" function where inputs
of X and Y equal "1" gives an output Z equals "0".

As you can see, we can duplicate just about any function that does
comput ati on by choosing the appropriate wei ghts and nunber of

neurons. Furthernore, you could say that is sinply a matter of
choosing the appropriate weights alone if you consider that you can
have weights of a zero value. To explain this, assunme that in the
"XOr" function neural network we actually had four neurons instead of
three but that the weights fromthe first three neurons to the fourth
neuron were all zero and that the weights fromthe fourth neuron to
the first three neurons were all zero. Any inputs to the fourth
neuron would be nultiplied by zero and any output fromthe fourth
neuron would be nultiplied by zero. Thus, it would be like the fourth
neuron was not even connected. That is how we can say that just about
any function that does conputation can be duplicated by choosing the
appropri ate wei ghts al one when given an unlimted nunber of neurons.

Choosi ng those weights is hard, however. |If you consider that a
neural network can duplicate any one of an alnost unlimted nunber of
comput ati onal functions, you will see that you nust pick the right
set of weights froman alnost unlimted nunber of possible weights to
produce the one function that you want. This is where the training
algorithmcomes in. Atraining algorithmis a step-by-step procedure
for setting the weights to appropriate values to produce your desired
function. By applying the training algorithmto the neural network,
you are "training" the weights to your desired val ues.

For exanpl e, suppose that we had a neural network with just one
neuron in it that we want to train to duplicate the "And" function
Suppose al so that we do not initially know that the appropriate

wei ghts for this network should be WL = 0.75 and W2 = 0.75 to produce
the "And" function. W might initially set the weights WL and W2 to
0.0 and hope that by applying our training algorithmthe weights wll
be trained to the appropriate values for the "And" function.

One possible training algorithmthat we mght use foll ows.

« A Set the input (X Y) to sone possible value such as (0,0),
(0,1), (1,0), or (1,1).

« B. Calculate the output Z for the given input (XY).

« C. If the output Zis too low, increase the weights which had
inputs that were "1". If the output Z is too high, decrease the
wei ghts which had inputs that were "1".

12 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. ..

« D. Continue | ooping through this process until each possible
i nput conbi nation gives the right output.

If we try this training algorithmfor the "And" function with weights
set to zero initially, we get the following truth tables. As a
rem nder,

Z:=(W * X+W*Y>T) whereT:=1.0.

Desired Loop 1 Loop 2 Loop 3

" And" WL=\W2=0 WL=W2=0. 375 WL=W2=0. 75
Functi on Functi on Functi on Functi on
XY| z XY | zZ XY| zZ XY | Z
00| O 00| O 00| O 00| O
01| O O1] O 01| O O1]| O
10] 0 10] 0 10] 0 10] 0
11] 1 11] 0 11] 0 11] 1

As you can see, the weights were increased by 0.375 each tine that
the output for the input of (X Y)=(1,1) gave an output Z |l ess than
the desired output Z of "1". For (X Y) of (0,0), (0,1), or (1,0), the
out put Z was always the desired value "0" so we did not need to

i ncrease or decrease the weights.

Now | et's change our neural network froman "And" function to a "NO"
function by applying the training algorithmagain. Note that the
"Nor" function required a constant input Cof 1.0 with a weight W of
2.0. Let's assune that our neural network already had a constant

input C=1.0 but that its weight was fixed at 0.0 so we did not bother
to show it previously since its weighted i nput woul d have been 1.0 *
0.0 =0.0. W will nowinclude C and allow W) to be trained away from
0. 0.

Z:=(W*C+W?* X+W?*Y>T) where T :=1.0.

Loop 1 Loop 2 Loop 3
Desired W=0. 0 W=0. 0 W=0. 375
"NO " WL=W2=0. 75 WL=W2=0. 375 WL=W2=0. 375
Function Function Function Function
CXY]| Z CXY| Z CXY| Z CXY| Zz
100 1 100] O 100] O 100]| O
101] 0 101] O 101] O 101] O
110] 0 110] O 110] O 110]| O
111] 0 111 1 111] 0 1111 1
You may note that in Loop 2, WD was still at 0.0 while WL and W2 were

decreased by 0.375. That is because W was both raised by 0.375 and

| owered by 0.375 in Loop 1 for a net change of 0.0. WD was raised in
Loop 1 when the input was (C X, Y)=(1,0,0) and the output was Z=0 when
we desired a higher output of Z=1. W and W2 were not raised for the
same i nput because our algorithmspecifies that we increase the

wei ght when we want a hi gher output only when the input to that

wei ght was a "1". Wen the input (C X Y) was (1,1,1) for Loop 1, all
three weights were decreased since the desired output of Z=0 was

13 of 17 12/ 12/ 2011 08: 20

A Neur al

| ower than the actua

as an i nput.

Net wor k Pri ner

http://ww. croftpress. com davi d/ archi ves/ ac. ..

out put of Z=1 and all

three weights had a "1"

Loop 4 Loop 5 Loop 6 Loop 7
W=0. 375 W=0. 75 W=1. 125 W=0. 0
WL=W2=0. 0 WL=W2=0. 0 WL=W2=0. 0 WL=W2=-0. 75
Functi on Functi on Functi on Functi on
CXY| z CXY| Z CXY| z CXY| z
100] O 100 O 100 1 100] O
101] 0 101] O 101 1 101] 0
110] 0 110] 0 110 1 110] 0
111] 0 111] 0 111 1 111] 0
Loop 8 Loop 9 Loop 10

W=0. 375 W=0. 75 W=1. 125

WL=W2=-0. 75 WL=W2=-0. 75 WL=WP=-0. 75

Functi on Functi on Functi on

CXY| z CXY]| z CXY| z

100] O 100 O 100 1

101] 0 101] O 101] 0

110] 0 110] 0 110] 0

111] 0 111] 0 111] 0

In Loop 10, we finally arrived at weights of (W), W, W)=
(1.125,-0.75,-0.75) that duplicated the truth-table for the "NO"
function. Note that earlier we had presented the "NO" function with
wei ghts of (W),W,W)=(2.0,-1.5,-1.5). Both the sets of possible
weights with give the same "NO" function truth table although their
graphs are slightly different.

The graph equation for our new "NO" function is

Z:=(1.125* 1.0 + -0.75 * X+ -0.75 * Y >=1.0)
Z:=(-0.75* Y >= +0.75 * X + -1.125 * 1.0 + 1.0)
Z:=(-0.75* Y >= +0.75 * X + -0.125)
Z:=(Y<=-X+0.17)
"NO" Function with "NO" Function with
(MO, W, W)=(2.0,-1.5,-1.5) (MO, W, W) =(1.125,-0.75,-0.75)
Y Y
N N
1.33 *ccmmmm e - 0.67 *--mmmmm e e e o -
| -ommm e eeeaeao i
1.00 *-cmmmmm e e - 0.50 *--mmmmmm e
| -ommm e eeeaeao i
0.67 *--mmmmme e e e - - 0.33 *-mmmmm e e
Fddmm e e e e oo e e
0.33 *++++------------ 0.17 *--mmmmm e e e e - -
s s ST S U
0.00 *+++*+++*---*___*> X 0.00 *4++*---*___*___*> X
0.0 1.0 0.0 0.33 0.5

As you can see

14 of 17

both of these graphs are

on" in the (0,0) corner and

12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. ..

"off" at the coordinates (0,1), (1,0), and (1,1).

Whereas this training algorithmworked for these two very sinple
neural networks of just one neuron, it may or may not work for other
neural networks. Ongoing research into finding an all-purpose
training algorithmthat will produce the desired weights for any
possi bl e function has been unsuccessful so far. However, you can do a
lot with a collection of training algorithns which work for sone but
not all possible neural network functions.

For nore information on neural networks and their training
algorithnms, | highly recomrend the book "Neural Conputing: Theory and
Practice" by Philip D. Wasserman, 1989. This book gives a

conpr ehensi bl e exam nati on of neural networks and describes the
equations in such a manner that anyone with basic programm ng skills
can inplenent themin a conmputer program w thout having to know nore
mat hemati cs than one would have with just basic programm ng skills.
Furthernore, the equations are not witten in the syntax of any give
comput er progranm ng | anguage so it is readable by programrers of any
comput er | anguage and non-programmers. VWile the book is currently
four or nore years old, the subject material within stil

conpr ehensi vely covers the current neural network basics.

APPENDIX A -- A Collection of Boolean Neure
Functions

Neuron NO is constantly firing true which is required for sone
functions such as the "Not" function

The threshhold is 1.0 for all neurons.

2-1nput "XO"

15 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. ..

e
PO
or

NN|] 0 0 0 0 0 O

NL|] 0 0 0 0 0 O

N2|] 0 0 0 0 0 O

N3| 0-1+41 0 0 O

N | O0+1-1 0 0 0

NS| O O 0+1 +1 0
W W W VB WL WB

NN|] 0 0 0 0 0 O

NL | 0 00 0 O

N2 | 0 0 0 O

N3 | 0 0 0

NA | 0 0

NS | 0
W W W VB WL\

NO |

NL |

N2 |

N3 |

N |

NS |

Qur black box for the "XOr" function now has three neurons init. A
col l ection of neurons connected together is a "network" of neurons.
Thus, the "XOr" function has been created using a "neural network".

| "NAnd" @ -------- "XO" Function |
| 1.0-->2.0--->] | |
I I I I
X --->---->-0.75--> Neuron |-->Z2-- |
|\ I I \ I
Y---->-\--> -0.75-->| | \' "And" oo |
A ->0. 75- - >| | |
| VA | Neuron |-->Z3-->|-->Z
V\ "O" a------- -->0. 75- - >		
\ -->1.5-->	e	
\	Neuron	-->Z1--
I -->1.5-->| I I
I I

NI nput Parity

16 of 17 12/ 12/ 2011 08: 20

A Neural Network Primer http://ww. croftpress. com davi d/ archi ves/ ac. ..

End of original text.

Transcribed to HTM. on 1997-10-27 by David Wallace Croft .

17 of 17 12/ 12/ 2011 08: 20

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17

