
Stockholm University Department of Statistics HT-2010

Probability Theory, ST701A, advanced level, 7.5 ECTS credits

Computer exercise 2

Assessment

This assignment is a compulsory part of the course. At the end of the session each group's/individual
results will be reviewed as pass or fail. Observe that in order to be able to �nish the assign-
ment in the speci�ed time, you are supposed to read the whole assignment and to perform the
preparatory exercises before you attend the computer session.

Properties of a random sample: Convergence concepts,

resampling technique and Bayesian methodology

In the �rst part of this computer exercise, we will encounter some fundamental properties of
the limiting behavior of the sum of independent random variables as the number of summands
become large. We focus on the Law of Large Numbers and Central Limit Theorem. The results
demonstrated in the Exercise are both intrinsically interesting and useful in e.g. statistical infe-
rence, since many commonly computed statistical quantities, such as averages, can be represented
as sums. In the second part of the Exercise we introduce two di�erent techniques for assessing
variability of estimates, the bootstrap resampling and Bayesian analysis.

Special instruction for ST701A. To make �les and data available on your computer enter
the following commands:

• Go to System start, Statistical programs, and choose Matlab.

• Go to Current directory, and click on the top-right corner, 2. You get a dialog window,
Select a directory.

• Choose Den här datorn and then Inluppgifter på Studentserver statistik (M:)

• Go to casberlab directory.

If you are doing the Exercise at another place, all necessary �les are down-loadable from
Studentserver statistik (M:).

Preparatory exercises

As a preparation the Exercise you need to read the instructions for the computer exercise,
Sections 2.1, 3.2-3.3 4.5-4.6 in the course book by Casella, Berger (CB) and present answers to
the following questions

1. Explain the following types of limiting behavior of certain sample quantities and relations-
hip between them: Convergence in probability, almost sure convergence and convergence
in distribution.

2. State Week and Strong Low of Large Numbers.
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3. Describe the Central Limit Theorem and give an example of how it can be used in proba-
bilistic reasoning?

4. Let X be a random variable showing the numbers 1 through 6 when you roll a single six-
sided (fair) die, i.e. fX(k) = 1/6 for k = 1, . . . , 6. Which distribution the sum of the n
independent dice rolls will have approximately when n is large?

5. A six-sided die is rolled independently 100 times. Suggest an approximation and �nd the
probability that the face showing a six turns up between 15 and 20 times. Find the ap-
proximate probability that the sum of the face values of the 100 trials is less than 300.

6. Suppose that a coin is tossed independently 100 times and lands heads up 60 times. Should
we be surprised and perhaps doubt that the coin is fair? Suggest an exact and approximate
solution.

7. How do you interpret a normal probability plot?

8. Check the Example 5.6.6 from the Section 5.6 in CB.

9. Explain Bayes Rule and Total Probability Theorem.

10. Recall the idea of sampling with replacement and check the Example 1.2.20 in CB.

1 Convergence concepts

1.1 Law of Large Numbers

The Week Law of Large Numbers (WLLN) states that, under certain conditions, the sample
mean X̄n approaches the population mean, µ as n →∞. Observe that the property summarized
by the WLLN, that a sequence of the samesample quantity approaches a constant as n → ∞ ,
is known as consistency. We will focus on this property more closely in the Inference part of the
course.
A simple empirical demonstration of the LLN is to simulate rolling dice and then observe that
the successively calculated sample mean converges towards a population mean as the number of
trials increases. We use a simple dice generator and simulate �rst 100 rolls:

>> x=floor(6*rand(1,150)+1)

where the function floor rounds the elements of x downward to the nearest integers. Observe
that each element of x is an observation from the distribution of X describing rolling die. In
order to calculate a successive sample mean we do

>> x_bar=cumsum(x)./(1:150)

where the function cumsum returns a vector whose ith element is the cumulative sum of the �rst
i elements of the generated vector x and ./ denotes element-by-element division. In this way the
elements of the resulting vector, X̄ = (X̄1, . . . , X̄100), are successively calculated sample means.
Try to plot them by

>> plot(x_bar,'.')
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and explain the resulting �gure. Do you observe what was expected?

Answer:

Try now increase the number of rollings in the generator above and make a number of plots (use
subplot) for di�erent n. What do you observe?

The most important cases to which the LLN does not apply involve Cauchy distribution with
the density

f(x) =
1
π

1
1 + x2

, −∞ < x < ∞

The density is symmetric about zero, so it would seem that E[X] = 0. However,∫ ∞

−∞

|x|
1 + x2

dx = ∞,

recall the Exercise 3.21 from CB, and therefore the expectation does not exist. The reason that
it fails to exists that the density decreases so slowly that very large values of X ∼ f(x) can oc-
cur with substantial probability. Recall also that if Z1 and Z2 are independent standard normal
random variables then X = Z2/Z1 has a Cauchy distribution; see Example 4.3.6 in CB. Like
the standard normal density, the Cauchy density is bell-shaped and symmetric about zero but
the tails of the Cauchy tend to zero very slowly compared to the tails of the normal. This can
be interpreted as being due to a substantial probability that Z1 in the quotient Z2/Z1 is near zero.

To give an empirical illustration of this property of Cauchy distribution, we �rst notice that
the the relationship between the standard normal and Cauchy distributions gives a simple way
of generating Cauchy random variable. We �rst generate two sequences z1 and z2 of observa-
tions of the independent standard normal random variables and then get their quotient which
follows a Cauchy distribution. To depict the asymptotic behavior average of n independent ran-
dom variables as a function of n for normal and Cauchy random variables we do the following
commands

>> figure

>> subplot(2,1,1)

>> z_1=randn(5000,1); z_2=randn(5000,1);

>> z_bar=cumsum(z_1(1:1000))./(1:1000)'; plot(z_bar,'.')

>> subplot(2,1,2)

>> y=z_1./z_2; y_bar=cumsum(y).\(1:5000)'; plot(y_bar,'.')

Observe that you would probably need to perform these a number of times to achieve a graph
like in Figure 1 where Z̄n appears to be tending to the limit, whereas Ȳn does not. Explain why.
Recall the property of t distribution and think how it is related to the Cauchy distribution. Use
this relationship and suggest another technique for generating Cauchy random variables. Hint:

Try to use

>> t=trnd(1,5000,1); t_bar=cumsum(t)'./(1:5000); plot(t_bar,'.')
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Figur 1: The average of n independent random variables as a function of n for normal random
variables (upper panel) and for Cauchy random variables (lower panel).

Compare behaviour of the sample mean of the Cauchy distribution to the sample median m,
where P (X ≥ m) = P (X ≤ m) which is known to be a more stable estimator of location
parameter.(see Exercise 3.39) You can calculate the successive sample median by the �rst 1000
observations and explain your results.

>> t=trnd(1,5000,1);for i=1:1000; t_median(i)=median(t(1:i)); end

>> plot(t_median,'.')

1.2 Central Limit Theorem

We start by investigation of a discrete distribution, for example a uniform distribution that we
can obtain by the above mentioned dice generator. We represent the distribution by the vector

>> f=[0 1 1 1 1 1 1]/6
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where the �rst component 0 represents the probability the the outcome is 0 is used here for the
technical convenience. The graph representing the distribution is given by

>> bar(0:length(f)-1,f)

Now in order to �nd out the probability mass function of the sum of two dice we use the
convolution function conv that gives the distribution of sum of two independent random variables.

>> f_2=conv(f,f)

>> bar(0:length(f_2)-1,f_2)

To establish the distribution of the sum of 4,8 and more dice, we do

>> f_4=conv(f_2,f_2);

>> subplot(2,1,1)

>> bar(0:length(f_4)-1,f_4)

>> f_8=conv(f_4,f_4);

>> subplot(2,1,2)

>> bar(0:length(f_8)-1,f_8)

where f4 and f8 are the probability function of a sum of four and eight dice, respectively.
Investigate the shape of the distribution, what do you observe? When the resulting graph starts
to approach the symmetric shape?

Answer:

Try to perform the same steps with a very skew distribution, investigate how many summands
will be needed to observe a symmetric shape of the resulting distribution.
When you roll a symmetric single six-sided die, of outcomes have mean 3.5 and variance 35/12,

>> mu=sum((0:6).*f)

>> sigma=sqrt(sum(((0:6)-mu).^2.*f))

and so the corresponding mean and variance of rolling of n dice is n times greater. One can
apply the Central Limit Theorem to approximate the resulting distribution by the normal one
which is given by N (nµ, nσ2). For example, we can compare the distribution of the sum of eight
independent dice rolling with N (nµ, nσ2) where n = 8.

>> bar(0:length(f_8)-1,f_8)

>> hold on

>>
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It is known that for i.i.d X1, . . . , Xn from N (µ, σ2), the distribution of the sample mean, X̄ is
N (µ, σ2/n), i.e also normal. However if we are interested in using a more robust estimator of
location such as the median, it becomes more di�cult problem to derive its distribution. For a
sample of size n = 15 from N (0, 1), simulate the distribution of a median X̃. Compare then the
sample distribution of X̃n with the asymptotic distribution of the median

√
n(X̃ − µ) using the

following result for a symmetric distribution with location parameter (distribution median) θ

√
n(X̃n − θ) → N (0, 1/(4f2

X(θ))), as n →∞

in distribution, where fX is the pdf of X. Is n = 15 is large enough for the asymptotic to be
valid?

Answer:

2 Analysis of earthquake data

In this section we use the earthquake data to explore some properties of random samples and
sampling distributions. The patterns of occurrence of earthquakes in terms of time, space and
magnitude are very erratic, and attempts are sometimes made to construct probabilistic models
of these events. The models may be used in a purely descriptive manner or, more ambitiously,
for purposes of predicting future occurrences and consequent damage.
The data we are going to work with are stored in the �le

data_quak.math

and represent the observed times separating a sequence of serious earthquakes (>7.5 on Richter
scale) worldwide. These data have been gathered during the period of time from the December
1902 to March 1977, giving in total 63 earthquakes during 27120 days (see Rice, 1999 and the
references there in, Udias and Rice, 1975 and Wafo).
The natural �rst step in exploring the data is the graphical representation.

>> load data_quak

>> figure

>> [f,x] = ecdf(data_quak);

>> ecdfhist(f,x,10);

>> colormap([0.5 0.5 0.5])

Let X denote the length of time unit until the next earthquake, or the interoccurence time. Then
a good candidate to model this time is an exponential distribution, Exp(µ) where µ is a return
period of earthquakes, i.e. we can assume that

FX(x|µ) = 1− e−x/µ.

To show this we can try to �t the exponential density to the data. Explain the commands below

>> xx = 0:1:max(data_quak); yy = exppdf(xx,mean(data_quak));

>> hold on; plot(xx,yy,'g-');
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Observe that an exponential model for interoccurence times would be memory less; that is,
knowing that an earthquake had not occurred in the last t time units would tell us nothing
about the probability of occurrence during the next s time units. Can you suggest some other
distribution that dose not have this property to model the interoccurence times? Try to �t the
suggested distribution to the data and explain your results.

Answer:

Now we use the data above to evaluate the probability of a period of more than 1200 days (
about 3.5 years) between two serious earthquakes. Assuming that the data are coming from the
exponential distribution, Exp(µ) we then need to specify

p = P (X > 1200|µ) = 1− FX(1200|µ) = e−1200/µ

Since the distribution parameter, µ, is unknown we use our data to estimate it and recall that µ is
a mean parameter, so that µ̂ = 1

n

∑n
i=1 xi, where n = 62 and xi are the observed interoccurence

times. Then the estimated probability p̂ is given by

p̂ = e−1200/µ̂.

Another way to estimate p is to use the empirical distribution of the earthquake data. We can
plot it by

>> figure

>> [f,x] = 1-ecdf(data_quak); stairs(x,f);

>> grid on

and then use zoom in the �gure window to get the value pemp at x = 1200. Compare pemp with
p̂ and explain the discrepancy.
Note that both the results above gives a point estimation of p, i.e. only one estimate p̂ or pemp of
p. But how accurate this result is? To measure the estimator variability we can try to evaluate
its variance. We focus on p̂ and observe that by considering Xis as n i.i.d. random variables from
FX(x|µ), M̂ and P̂ are also random. However �nding an analytic expression for the variance of P̂
is not so easy (Try!). Below we will consider two di�erent methods of evaluating the variability
of P̂ . The �rst one is based on the resampling methodology whereas the second one uses the
Bayesian approach.

2.1 Variability of P̂ : the Bootstrap technique

In this part we use the Bootstrap to approximate the sampling distribution of the estimator
P̂ and thereby get an idea about the variability of P̂ . It is important to keep in mind that
P̂ = P̂ (X1, . . . , Xn), i.e. P̂ is a function of random variables, and hence has a a probability
distribution, its sampling distribution, which is determined by n and the underlying distribution
FX(x). We would like to know this sampling distribution, but we are faced with two problems:
(1) generally we don't know FX(x) (recall that we assume that the earthquake data are coming
form Exp(µ), however, another distribution, e.g. gamma(α, β) can also be a data generating
candidate), and (2) even if we knew FX(x), it is relatively complicated to �nd the closed form
analytic expression for the distribution of P̂ . To overcome these problems, we use the resampling
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approach.

To explain the underlying rationale of the Bootstrap resampling technique we �rst address the
second problem. Suppose for a moment that FX(x|µ) is Exp(µ) and µ̂ is an estimation of µ
obtained from the original data x1, . . . , xn. To avoid complicated analytic calculations of the
distribution of P̂ we turn to simulation: we generate many, many samples, say b in number, of
size n from FX(x|µ̂); from each sample we calculate the value of p̂. The empirical distribution
of the resulting values p∗1, . . . , p

∗
b is an approximation to the distribution function of P̂ , which is

good if b is large. If we wish to know the variance P̂ , we can �nd a good approximation to it by
calculating variance of the collection of values p∗1, . . . , p

∗
b as

s2
p̂ =

1
b

b∑
i=1

(p∗i − p̄∗)2,

where p̄∗ is the mean of p∗1, . . . , p
∗
b Note that we can make these approximations arbitrary accu-

rate by taking b to be arbitrary large. Note also that the samples used above are not resamplings
of the data, but actual random samples drawn from plug-in distribution FX(x|µ̂). This approach
is a version of the parametric bootstrap since we use a parametric model at the sampling stage.
See more details and examples in e.g. Section 5.6 of CB.

For the �rst problem, i.e. for the more general case when the underlying distribution F is unk-
nown, the bootstrap solution is to view the empirical cdf Fn as an approximation of F and
sample from Fn. That is Fn would be used in place of F in the previous paragraph. To run
sampling from Fn we will reason as follows: Fn is a discrete probability distribution that gives
probability mass of 1/n to each observed value x1, . . . , xn. A sample of size n from Fn is thus a
sample of size n drawn with replacement from the collection x1, . . . , xn. That is we learn about
the sample characteristics by taking resamples, i.e we retake samples from the original data set
x1, . . . , xn. We thus draw b samples of size n with replacement from the observed data, producing
p∗1, . . . , p

∗
b . The variance of P̂ can be approximated as above. This type of bootstrapping is called

non-parametric bootstrap as we have assumed no functional form for F .

Now we use the non-parametric bootstrap to approximate the distribution of P̂ . Using the
bootstrap function you can resample the vector dataquak as many times as you like and consider
the variation in the resulting estimation of p∗. To get the output samples bootsam without
applying a function, set bootfun argument to empty ([]) (doesn't work properly some time, that's
why we use mean in the command below). To create 1000 bootstrap samples from dataquak we
start by

>> [bootstat,bootsam] = bootstrp(1000,@mean, data_quak);

>> bootsam(:,1:5)

where the last command displays the indices of the data selected for the �rst 5 bootstrap samples.
Observe that bootsam contains 1000 index vectors of the length of 62, and one index can occur
more than once (resampling with replacement). By the commands

>> data_boot=data_quak(bootsam);

>> size(data_boot)

the earthquakes data are resampled to create 1000 di�erent data sets, and we compute the
estimators p∗1, . . . , p

∗
b by
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>> p_star=exp(-1200./mean(data_sam));

Check the size of resulting vector pstar and convince yourself that you get b = 1000 estimators p∗i ,
i = 1, . . . , b. Further, to visualise the variability of P̂ we depict its the approximate distribution
as follows:

>> figure

>> [f,x] = ecdf(p_star); ecdfhist(f,x,20);

>> ecdfhist(f,x,20);

>> colormap([0.5 0.5 0.5])

Explain the graph. Try to use the simulated data to approximate the variance of P̂ .

Answer:

2.2 Estimating the variability of p using Bayesian approach

The Bayesian approach to statistics is fundamentally di�erent from the classical inference that
we have used above. In the classical approach the parameter µ is thought to be unknown, but
�xed, quantity. In the Bayesian inference µ is considered to be a quantity whose variation can
be described by a probability distribution (called prior distribution). A sample is then taken
from a population indexed by M and the prior distribution is updated with with the sample
information. This updated prior is called the posterior distribution. The updating is done with
the use of Bayes' rule, see Chapter 1 in CB, and hence is the name Bayeisan approach. In this
part of the Exercise we will only point out some basic ideas and show how to analyse the same
earthquake data set with a Bayesian method. More detailed discussion of these concepts is left
for the Inference part of the course.

We assume that the return period, is a random variable and focus instead on the intensity
of earthquakes Λ = 1

M instead of the return time M. Then the probability p that we wish to
evaluate is

p = P (X > 1200) = e−1200Λ.

As before our goal is to evaluate the distribution of p. In the Bayesian approach, p is a function
of a random variable Λ, and therefore also is random. (Break of notation convention: Lowercase
p is used here for denoting a random variable in order to avoid confusion with the probability
function P ).
In order to specify the posterior distribution of p we �ts �nd the posterior distribution of Λ. As-
suming that the interoccurence time is exponentially distributed one can show that earthquakes,
Y , occur in time as a Poisson process with a given parameter Λ = λ, that is

P (Y = y|Λ = λ) = e−λs (λs)y

y!
,

which gives the probability of observing y earthquakes during time [0, s]. Generally, the times
between events in the Poisson process are i.i.d.exponential random variables; see e.g. CB Example
3.3.1 (Gamma-Poisson relationship) or the book by Rice, Chapter 2, p.50.
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Now, given the observed ineteroccurence times x = (x1, . . . , x62) (i.e 63 earthquakes) and using
Bayes' rule we can establish the updating formula

π(λ|Y = 63) = const · P (Y = 63|Λ = λ)π(λ)

where const does not depend on λ and π(λ) is a prior distribution of Λ. Observe that the posterior
distribution π(λ|Y = y) is a conditional distribution, conditional upon observing 63 earthquakes
during the time period.

The updating formula requires a prior distribution π(λ) which can be considered as the experi-
menter's belief/knowledge about Λ, and is formulated before the data are seen. If we know very
little about Λ, it would be sensible to choose

π(λ) = λ−1

for λ > 0, which which would suggest that a value for an intensity becomes less likely"in inverse
proportion to its value. This type of distribution is called for non-informative prior. Observe that
the posterior probabilities will still sum (or integrate) to 1 even if the prior values do not, and
so the priors only need to be speci�ed in the correct proportion.
Now, to specify the posterior density of Λ we rearrange P (Y = 63|Λ = λ). We recall that
s = 27120, y = 63 and Y ∼ Po(λ) which gives

P (Y = 63|Λ = λ) = e−λ·27120 (λ · 27120)63

63!
= const · e−λ·27120λ63.

Hence, the posterior density of Λ is

π(λ|Y = 63) = const · e−λ·27120λ63 · λ−1 ∝ λ63−1e−λ·27120,

which is a kernel of a gamma density with parameters α = 63 and β = 1/27120. To see the graph
we do

>> figure

>> x=[0:1/10000:0.005];

>> plot(x,gampdf(x,63,1/27120))

Observe that the symmetric shape of the density suggests that the posterior distribution of Λ
can be approximated by a normal distribution. We recall that for X ∼ gamma(α, β) E[X] = αβ
and V ar[X] = αβ2, see CB, p.624 and plot the approximate density in the same �gure by

>>hold on

>> pi_post_lambda=normpdf(x,63/27120,sqrt(63/(27120^2)));

>> plot(x,pi_post_lambda,'r')

What do you observe?

Answer:
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Recall that our initial goal was to specify the posterior distribution of p = e−Λ·1200. By taking
the logarithm and assuming that Λ is approximately normally distributed one can conclude that
p is approximately log-normal, i.e.

log(p) ∼ N (−1200αβ, 12002αβ2).

To plot the posterior density of p we do

>> figure

>> x=[0.01:1/1000:0.15];

>> pi_post_p=lognpdf(x,-1200*(63/27120), 1200*sqrt(63/(27120^2)));

>> plot(x, pi_post_p)

Compare this density with that one which you obtain in the previous subsection using the
bootstrap resampling. Explain your results.

Answer:
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