StatisticalData Editing

Anders Norberg, Statistics Sweden (SCB) 2010-11-23

Papers by our colleague Leopold Granquist

- Granquist (1984). On the role of editing.
 Statistical Review 2
- Granquist (1997). The New View on Editing. International Statistical Review
- Granquist and Kovar (1997). Editing of Survey Data: How Much is Enough? In Survey Measurement and Process Quality. Wiley.

lf ...

- we only want information from businesses that we know they have,
- and we ask for that information so they understand,
- and we motivate them to deliver as good quality in data as possible,
- and we help them to avoid accidental errors in answering questionnaires,
- then editing would be a minor process!

The role of editing

• Quality Control of the measurement process

- Find errors (efficient controls)
- Consider every identified error as a problem for the respondent to deliver correct data by our collection instrument
- Identify sources of error (process data)
- Analyse process data communicate with cognitive specialists
- Contribute to quality declaration
- Adjust (change/correct) significant errors

Types of errors

- Obvious errors / Fatal errors
 - Non-valid values
 - Item non-response
 - ➤ Data structure- or model errors, total ≠ sum of components
 - Contradictions
- Suspected data values
 - Deviation errors (Outliers)
 - Suspiciously high/low values, data outside of predetermined limits
 - Definition errors (Inliers)
 - Many respondent miss-understand a question in the same way
 - Many respondents fetch data from info-systems with other definitions

Suspected data values Deviation errors

- Manual follow-up takes time and is expensive
- Few deviation errors have impact on output statistics (low hit-rate, many changes in data have very little impact)

Editing must have impact on the output! Remember response burdon !

Suspected data values

Definition errors (Inliers)

- Difficult to find
- Ways to find them:
 - Combined editing for several surveys
 - Deep interviews in focus groups
 - Use statistics from FEQ and from re-contacts with respondents
 - High proportions of item non-response
 - Graphical editing
 - Good examples

The Process Perspective

The Process Perspective

- Audit and improve data collection (measurement instrument and collection process)
- and the editing process itself

Un-edited data must be saved in order to produced important process indicators, as hit-rate and impact on output!

Process data

- Sources of errors = problem for the respondents
- Suspicions
- Error codes
- Manuel actions (accept / amended values)
- Automatic actions

Process indicators

- Sources of errors (problem for the respondents)
- Prop. of flagged units and variables
- Prop. of manually and automatically reviewed units and variables
- Prop. of amended values and impact of the changes, per variable
- Hit-rate for edits

Statistical Production Process

Statistical Production Process

Statistical Production Process

Average proportions of costs of sub-processes 2004

Process	Proportion of total cost (%)		
	All products	Short-period	Annual surveys and periodic
Respondent service	3.3	3.3	3.4
Manual pre-editing	4.4	3.9	5.1
Data-registration editin	g 5.6	5.1	6.5
Production editing	15.3	12.7	18.9
Output editing	3.9	3.4	4.8
Total editing cost	32.6	28.3	38.6

Web data collection

Demands:

- High hit-rate in electronic questionnaires
- System that can measure hit-rate?

Question:

• Can it be a goal for us to move all editing to electronic data collection?

Expectation on the production editing process at Stat. Sweden

Generic IT-tools

- Less IT-maintenance
- Easier planning of work and personnel at Data collection units
- Better working environments
- Methodology studies

• Efficient editing methods

- Selective/significance editing
- Better working environments
- Less response burden

Collection and analysis of process data

- Continuous improvement of data collection and editing processes
- Information for quality declaration of statistics

Input, throughput, output

Impact

- Actual impact = w (y_une y_edi) for observation k is the impact on domain-total T if y_une is kept instead of making a review to find y_edi.
- Potential impact = w (y_edi y_pred) is a proxy for actual impact to be used in practice, as y_edi will not be known until review. y_pred is a prediction (expected value) for y_edi.
- Anticipated (expected) impact (per domain, variable, observation) is the product of suspicion and potential impact.

Suspicion: Traditional edits

Finding acceptance limits: Data from previous survey rounds

Predicted (expected) values

Edit groups

Suspicion

$$\mathbf{R} = \begin{cases} \left(\widetilde{z}_{j,k,l} - KAPPA\left(\widetilde{z}_{j,k,l} - \widetilde{z}_{j,k,l}^{L}\right) - z_{j,k,l}\right) / (\widetilde{z}_{j,k,l}^{U} - \widetilde{z}_{j,k,l}^{L}) & \text{if } z_{j,k,l} < \widetilde{z}_{j,k,l} - KAPPA\left(\widetilde{z}_{j,k,l} - \widetilde{z}_{j,k,l}^{L}\right) \\ 0 & \text{if } \widetilde{z}_{j,k,l} - KAPPA\left(\widetilde{z}_{j,k,l} - \widetilde{z}_{j,k,l}^{L}\right) < z_{j,k,l} < \widetilde{z}_{j,k,l} + KAPPA\left(\widetilde{z}_{j,k,l}^{U} - \widetilde{z}_{j,k,l}\right) \\ \left(z_{j,k,l} - \widetilde{z}_{j,k,l} + KAPPA\left(\widetilde{z}_{j,k,l}^{U} - \widetilde{z}_{j,k,l}\right)\right) / (\widetilde{z}_{j,k,l}^{U} - \widetilde{z}_{j,k,l}^{L}) & \text{if } \widetilde{z}_{j,k,l}^{U} < \widetilde{z}_{j,k,l} + KAPPA\left(\widetilde{z}_{j,k,l}^{U} - \widetilde{z}_{j,k,l}\right) \end{cases}$$

Suspicion=R/(TAU+R)

KAPPA = 0. The ratio *R* is the distance between *t* and the centre \tilde{t} divided by the dispersion range $r = \tilde{t}^{(U)} - \tilde{t}^{(L)}$,

KAPPA = 1. The ratio *R* is the distance from the nearest range limit divided by the range. Hence R = a/r. For data between the lower and upper limits of the dispersion range the suspicion is zero.

Score function

- Local score, by domain d, variable j & observed unit k,l is the anticipated impact related to an appropriate measure of size for the domain/variable, say standard error of estimate.
- VIOLIN_i = weights for variables (j)
- CLARINET_c = weights for classifications (domains) c(d)
- OBOE_j = adjustment for size of estimated total or its standard error (j)
- $LScore_{d,j,k,l} = Suspicion_{j,k,l} x(Potential impact) x CELLO_{d(c),j}$

$$CELLO_{d(c),j} = \frac{VIOLIN_{j} \cdot CLARINET_{c(d)}}{\left(maximum \left\{ALFA_{j} \cdot \hat{T}_{d,j,t-1}, SE\left(\hat{T}_{d,j,t-1}\right)\right\}\right)^{OBOE_{j}}}$$
27

Score function

- Global scores are aggregated local scores by domain, variable and possibly second stage units to one score for each primary unit or respondent.
- Methods: sum, sum of squares, sum of local scores truncated by local thresholds, maximum etc.

$$\mathbf{GScore}_{k} = \left(\sum_{l} \left(\max\left\{0, LScore_{k,l} - BETA\right\}\right)^{l/LAMBDA}\right)^{l/LAMBDA}$$

Evaluation

Relative pseudo-bias is a measure of error in output due to incomplete data review

Evaluation

Psedobias for PPI relative to the overall price index. Observation units ordered in descending order of impact.

Editing – remaining methodology issues

- Fatal errors
 - Classifying variables
 - Survey variables
- Confidence (respondents and clients)
- New and old respondents
- Edited in earlier processes
 - Web-questionnaires
 - Scanned paper questionnaires
- Data and methods for computing predicted values etc.
- Homogenous groups
- Priorities; variables, domains (from the clients perspective)
- Score functions
- How to decide threshold values
- Sampling below threshold
 - Inference
 - Data for evaluation

Data editing process

SELEKT Parameters (in)

Parameter_group	Parameter	Value	
A. Titles	TITLE1	Simulated quarterly salary	
A. Titles	TITLE2	SELEKT ver 1.0 2010-02-04	
B. Data to be edited	EDIT_DATA	Adap_Ent_Inflowdata	
B. Data to be edited	EDIT_T1_VALUE	2009	
B. Data to be edited	EDIT_T2_VALUE	1	
C. Data structure	ID2_TYPE		
C. Data structure	ID2_VAR	EntNr	
C. Data structure	ID2_WGT	PopEnt/SampleEnt	
C. Data structure	ID3_VAR		
C. Data structure	ID3_WGT	1	
C. Data structure	T1_VAR	Year	
C. Data structure	T2_VAR	Quarter	
D. Y-, X- and Test-Variables	EDI_X1	1	
D. Y-, X- and Test-Variables	EDI_X2	1	
D. Y-, X- and Test-Variables	EDI_Y1	Last_PopEmp	
D. Y-, X- and Test-Variables	EDI_Y1_T1	Last_PopEmp/Frame_PopE	
D. Y-, X- and Test-Variables	EDI_Y1_T2	Last_PopEmp/First_Turnover	
D. Y-, X- and Test-Variables	EDI_Y2	Last_Turnover	
D. Y-, X- and Test-Variables	EDI_Y2_T1	Last_Turnover/Pre_Turnover	
D. Y-, X- and Test-Variables	UNE_X1	1	
D. Y-, X- and Test-Variables	UNE_X2	1	
D. Y-, X- and Test-Variables	UNE_Y1	First_PopEmp	
D. Y-, X- and Test-Variables	UNE_Y1_T1	First_PopEmp/Frame_PopE	
D. Y-, X- and Test-Variables	UNE_Y1_T2	First_PopEmp/First_Turnover	
D. Y-, X- and Test-Variables	UNE_Y2	First_Turnover	
D. Y-, X- and Test-Variables	UNE_Y2_T1	First_Turnover/Pre_Turnover	
E. Cold deck. Cross section	CS_EXPECT	MEDIAN	
E. Cold deck. Cross section	CS_HIST_DATA	Adap_Ent_Surveydata(where	
E. Cold deck. Cross section	CS_MIN_OBS	7	
E. Cold deck. Cross section	CS_SPREAD	QUANTILES	
E. Cold deck. Cross section	CS_T1_END_VALUE	2008	
E. Cold deck. Cross section	CS_T1_START_VALUE	2005	
E. Cold deck. Cross section	CS_T2_END_VALUE	4	
E. Cold deck. Cross section	CS_T2_START_VALUE	1	
E. Cold deck. Cross section	HG_DIG1	1	
E. Cold deck. Cross section	HG_DIG2	1	
E. Cold deck. Cross section	HG_DIG3	1	
E. Cold deck. Cross section	HG_DIG4	8	
E. Cold deck. Cross section	HG_LENGTH	8	
E. Cold deck. Cross section	HG_MAX	4	
Parameter_group	Parameter	Value	
E. Cold deck. Cross section	HG_VAR1	EnterpriseSize	

Give AUTO-SELEKT the parameters:

%let PATH_sys=C:\SELEKT\1.0; %let PATH_app=C:\SELEKT\Prod\Demo1_Enterprise; %let EDIT_parms=Ent_Parms1; %let EDIT_data=Demo1_Adap_Ent_Inflowdata; %let EDIT_T1_Value=2009; %let EDIT_T2_Value=1;

By the parameter table &EDIT_parms AUTO-SELEKT knows what to do.

SELEKT Error list (out)

• Identification:

- Column name = Variable
- Id1 = Identity for respondent[optional]
- Id2 = Identity for primary sampling unit (PeOrgnr, CfarNr etc.)
- Id3 = Identity for observational unit (Social security number, CN8 for products)
- EditNumber = Edit identification, if the edit flags for suspicions or obvious error.
- Timestamp = Time when the questionnaire passes **SELEKT**
- Process data:
- EditFlag = 0 = accepted, 1-5 = error flagged
- EditSuspicion = Suspicion generated by continuous edits.
- Score1 = (Local) Score for respondent[optional]
- Score2 = (Local/Global) Score for primary sampling unit [optional]
- Score3 = (Global) Score for observational unit [optional]
- N_Obs = Number of observations, which have gone through the edit round.
- N_Obs_Flagg = Number of error flagged observations in the PSU, on this list
- N_PSU = Number of PSU for the respondent, which have passed the edit round
- N_PSU_Flagg = Number of error flagged primary sampling units, on this list

Edits

