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Basic Laws of Probability

Definition 1 A sample space S is a nonempty set whose elements are called outcomes. The
events are subsets of S.

Since events are subsets, we can apply the usual set operations to events to obtain new
events. For events A and B, the event A∩B represents the set of outcomes that are in both
event A and event B, i.e. A ∩ B represents the event A and B. Similarly, A ∪ B represents
the event A or B.

Definition 2 A probability space consists of a sample space S and a probability function
Pr(), mapping the events of S to real numbers in [0, 1], such that:

1. Pr(S) = 1, and

2. If A0, A1, . . . is a sequence of disjoint events, then

Pr

(

⋃

i∈
�

Ai

)

=
∑

i∈
�

Pr(Ai). (Sum Rule)

One consequence of this definition is the following:

Pr(A) = 1 − Pr(A). (Complement Rule)

Several basic rules of probability parallel facts about cardinalities of finite sets:

Pr(B − A) = Pr(B) − Pr(A ∩ B) (Difference Rule)

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B) (Inclusion-Exclusion)

An immediate consequence of (Inclusion-Exclusion) is

Pr(A ∪ B) ≤ Pr(A) + Pr(B) (Boole’s Inequality)

Similarly (Difference Rule) impies that

If A ⊆ B, then Pr(A) ≤ Pr(B). (Monotonicity)

Example 1 Suppose we wire up a circuit containing a total of n connections. The probability
of getting any one connection wrong is p. What can we say about the probability of wiring the
circuit correctly ? (The circuit is wired correctly iff all the n connections are made correctly.)
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solution: Let Ai denote the event that connection i is made correctly. So Pr(Ai) = p.

Pr(all connections correct) = Pr (∩n
i=1Ai) .

Without any additional assumptions (on the dependence of the events Ai), we cannot get
an exact answer. However, we can give reasonable upper and lower bounds.

Pr (∩n
i=1Ai) ≤ Pr(Ai) = 1 − p

Pr (∩n
i=1Ai) = 1 − Pr

(

∩n
i=1Ai

)

= 1 − Pr
(

∪n
i=1Ai

)

≥ 1 −
n
∑

i=1

Pr(Ai) = 1 − np

Both these bounds are tight, i.e. we can construct situations where the correct answer is
equal to the upper bound and those where the correct answer is equal to the lower bound.

Conditional Probability

Definition 3 Pr(A|B) denotes the probability of event A given that event B has occured.

Pr(A|B) ::=
Pr(A ∩ B)

Pr(B)

provided Pr(B) 6= 0.

Rearranging terms gives the following:

Rule 1 (Product rule, base case) Let A and B be events, with Pr(B) 6= 0. Then

Pr(A ∩ B) = Pr(B) · Pr(A|B).

Rule 2 (Product rule, general case) Let A1, A2, . . . , An be events.

Pr(A1 ∩A2 ∩ · · · ∩An) = Pr(A1) ·Pr(A2|A1) ·Pr(A3|A1 ∩A2) · . . . ·Pr(An|A1 ∩ · · · ∩An−1).

Case Analysis

Theorem 1 (Total Probability) If a sample space is the disjoint union of events B1, B2, . . .,
then for all events A,

Pr(A) =
∑

i∈
�

Pr(A ∩ Bi).

Corollary 1 (Total Probability) If a sample space is the disjoint union of events B1, B2, . . .,
then for all events A,

Pr(A) =
∑

i∈
�

Pr(A|Bi)Pr(Bi).
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Independence

Definition 4 Suppose A and B are events, and B has positive probability. Then A is
independent of B iff

Pr(A|B) = Pr(A)

The above definition does not apply when Pr(B) = 0. We will extend the definition to
the zero probability case as follows:

Definition 5 If A and B are events and Pr(B) = 0, then A is defined to be independent of
B.

Now we can define independence in an alternate way:

Theorem 2 Events A and B are independent iff

Pr(A ∩ B) = Pr(A) · Pr(B). (Independence Product Rule)

Note that disjoint events are not the same as independent events. In general disjoint
events are not independent.

Random Variables

Informally, a random variable is the value of a measurement associated with an experiment,
e.g. the number of heads in n tosses of a coin. More formally, a random variable is defined
as follows:

Definition 6 A random variable over a sample space is a function that maps every sample
point (i.e. outcome) to a real number.

An indicator random variable is a special kind of random variable associated with the
occurence of an event. The indicator random variable IA associated with event A has value
1 if event A occurs and has value 0 otherwise. In other words, IA maps all outcomes in the
set A to 1 and all outcomes outside A to 0.

Random variables can be used to define events. In particular, any predicate involving
random variables defines the event consisting of all outcomes for which the predicate is true.
e.g. for random variables R1, R2, R1 = 1 is an event, R2 ≤ 2 is an event, R1 = 1 ∧R2 ≤ 2 is
an event.

Events derived from random variables can be used in expressions involving conditional
probability as well. e.g.

Pr(R1 = 1|R2 ≤ 2) =
Pr(R1 = 1 ∧ R2 ≤ 2)

Pr(R2 ≤ 2)
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Independence of Random Variables

Definition 7 Two random variables R1 and R2 are independent, if for all x1, x2 ∈
�

, we
have:

Pr(R1 = x1 ∧ R2 = x2) = Pr(R1 = x1) · Pr(R2 = x2)

An alternate definition is as follows:

Definition 8 Two random variables R1 and R2 are independent, if for all x1, x2 ∈
�

, such
that Pr(R2 = x2) 6= 0, we have:

Pr(R1 = x1|R2 = x2) = Pr(R1 = x1)

In order to prove that two random variables are not independent, we need to exhibit a
pair of values x1, x2 for which the condition in the definition is violated. On the other hand,
proving independence requires an argument that the condition in the definition holds for all
pairs of values x1, x2.

Mutual Independence

Definition 9 Random variables R1, R2, . . . , Rt are mutually independent if, for all x1, x2, . . . , xt ∈�
,

Pr

(

t
⋂

i=1

Ri = xi

)

=
t
∏

i=1

Pr(Ri = xi).

Definition 10 A collection of random variables is said to be k-wise independent if all subsets
of k variables are mutually independent.

Consider a sample space consisting of bit sequences of length 2, where all 4 possible
two bit sequences are equally likely. Random variable B1 is the value of the first bit, B2

is the value of the second bit and B3 is B1 ⊕ B2. Here the variables B1, B2, B3 are 2-wise
independent, but they are not mutually independent.

Pairwise independence is another name for 2-wise independence, i.e. when we say that a
collection of variables is pairwise independent, we mean that they are 2-wise independent.

Probability Density Functions

Probability density functions are used to describe the distribution of a random variable, i.e.
the set of values a random variable takes and the probabilities associated with those values.
This description of a random variable is independent of any experiment.

Definition 11 The probability density function (pdf) for a random variable X is the func-
tion fX : (R) → [0, 1] defined by:

fX(t) = Pr(X = t).

For a value t not in the range of X, fX(t) = 0. Note that
∑

t∈ � fX(t) = 1,
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Definition 12 The cumulative distribution function (cdf) for a random variable X is the
function FX :

�
→ [0, 1] defined by:

FX(t) = Pr(X ≤ t) =
∑

s≤t

fX(s).

Two common distributions enountered are the uniform distribution and the binomial
distribution.
Uniform Distribution

Let U be a random variable that takes values in the range {1, . . . , N}, such that each
value is equally likely. Such a variable is said to be uniformly distributed. The pdf and cdf
for this distribution are:

fU (t) =
1

N
, FU(t) =

t

N
, for1 ≤ t ≤ N.

Binomial Distribution
Let H be the number of heads in n inpdendent tosses of a biased coin. Each toss of the

coin has probability p of being heads and probability 1− p of being tails. Such a variable is
said to have a binomial distribution. The pdf of this distribution is given by

fn,p(k) =

(

n

k

)

pk(1 − p)n−k

As a sanity check, we can verify that

n
∑

k=0

fn,p(k) =
n
∑

k=0

(

n

k

)

pk(1 − p)n−k = (p + (1 − p))n = 1

Expected Value

Definition 13 The expectation E[X] of a random variable X on a sample space S is defined
as:

E[X] =
∑

s∈S

X(s) · Pr({s}).

An equivalent definition is:

Definition 14 The expectation of a random variable X is

E[X] =
∑

t∈range(X)

t · Pr(X = t).

If the range of a random variable is non-negative integers, there is an another way to
compute the expectation.

Theorem 3 If X is a random variable which takes values in the non-negative integers, then

E[X] =
∞
∑

t=0

Pr(X > t).
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Proof: Note that

Pr(X > t) = Pr(X = t + 1) + Pr(X = t + 2) + Pr(X = t + 3) + · · ·

Thus,
∞
∑

t=0

Pr(X > t) = Pr(X > 0) + Pr(X > 1) + Pr(X > 2) + · · ·

= Pr(X = 1) + Pr(X = 2) + Pr(X = 3) + · · ·

Pr(X = 2) + Pr(X = 3) + Pr(X = 4) + · · ·

Pr(X = 3) + Pr(X = 4) + Pr(X = 5) + · · ·

= 1 ·Pr(X = 1) + 2 · Pr(X = 2) + 3 · Pr(X = 3) + · · ·

=
∞
∑

t=0

t ·Pr(X = t)

= E[X].

Linearity of Expectation

Theorem 4 (Linearity of Expectation) For any random variables X1 and X2, and con-
stants c1, c2 ∈

�
,

E[c1X1 + c2X2] = c1 E[X1] + c2 E[X2]

Note that the above theorem holds irrespective of the dependence between X1 and X2.

Corollary 2 For any random variables X1, . . . , Xk, and constants c1, . . . , ck ∈
�

,

E

[

k
∑

i=1

ciXi

]

=

k
∑

i=1

ci E[Xi].

Conditional Expectation

Definition 15 We define conditional expectation, E[X|A], of a random variable, given
event A, to be

E[X|A] =
∑

k

k ·Pr(X = k|A).

The rules for expectation also apply to conditional expectation:

Theorem 5

E[c1X1 + c2X2|A] = c1 E[X1|A] + c2 E[X2|A].

The following theorem shows how conditional expectation allows us to compute the ex-
pectation by case analysis.

Theorem 6 (Law of Total Expectation) If the sample space is the disjoint union of
events A1, A2, . . ., then

E[X] =
∑

i

E[X|Ai]Pr(Ai).
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Expected value of a product

In general, the expected value of the product of two random variables need not be equal
to the product of their expectations. However, this holds when the random variables are
independent:

Theorem 7 For any two independent random variables, X1 and X2,

E[X1 · X2] = E[X1] · E[X2].

Corollary 3 If random variables X1, X2, . . . , Xk are mutually independent, then

E

[

k
∏

i=1

Xi

]

=

k
∏

i=1

E[Xi].

Note that in general,

E

[

1

T

]

6=
1

E[T ]
.

Linearity of expectation also holds for infinite sums, provided the summations considered
are absolutely convergent:

Theorem 8 (Infinite Linearity of Expectation) Let X1, X2, . . . be random variables such

that

∞
∑

i=1

E[|Xi|] converges. Then

E

[

∞
∑

i=1

Xi

]

=
∞
∑

i−0

E[Xi].
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