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Introduction to Probability


1 Probability 

Probability will be the topic for the rest of the term. Probability is one of the most important sub­
jects in Mathematics and Computer Science. Most upper level Computer Science courses require 
probability in some form, especially in analysis of algorithms and data structures, but also in infor­
mation theory, cryptography, control and systems theory, network design, artificial intelligence, 
and game theory. Probability also plays a key role in fields such as Physics, Biology, Economics 
and Medicine. 

There is a close relationship between Counting/Combinatorics and Probability. In many cases, 
the probability of an event is simply the fraction of possible outcomes that make up the event. 
So many of the rules we developed for finding the cardinality of finite sets carry over to Proba­
bility Theory. For example, we’ll apply an Inclusion-Exclusion principle for probabilities in some 
examples below. 

In principle, probability boils down to a few simple rules, but it remains a tricky subject because 
these rules often lead unintuitive conclusions. Using “common sense” reasoning about probabilis­
tic questions is notoriously unreliable, as we’ll illustrate with many real-life examples. 

This reading is longer than usual . To keep things in bounds, several sections with illustrative 
examples that do not introduce new concepts are marked “[Optional].” You should read these 
sections selectively, choosing those where you’re unsure about some idea and think another ex-
ample would be helpful. 

2 Modelling Experimental Events 

One intuition about probability is that we want to predict how likely it is for a given experiment 
to have a certain kind of outcome. Asking this question invariably involves four distinct steps: 

Find the sample space. Determine all the possible outcomes of the experiment. 

Define the event of interest. Determine which of those possible outcomes is “interesting.” 

Determine the individual outcome probabilities. Decide how likely each individual outcome is 
to occur. 

Determine the probability of the event. Combine the probabilities of “interesting” outcomes to 
find the overall probability of the event we care about. 

In order to understand these four steps, we will begin with a toy problem. We consider rolling 
three dice, and try to determine the probability that we roll exactly two sixes. 

Copyright ©  2002, Prof. Albert R. Meyer. 



2 Course Notes 10: Introduction to Probability 

Step 1: Find the Sample Space 

Every probability problem involves some experiment or game. The key to most probability prob­
lems is to look carefully at the sample space of the experiment. Informally, this is the set of all pos­
sible experimental outcomes. An outcome consists of the total information about the experiment 
after it has been performed. An outcome is also called a “sample point” or an “atomic event”. 

In our die rolling experiment, a particular outcome can be expressed as a triple of numbers from 
1 to 6. For example, the triple (3, 5, 6) indicates that the first die rolled 3, the second rolled 5, and 
the third rolled 6.1 

Step 2: Define Events of Interest 

We usually declare some subset of the possible outcomes in the sample space to be “good” or 
“interesting.” Any subset of the sample space is called an event. 

For example, the event that all dice are the same consists of six possible outcomes 

{(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 5, 5), (6, 6, 6)} . 

Let T be the event that we roll exactly two sixes. T has 3 · 5 = 15 possible outcomes: we need to 
choose which die is not a six, and then we need to choose a value for that die. Namely, 

T ::= {(1, 6, 6), (2, 6, 6), (3, 6, 6), (4, 6, 6), (5, 6, 6), 
(6, 1, 6), (6, 2, 6), (6, 3, 6), (6, 4, 6), (6, 5, 6), 
(6, 6, 1), (6, 6, 2), (6, 6, 3), (6, 6, 4), (6, 6, 5)} 

Our goal is to determine the probability that our experiment yields one of the outcomes in this set 
T . 

Step 3: Specify Outcome Probabilities 

Assign a real number between zero and one, called a probability, to each outcome of an experiment 
so that the sum of the probabilities of all the outcomes is one. This is called specifying a probability 
space appropriate to the experiment. We use the notation, Pr {w}, to denote the probability of an 
outcome w. 

Assigning probabilities to the atomic outcomes is an axiomatic action. One of the philosophical 
bases for probability says that the probability for an outcome should be the fraction of times that 
we expect to see that outcome when we carry out a large number of experiments. Thinking of the 
probabilities as fractions of one whole set of outcomes makes it plausible that probabilities should 
be nonnegative and sum to one. 

In our experiment (and in many others), it seems quite plausible to say that all the possible out-
comes are equally likely. Probability spaces of this kind are called uniform: 

1Notice that we’re assuming the dice are distinguishable—say they are different colors—so we know which is which. 
We would need a different sample space of outcomes if we regarded the dice as indistinguishable. 
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Definition 2.1. A uniform probability space is a finite space in which all the outcomes have the 
same probability. That is, if S is the sample space, then 

1
Pr {w} = 

|S| 

for every outcome w ∈ S. 

Since there are 63 = 216 possible outcomes, we axiomatically declare that each occurs with proba­
bility 1/216. 

Step 4: Compute Event Probabilities 

We now have a probability for each outcome. To compute the probability of the event, T , that we 
get exactly two sixes, we add up the probabilities of all the outcomes that yield exactly two sixes. 
In our example, since there are 15 outcomes in T , each with probability 1/216, we can deduce that 
Pr {T } = 15/216. 

Probability on a uniform sample space such as this one is pretty much the same as counting. 
Another example where it’s reasonable to use a uniform space is for poker hands. Instead of 
asking how many distinct full houses there are in poker, we can ask about the probability that a 
“random” poker hand is a full house. For example, of the 

�
52

� 
possible poker hands, we saw that5 

• There are 624 “four of a kind” hands, so the probability of 4 of a kind is 624/ 
�
52 
5 = 1/4165.


• There are 3744 “full house” hands, so the probability of a full house is 6/4165 ≈ 1/694. 

• There are 123,552 “two pair” hands, so the probability of two pair ≈ 1/21. 

3 The Monty Hall Problem 

In the 1970’s, there was a game show called Let’s Make a Deal, hosted by Monty Hall and his as­
sistant Carol Merrill. At one stage of the game, a contestant is shown three doors. The contestant 
knows there is a prize behind one door and that there are goats behind the other two. The con­
testant picks a door. To build suspense, Carol always opens a different door, revealing a goat. The 
contestant can then stick with his original door or switch to the other unopened door. He wins the 
prize only if he now picks the correct door. Should the contestant “stick” with his original door, 
“switch” to the other door, or does it not matter? 

This was the subject of an “Ask Marilyn” column in Parade Magazine a few years ago. Marilyn 
wrote that your chances of winning were 2/3 if you switched — because if you switch, then you 
win if the prize was originally behind either of the two doors you didn’t pick. Now, Marilyn 
has been listed in the Guiness Book of World Records as having the world’s highest IQ, but for this 
answer she got a tidal wave of critical mail, some of it from people with Ph.D.’s in mathematics, 
telling her she was wrong. Most of her critics insisted that the answer was 1/2, on the grounds 
that the prize was equally likely to be behind each of the doors, and since the contestant knew 
he was going to see a goat, it remains equally likely which the two remaining doors has the prize 
behind it. The pros and cons of these arguments still stimulate debate. 
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It turned out that Marilyn was right, but given the debate, it is clearly not apparent which of the 
intuitive arguments for 2/3 or 1/2 is reliable. Rather than try to come up with our own explanation 
in words, let’s use our standard approach to finding probabilities. In particular, we will analyze 
the probability that the contestant wins with the “switch” strategy; that is, the contestant chooses 
a random door initially and then always switches after Carol reveals a goat behind one door. We 
break the down into the standard four steps. 

Step 1: Find the Sample Space 

In the Monty Hall problem, an outcome is a triple of door numbers: 

1. The number of the door concealing the prize. 

2. The number of the door initially chosen by the contestant. 

3. The number of the door Carol opens to reveal a goat. 

For example, the outcome (2, 1, 3) represents the case where the prize is behind door 2, the con­
testant initially chooses door 1, and Carol reveals the goat behind door 3. In this case, a contestant 
using the “switch” strategy wins the prize. 

Not every triple of numbers is an outcome; for example, (1, 2, 1) is not an outcome, because Carol 
never opens the door with the prize. Similarly, (1, 2, 2) is not an outcome, because Carol does not 
open the door initially selected by the contestant, either. 

As with counting, a tree diagram is a standard tool for studying the sample space of an experi­
ment. The tree diagram for the Monty Hall problem is shown in Figure 1. Each vertex in the tree 
corresponds to a state of the experiment. In particular, the root represents the initial state, before 
the prize is even placed. Internal nodes represent intermediate states of the experiment, such as 
after the prize is placed, but before the contestant picks a door. Each leaf represents a final state, 
an outcome of the experiment. One can think of the experiment as a walk from the root (initial 
state) to a leaf (outcome). In the figure, each leaf of the tree is labeled with an outcome (a triple of 
numbers) and a “W” or “L” to indicate whether the contestant wins or loses. 

Step 2: Define Events of Interest 

For the Monty Hall problem, let S denote the sample space, the set of all 12 outcomes shown in 
Figure 1. The event W ⊂ S that the contestant wins with the “switch” strategy consists of six 
outcomes: 

W ::= {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} . 

The event L ⊂ S that the contestant loses is the complementary set: 

L ::= {(1, 1, 2), (1, 1, 3), (2, 2, 1), (2, 2, 3), (3, 3, 1), (3, 3, 2)} . 

Our goal is to determine the probability of the event W ; that is, the probability that the contestant 
wins with the “switch” strategy. 
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Figure 1: This is a tree diagram for the Monty Hall problem. Each of the 12 leaves of the tree 
represents an outcome. A “W” next to an outcome indicates that the contestant wins, and an “L” 
indicates that he loses. 

Well, the contestant wins in 6 outcomes and loses in 6 outcomes. Does this not imply that the 
contestant has a 6/12 = 1/2 chance of winning? No! Under our natural assumptions, this sample 
space is not uniform! Some outcomes may be more likely than others. We must compute the 
probability of each outcome. 

Step 3: Compute Outcome Probabilities 

3.1 Assumptions 

To assign a meaningful probability to each outcome in the Monty Hall problem, we must make 
some assumptions. The following three are sufficient: 

1. The prize is placed behind each door with probability 1/3. 

2. No matter where the prize is placed, the contestant picks each door with probability 1/3. 

3.	 No matter where the prize is placed, if Carol has a choice of which door to open, then she 
opens each possible door with equal probability. 

The first two assumptions capture the idea that the contestant initially has no idea where the prize 
is placed. The third assumption eliminates the possibility that Carol somehow secretly communi­
cates the location of the prize by which door she opens. Assumptions of this sort almost always 
arise in probability problems; making them explicit is a good idea, although in fact not all of these 
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assumptions are absolutely necessary. For example, it doesn’t matter how Carol chooses a door to 
open in the cases when she has a choice, though we won’t prove this. 

3.2 Assigning Probabilities to Outcomes 

With these assumptions, we can assign probabilities to outcomes in the Monty Hall problem by a 
calculation illustrated in Figure 2 and described below. There are two steps. 
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Figure 2: This is the tree diagram for the Monty Hall problem, annotated with probabilities for 
each outcome. 

The first step is to record a probability on each edge in the tree diagram. Recall that each node 
represents a state of the experiment, and the whole experiment can be regarded as a walk from 
the root (initial state) to a leaf (outcome). The probability recorded on an edge is the probability 
of moving from the state corresponding to the parent node to the state corresponding to the child 
node. These edge probabilities follow from our three assumptions about the Monty Hall problem. 

Specifically, the first assumption says that there is a 1/3 chance that the prize is placed behind 
each of the three doors. This gives the 1/3 probabilities on the three edges from the root. The 
second assumption says that no matter how the prize is placed, the contestant opens each door 
with probability 1/3. This gives the 1/3 probabilities on edges leaving the second layer of nodes. 
Finally, the third assumption is that if Carol has a choice of what door to open, then she opens 
each with equal probability. In cases where Carol has no choice, edges from the third layer of 
nodes are labeled with probability 1. In cases where Carol has two choices, edges are labeled with 
probability 1/2. 

The second step is to use the edge weights to compute a probability for each outcome by multiply­
ing the probabilities along the edges leading to the outcome. This way of assigning probabilities 
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reflects our idea that probability measures the fraction of times that a given outcome should hap-
pen over the course of many experiments. Suppose we want the probability of outcome (2, 1, 3). 
In 1/3 of the experiments, the prize is behind the second door. Then, in 1/3 of these experiments 
when the prize is behind the second door, and the contestant opens the first door. After that, Carol 
has no choice but to open the third door. Therefore, the probability of the outcome is the product 
of the edge probabilities, which is 

1 1 1 
3 
· 
3 
· 1 = 

9 
. 

For example, the probability of outcome (2, 2, 3) is the product of the edge probabilities on the 
path from the root to the leaf labeled (2, 2, 3). Therefore, the probability of the outcome is 

1 1 1 1 
= 

3 
· 
3 
· 
2 18 

. 

Similarly, the probability of outcome (3, 1, 2) is 

1 1 1 
3 
· 
3 
· 1 = 

9 
. 

The other outcome probabilities are worked out in Figure 2. 

Step 4: Compute Event Probabilities 

We now have a probability for each outcome. All that remains is to compute the probability of 
W , the event that the contestant wins with the “switch” strategy. The probabilility of an event is 
simply the sum of the probabilities of all the outcomes in it. So the probability of the contestant 
winning with the “switch” strategy is the sum of the probabilities of the six outcomes in event W , 
namely, 2/3: 

Pr {W } ::= Pr {(1, 2, 3)} + Pr {(1, 3, 2)} + Pr {(2, 1, 3)} + Pr {(2, 3, 1)} + Pr {(3, 1, 2)} + Pr {(3, 2, 1)} 
1 1 1 1 1 1 

= 
9

+
9

+
9

+
9

+
9

+
9 

2 
= 

3 
. 

In the same way, we can compute the probability that a contestant loses with the “switch” strategy. 
This is the probability of event L: 

Pr {L} ::= Pr {(1, 1, 2)} + Pr {(1, 1, 3)} + Pr {(2, 2, 1)} + Pr {(2, 2, 3)} + Pr {(3, 3, 1)} + Pr {(3, 3, 2)} 
1 1 1 1 1 1 

= 
18 

+ 
18 

+ 
18 

+ 
18 

+ 
18 

+ 
18 

1 
= 

3 
. 

The probability of the contestant losing with the switch strategy is 1/3. This makes sense; the 
probability of winning and the probability of losing ought to sum to 1! 

We can determine the probability of winning with the “stick” strategy without further calcula­
tions. In every case where the “switch” strategy wins, the “stick” strategy loses, and vice versa. 
Therefore, the probability of winning with the stick strategy is 1 − 2/3 = 1/3. 

Solving the Monty Hall problem formally requires only simple addition and multiplication. But 
trying to solve the problem with “common sense” leaves us running in circles! 
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4 Intransitive Dice 

There is a game involving three dice and two players. The dice are not normal; rather, they are 
numbered as shown in Figure 3. Each hidden face has the same number as the opposite, exposed 
face. As a result, each die has only three distinct numbers, and each number comes up 1/3 of the 
time. 

BA C

2 1 3

6 7 5 9 4 8

Figure 3: This figure shows the strange numbering of the three dice “intransitive” dice. The num­
ber on each concealed face is the same as the number on the exposed, opposite face. 

In the game, the first player can choose any one of the three dice. Then the second player chooses 
one of the two remaining dice. They both roll and the player with the higher number wins. Which 
of the three dice should player one choose? That is, which of the three dice is best? 

For example, die B is attractive, because it has a 9, the highest number overall; on the other hand, 
it also has a 1, the lowest number. Intuition gives no clear answer! We can solve the problem with 
our standard four-step method. 

Claim 4.1. Die A beats die B more than half of the time. 

Proof. The claim concerns the experiment of throwing dice A and B. 

Step 1: Find the Sample Space. The sample space for this experiment is indicated by the tree diagram 
in Figure 4. 

Step 2: Define Events of Interest. We are interested in the event that die A comes up greater than 
die B. The outcomes in this event are marked “A” in the figure. 

Step 3: Compute Outcome Probabilities. To find outcome probabilities, we first assign probabilities 
to edges in the tree diagram. Each number comes up with probability 1/3, regardless of the value 
of the other die. Therefore, we assign all edges probability 1/3. The probability of an outcome is 
the product of probabilities on the corresponding root-to-leaf path; this means that every outcome 
has probability 1/9. 

Step 4: Compute Event Probabilities. The probability of an event is the sum of the probabilities of 
the outcomes in the event. Therefore, the probability that die A comes up greater than die “B” is 

1 1 1 1 1 5 
= 

9
+

9
+

9
+

9
+

9 9 
. 

As claimed, the probability that die A beats die B is greater than half.
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Figure 4: This is the tree diagram arising when die A is played against die B. Die A beats die B 
with probability 5/9. 

The analysis may be even clearer by giving the outcomes in a table: 

Winner B roll 
1 5 9 

A roll 
2 A B B 
6 A A B 
7 A A B 

All the outcomes are equally likely, and we see that A wins 5 of them. This table works because 
our probability space is based on 2 pieces of information, A’s roll and B’s roll. For more complex 
probability spaces, the tree diagram is necessary. 

Claim 4.2. Die B beats die C more than half of the time. 

Proof. The proof is by the same case analysis as for the preceding claim, summarized in the table: 

Winner C roll 
3 4 8 

B roll 
1 C C C 
5 B B C 
9 B B B 
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We have shown that A beats B and that B beats C. From these results, we might conclude that A 
is the best die, B is second best, and C is worst. But this is totally wrong! 

Claim 4.3. Die C beats die A more than half of the time! 

Proof. See the tree diagram in Figure 5. Again, we can present this analysis in a tabular form: 

Winner A roll 
2 6 7 

C roll 
3 C A A 
4 C A A 
8 C C C 
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Figure 5: Die C beats die A with probability 5/9. Amazing! 

Die A beats B, B beats C, and C beats A! Apparently, there is no “transitive law” here! This means 
that no matter what die the first player chooses, the second player can choose a die that beats it 
with probability 5/9. The player who picks first is always at a disadvantage! 

[Optional] 

The same effect can arise with three dice numbered the ordinary way, but “loaded” so that some numbers turn up more 
often. For example, suppose: 
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A rolls 3 with probability 1 

√ 
B rolls 2 with probability p ::= ( 5 − 1)/2 = 0.618 . . . 

rolls 5 with probability 1 − p 

C rolls 1 with probability 1 − p 

rolls 4 with probability p 

It’s clear that A beats B, and C beats A, each with probability p. But note that 1 − p 2 = p. Now the probability that B 
beats C is 

2Pr {B rolls to 5} + Pr {B rolls to 2 and C rolls to 1} = (1 − p) + p(1 − p) = 1 − p = p. 

So A beats B, B beats C, and C beats A, all with probability p = 0.618 · · · > 5/9. 

5 Set Theory and Probability 

Having gone through these examples, we should be ready to make sense of the formal definitions 
of basic probability theory. 

5.1 Basic Laws of Probability 

Definition 5.1. A sample space, S, is a nonempty set whose elements are called outcomes. The events 
are subsets of S.2 

Definition. A family, F , of sets is pairwise disjoint if the intersection of every pair of distinct sets � 
in the family is empty, i.e., if A,B ∈ F and A �= B, then A ∩ B = ∅. In this case, if S = F , then S 
is said to be the disjoint union of the sets in F . 

Definition 5.2. A probability space consists of a sample space, S, and a probability function, Pr {}, 
mapping the events of S to real numbers between zero and one, such that: 

1. Pr {S} = 1, and 
2 For all the examples in 6.042, we let every subset of S be an event. However, when S is a set such as the unit 

interval of real numbers, there can be problems. In this case, we typically want subintervals of the unit interval to be 
events with probability equal to their length. For example, we’d say that if a dart hit “at random” in the unit interval, 
then the probability that it landed within the subinterval from 1/3 to 3/4 was equal to the length of the interval, namely 
5/12. 

Now it turns out to be inconsistent with the axioms of Set Theory to insist that all subsets of the unit interval be events. 
Instead, the class of events must be limited to rule out certain pathological subsets which do not have a well-defined 
length. An example of such a pathological set is the real numbers between zero and one with an infinite number of fives 
in the even-numbered positions of their decimal expansions. Fortunately, such pathological subsets are not relevant in 
applications of Probability Theory. 

The results of the Probability Theory hold as long as we have some set of events with a few basic properties: every 
finite set of outcomes is an event, the whole space is an event, the complement of an event is an event, and if A0, A1, . . . � 
are events, so is i∈N Ai . It is easy to come up with such a class of events that includes all the events we care about and 
leaves out all the pathological cases. 
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2. if A0, A1, . . . is a sequence of disjoint events, then 

 � 
Pr Ai = Pr {Ai} . (Sum Rule) 

i∈N i∈N 

The Sum Rule3 lets us analyze a complicated event by breaking it down into simpler cases. For 
example, if the probability that a randomly chosen MIT student is native to the United States is 
60%, to Canada is 5%, and to Mexico is 5%, then the probability that a random MIT student is 
native to North America is 70%. 

One immediate consequence of Definition 5.2 is that Pr {A} + Pr A = 1 because S is the disjoint 
union of A and A. This equation often comes up in the form 

Pr A = 1 − Pr {A} . (Complement Rule) 

Some further basic facts about probability parallel facts about cardinalities of finite sets. In partic­
ular: 

Pr {B − A} = Pr {B} − Pr {A ∩ B} (Difference Rule) 
Pr {A ∪ B} = Pr {A} + Pr {B} − Pr {A ∩ B} (Inclusion-Exclusion) 

The Difference Rule follows from the Sum Rule because B is the disjoint union of B − A and A ∩ B. 
The (Inclusion-Exclusion) equation then follows from the Sum and Difference Rules, because A∪B 
is the disjoint union of A and B − A, so 

Pr {A ∪ B} = Pr {A} + Pr {B − A} = Pr {A} + (Pr {B} − Pr {A ∩ B}). 

This (Inclusion-Exclusion) equation is the Probability Theory version of the Inclusion-Exclusion 
Principle for the size of the union of two finite sets. It generalizes to n events in a corresponding 
way. An immediate consequence of (Inclusion-Exclusion) is 

Pr {A ∪ B} ≤ Pr {A} + Pr {B} . (Boole’s Inequality) 

Similarly, the Difference Rule implies that 

If A ⊆ B, then Pr {A} ≤ Pr {B} . (Monotonicity) 

In the examples we considered above, we used the fact that the probability of an event was the 
sum of the probabilities of its outcomes. This follows as a trivial special case of the Sum Rule with 
one quibble: according to the official definition, the probability function is defined on events not 
outcomes. But we can always treat an outcome as the event whose only element is that outcome, 
that is, define Pr {w} to be Pr {{w}}. Then, for the record, we can say 

Corollary 5.3. If A = {w0, w1, . . . } is an event, then 

Pr {A} = Pr {wi} . 
i∈N 

3If you think like a Mathematician, you should be wondering if the infinite sum is really necessary. Namely, suppose 
we had only used finite sums in Definition 5.2 instead of sums over all natural numbers. Would this imply the result for 
infinite sums? It’s hard to find counterexamples, but there are some: it is possible to find a pathological “probability” 
measure on a sample space satisfying the Sum Rule for finite unions, in which the outcomes w0, w1 , . . . each have prob­
ability zero, and the probability assigned to any event is either zero or one! So the infinite Sum Rule fails dramatically, 
since the whole space is of measure one, but it is a union of the outcomes of measure zero. 

The construction of such weird examples is beyond the scope of 6.042. You can learn more about this by taking a 
course in Set Theory and Logic that covers the topic of “ultrafilters.” 
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5.2 Circuit Failure 

Suppose you are wiring up a circuit containing a total of n connections. From past experience we 
assume that any particular connection is made incorrectly with probability p, for some 0 ≤ p ≤ 1. 
That is, for 1 ≤ i ≤ n, 

Pr {ith connection is wrong} = p. 

What can we say about the probability that the circuit is wired correctly, i.e., that it contains no 
incorrect connections? 

Let Ai denote the event that connection i is made correctly. Then Ai is the event that connection i 
is made incorrectly, so Pr
 Ai = p. Now


n 

i=1 

Ai .
Pr {all connections are OK} = Pr


Without any additional assumptions, we can’t get an exact answer. However, we can give reason-
able upper and lower bounds. For an upper bound, we can see that 

Pr

n 

i=1 

Ai = Pr
 A1 ∩ ( ≤ Pr {A1} = 1 − p 
n 

Ai) 
i=2 

by Monotonicity. For a lower bound, we can see that


Pr

n 

i=1 

Ai = 1 − Pr

n 

i=1 

Ai = 1 − Pr

n

 

i=1 

Ai ≥ 1 −

n 

i=1 

Pr
 Ai = 1 − np,


where the ≥-inequality follows from Boole’s Law.


So for example, if n = 10 and p = 0.01, we get the following bounds:


0.9 = 1 − 10 · 0.01 ≤ Pr {all connections are OK} ≤ 1 − 0.01 = 0.99. 

So we have concluded that the chance that all connections are okay is somewhere between 90% 
and 99%. Could it actually be as high as 99%? Yes, if the errors occur in such a way that all 
connection errors always occur at the same time. 

Could it be 90%? Yes, suppose the errors are such that we never make two wrong connections. In 
other words, the events Ai are all disjoint and the probability of getting it right is 

Pr
 Ai = 1 − Pr

�

 

Ai = 1 −

10 

i=1 

Pr
 Ai = 1 − 10 · 0.01 = 0.9.


6 Combinations of Events 

6.1 Carnival Dice 

There is a gambling game called Carnival Dice. A player picks a number between 1 and 6 and 
then rolls three fair dice—“fair” means each number is equally likely to show up on a die. The 
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player wins if his number comes up on at least one die. The player loses if his number does not 
appear on any of the dice. What is the probability that the player wins? This problem sounds 
simple enough that we might try an intuitive lunge for the solution. 

False Claim 6.1. The player wins with probability 1/2. 

False proof. Let Ai be the event that the ith die matches the player’s guess. 

Pr {win} = Pr {A1 ∪ A2 ∪ A3} (1) 
= Pr {A1} + Pr {A2} + Pr {A3} (2) 

1 1 1 
= 

6
+

6
+

6 
(3) 

1 
=

2 
(4) 

The justification for the equality (2) is that the union is disjoint. This may seem reasonable in a 
vague way, but in a precise way it’s not. To see that this is a silly argument, note that it would also 
imply that with six dice, our probability of getting a match is 1, i.e., it is sure to happen. This is 
clearly false—there is some chance that none of the dice match.4 

To compute the actual chance of winning at Carnival Dice, we can use Inclusion-Exclusion for 
three sets. The probability that one die matches the player’s guess is 1/6. The probability that two 
particular dice both match the player’s guess is 1/36: there are 36 possible outcomes of the two 
dice and exactly one of them has both equal to the player’s guess. The probability that all three 
dice match is 1/216. Inclusion-Exclusion gives: 

1 1 1 1 1 1 1 91
Pr {win} =

6
+

6
+

6 
− 

36 
− 

36 
− 

36
+

216 
= 

216 
≈ 42%. 

These are terrible odds in a gambling game; it is much better to play roulette, craps, or blackjack! 

6.2 More Intransitive Dice [Optional] 

[Optional] 

In Section 4, we√described three dice A, B and C such that the probabilities of A beating B, B beating C, C beating A 
are each p ::= ( 5 − 1)/2 ≈ 0.618. Can we increase this probability? For example, can we design dice so that each of 
these probabilities are, say, at least 3/4? The answer is “No.” In fact, using the elementary rules of probability, it’s easy 
to show that these “beating” probabilities cannot all exceed 2/3. 

In particular, we consider the experiment of rolling all three dice, and define [A] to be the event that A beats B, [B] the 
event that B beats C, and [C] the event that C beats A. 

Claim. 

2 
min {Pr {[A]} , Pr {[B]} , Pr {[C]}} ≤ 

3 
. (5) 

4On the other hand, the idea of adding these probabilities is not completely absurd. We will see in Course Notes 11 
that adding would work to compute the average number of matching dice: 1/2 a match per game with three dice and 
one match per game in the game with six dice. 



� � 

� � 

Course Notes 10: Introduction to Probability 15 

Proof. Suppose dice A, B, C roll numbers a, b, c. Events [A], [B], [C] all occur on this roll iff a > b, b > c, c > a, so in 
fact they cannot occur simultaneously. That is, 

[A] ∩ [B] ∩ [C] = ∅. (6) 

Therefore, 

0 = Pr {[A] ∩ [B] ∩ [C]} (by (6)) 

=1 − Pr [A] ∪ [B] ∪ [C] (Complement Rule and DeMorgan) � � � � � � 
≥1 − (Pr [A] + Pr [B] + Pr [C] (Boole’s Inequality) 

= Pr {[A]} + Pr {[B]} + Pr {[C]}) − 2 (Complement Rule) 

≥3 min {Pr {[A]} , Pr {[B]} , Pr {[C]}} − 2. (def of min) 

Hence 

2 ≥ 3min {Pr {[A]} , Pr {[B]} , Pr {[C]}} , 

proving (5). 

6.3 Derangements [Optional] 

[Optional] 

Suppose we line up two randomly ordered decks of n cards against each other. What is the probability that at least one 
pair of cards “matches”? Let Ai be the event that card i is in the same place in both arrangements. We are interested in� 
Pr { Ai }. To apply the Inclusion-Exclusion formula, we need to compute the probabilities of individual intersection 
events—namely, to determine the probability Pr {Ai1 ∩ Ai2 ∩ · · · ∩ Aik } that a particular set of k cards matches. To do 
so we apply our standard four steps. 

The sample space. The sample space involves a permutation of the first card deck and a permutation of the second 
deck. We can think of this as a tree diagram: first we permute the first deck (n! ways) and then, for each first deck 
arrangement, we permute the second deck (n! ways). By the product rule for sets, we get (n!)2 arrangements. 

Determine atomic event probabilities. We assume a uniform sample space, so each event has probability 1/(n!)2 . 
Determine the event of interest. These are the arrangements where cards i1, . . . , ik are all in the same place in both 

permutations. 
Find the event probability. Since the sample space is uniform, this is equivalent to determining the number atomic 

events in our event of interest. Again we use a tree diagram. There are n! permutations of the first deck. Given 
the first deck permutation, how many second deck permutations line up the specified cards? Well, those k cards 
must go in specific locations, while the remaining n − k cards can be permuted arbitrarily in the remaining n − k 
locations in (n − k)! ways. Thus, the total number of atomic events of this type is n!(n − k)!, and the probability 
of the event in question is 

n!(n − k)! (n − k)! 
= . 

n!n! n! � � 
nWe have found that the probability a specific set of k cards matches is (n − k)!/n!. There are 
k such sets of k cards. So 

the kth Inclusion-Exclusion term is 

n (n − k)! 
= 1/k!. 

k n! 

Thus, the probability of at least one match is 

1 − 1/2! + 1/3! − · · · ± 1/n! 

We can understand this expression by thinking about the Taylor expansion of 
−x e = 1 − x + x 2/2! − x 3/3! + · · · . 

In particular, 
−1 e = 1 − 1 + 1/2! − 1/3! + · · · . 

Our expression takes the first n terms of the Taylor expansion; the remainder is negligible—it is in fact less than 1/(n + 
1)!—so our probability is approximately 1 − 1/e. 
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A
B

set of all people
in the world

set of MIT
  students set of people who

live in Cambridge

Figure 6: What is the probability that a random person in the world is an MIT student, given that 
the person is a Cambridge resident? 

7 Conditional Probability 

Suppose that we pick a random person in the world. Everyone has an equal chance of being 
picked. Let A be the event that the person is an MIT student, and let B be the event that the 
person lives in Cambridge. The situation is shown in Figure 6. Clearly, both events A and B have 
low probability. But what is the probability that a person is an MIT student, given that the person 
lives in Cambridge? This is a conditional probability question. It can be concisely expressed in a 
special notation. In general, Pr {A | B} denotes the probability of event A, given event B. In this 
example, Pr {A | B} is the probability that the person is an MIT student, given that he or she is a 
Cambridge resident. 

How do we compute Pr {A | B}? Since we are given that the person lives in Cambridge, all out-
comes outside of event B are irrelevant; these irrelevant outcomes are diagonally shaded in the 
figure. Intuitively, Pr {A | B} should be the fraction of Cambridge residents that are also MIT 
students. That is, the answer should be the probability that the person is in set A ∩ B (horizontally 
shaded) divided by the probability that the person is in set B. This leads us to 

Definition 7.1. 

Pr {A ∩ B}
Pr {A | B} ::= 

Pr {B} 

providing Pr {B} �= 0. 

Rearranging terms gives the following 

Rule 7.2 (Product Rule, base case). Let A and B be events, with Pr {B} �= 0. Then 

Pr {A ∩ B} = Pr {B} · Pr {A | B} . 

Note that we are now using the term “Product Rule” for two separate ideas. One is the rule above, 
and the other is the formula for the cardinality of a product of sets. In the rest of this lecture, the 
phrase always refers to the rule above. We will see the connection between these two product 
rules shortly, when we study independent events. 
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As an example, what is Pr {B | B}? That is, what is the probability of event B, given that event B 
happens? Intuitively, this ought to be 1! The Product Rule gives exactly this result if Pr {B} �= 0: 

Pr {B ∩ B}
Pr {B | B} = 

Pr {B} 

=

Pr {B}

Pr {B}


= 1 

A routine induction proof based on the special case leads to The Product Rule for n events. 

Rule 7.3 (Product Rule, general case). Let A1, A2, . . . , An be events. 

Pr {A1 ∩ A2 ∩ · · · ∩ An} = Pr {A1} Pr {A2 | A1} Pr {A3 | A1 ∩ A2} · · · Pr {An | A1 ∩ · · · ∩ An−1} 

7.1 Conditional Probability Identities 

All our probability identities continue to hold when all probabilities are conditioned on the same 
event. For example, 

Pr {A ∪ B | C} = Pr {A | C} + Pr {B | C} − Pr {A ∩ B | C} (Conditional Inclusion-Exclusion) 

The identities carry over because for any event C, we can define a new probability measure, PrC {} 
on the same sample space by the rule that 

PrC {A} ::= Pr {A | C} . 

Now the conditional-probability version of an identity is just an instance of the original identity 
using the new probability measure. 

Problem 1. Prove that for any probability space, S, and event C ⊆ S, the function PrC {} is a 
probability measure on S. 

In carrying over identities to conditional versions, a common blunder is mixing up events before 
and after the conditioning bar. For example, the following is not a consequence of the Sum Rule: 

False Claim 7.4. 

Pr {A | B ∪ C} = Pr {A | B} + Pr {A | C} (B ∩ C = ∅) 

A counterexample is shown in Figure 7. In this case, Pr {A | B} = 1, Pr {A | C} = 1, and 
Pr {A | B ∪ C} = 1. However, since 1 �= 1 + 1, the equation above does not hold. 

7.2 Conditional Probability Examples 

This section contains as series of examples of conditional probability problems. Trying to solve 
conditional problems by intuition can be very difficult. On the other hand, we can chew through 
these problems with our standard four-step method along with the Product Rule. 
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sample space

A

B
C

Figure 7: This figure illustrates a case where the equation Pr {A | B ∪ C} = Pr {A | B} + 
Pr {A | C} does not hold. 

7.2.1 A Two-out-of-Three Series 

The MIT EECS department’s famed D-league hockey team, The Halting Problem, is playing a 2-
out-of-3 series. That is, they play games until one team wins a total of two games. The probability 
that The Halting Problem wins the first game is 1/2. For subsequent games, the probability of 
winning depends on the outcome of the preceding game; the team is energized by victory and 
demoralized by defeat. Specifically, if The Halting Problem wins a game, then they have a 2/3 
chance of winning the next game. On the other hand, if the team loses, then they have only a 1/3 
chance of winning the following game. What is the probability that The Halting Problem wins the 
2-out-of-3 series, given that they win the first game? 

This problem involves two types of conditioning. First, we are told that the probability of the team 
winning a game is 2/3, given that they won the preceding game. Second, we are asked the odds of 
The Halting Problem winning the series, given that they win the first game. 

Step 1: Find the Sample Space 

The sample space for the hockey series is worked out with a tree diagram in Figure 8. Each internal 
node has two children, one corresponding to a win for The Halting Problem (labeled W ) and one 
corresponding to a loss (labeled L). The sample space consists of six outcomes, since there are six 
leaves in the tree diagram. 

Step 2: Define Events of Interest 

The goal is to find the probability that The Halting Problem wins the series given that they win the 
first game. This suggests that we define two events. Let A be the event that The Halting Problem 
wins the series, and let B be the event that they win the first game. The outcomes in each event 
are checked in Figure 8. Our problem is then to determine Pr {A | B}. 

Step 3: Compute Outcome Probabilities 

Next, we must assign a probability to each outcome. We begin by assigning probabilities to edges 
in the tree diagram. These probabilities are given explicitly in the problem statement. Specifically, 
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2/3

L
1/2

W
1/2

W 1/3

L
2/3

L 1/3

W
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1st game
outcome 2nd game

outcome
3rd game
outcome probability
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outcome

Figure 8: What is the probability that The Halting Problem wins the 2-out-of-3 series, given that 
they win the first game? 

The Halting Problem has a 1/2 chance of winning the first game, so the two edges leaving the root 
are both assigned probability 1/2. Other edges are labeled 1/3 or 2/3 based on the outcome of the 
preceding game. We find the probability of an outcome by multiplying all probabilities along the 
corresponding root-to-leaf path. The results are shown in Figure 8. 

This method of computing outcome probabilities by multiplying edge probabilities was intro­
duced in our discussion of Monty Hall and Carnival Dice, but was not really justified. In fact, the 
justification is actually the Product Rule! For example, by multiplying edge weights, we conclude 
that the probability of outcome WW is 

1 2 1 
= 

2 
· 
3 3 

. 

We can justify this rigorously with the Product Rule as follows. 

Pr {WW } = Pr {win 1st game ∩ win 2nd game} 

= Pr {win 1st game} · Pr {win 2nd game | win 1st game} 

product of edge weights on 
root-to-leaf path 

1 2 
= 

2 
· 
3 

1 
= 

3 

The first equation states that WW is the outcome in which we win the first game and win the 
second game. The second equation is an application of the Product Rule. In the third step, we 
substitute probabilities from the problem statement, and the fourth step is simplification. The 
heart of this calculation is equivalent to multiplying edge weights in the tree diagram! 
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Here is a second example. By multiplying edge weights in the tree diagram, we conclude that the 
probability of outcome WLL is 

1 1 2 1 
= 

2 
· 
3 
· 
3 9 

. 

We can formally justify this with the Product Rule as follows: 

Pr {WLL} = Pr {win 1st ∩ lose 2nd ∩ lose 3rd} 

= Pr {win 1st} · Pr {lose 2nd | win 1st} Pr {lose 3nd | win 1st ∩ lose 2nd} 

product of edge weights on 
root-to-leaf path 

1 1 2 
= 

2 
· 
3 
· 
3 

1 
= 

9 

Step 4: Compute Event Probabilities 

We can now compute the probability that The Halting Problem wins the tournament given that 
they win the first game: 

Pr {A | B} = 

= 

= 

Pr {A ∩ B} 
Pr {B} 

(Product Rule) 

1/3 + 1/18 
1/3 + 1/18 + 1/9 

(Sum Rule for Pr {B}) 

7 
9 
. 

The Halting Problem has a 7/9 chance of winning the tournament, given that they win the first 
game. 

7.2.2 An a posteriori Probability 

In the preceding example, we wanted the probability of an event A, given an earlier event B. In 
particular, we wanted the probability that The Halting Problem won the series, given that they 
won the first game. It can be harder to think about the probability of an event A, given a later 
event B. For example, what is the probability that The Halting Problem wins its first game, given 
that the team wins the series? This is called an a posteriori probability. 

An a posteriori probability question can be interpreted in two ways. By one interpretation, we 
reason that since we are given the series outcome, the first game is already either won or lost; we 
do not know which. The issue of who won the first game is a question of fact, not a question of 
probability. Though this interpretation may have philosophical merit, we will never use it. 

We will always prefer a second interpretation. Namely, we suppose that the experiment is run over 
and over and ask in what fraction of the experiments did event A occur when event B occurred? 
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For example, if we run many hockey series, in what fraction of the series did the Halting Problem 
win the first game when they won the whole series? Under this interpretation, whether A precedes 
B in time is irrelevant. In fact, we will solve a posteriori problems exactly the same way as other 
conditional probability problems. The only trick is to avoid being confused by the wording of the 
problem! 

We can now compute the probability that The Halting Problem wins its first game, given that the 
team wins the series. The sample space is unchanged; see Figure 8. As before, let A be the event 
that The Halting Problem wins the series, and let B be the event that they win the first game. We 
already computed the probability of each outcome; all that remains is to compute the probability 
of event Pr {B | A}: 

Pr {B ∩ A}
Pr {B | A} = 

Pr {A} 
1/3 + 1/18


1/3 + 1/18 + 1/9

=


7

9


=


The probability of The Halting Problem winning the first game, given that they won the series is 
7/9. 

This answer is suspicious! In the preceding section, we showed that Pr {A | B} = 7/9. Could it 
be true that Pr {A | B} = Pr {B | A} in general? We can determine the conditions under which 
this equality holds by writing Pr {A ∩ B} = Pr {B ∩ A} in two different ways as follows: 

Pr {A | B} Pr {B} = Pr {A ∩ B} = Pr {B ∩ A} = Pr {B | A} Pr {A} . 

Evidently, Pr {A | B} = Pr {B | A} only when Pr {A} = Pr {B} �= 0. This is true for the hockey 
problem, but only by coincidence. In general, Pr {A | B} and Pr {B | A} are not equal! 

7.2.3 A Problem with Two Coins [Optional] 

[Optional] 

We have two coins. One coin is fair; that is, comes up heads with probability 1/2 and tails with probability 1/2. The 
other is a trick coin; it has heads on both sides, and so always comes up heads. Now suppose we randomly choose one 
of the coins, without knowing one we’re picking and with each coin equally likely. If we flip this coin and get heads, 
then what is the probability that we flipped the fair coin? 

This is one of those tricky a posteriori problems, since we want the probability of an event (the fair coin was chosen) 
given the outcome of a later event (heads came up). Intuition may fail us, but the standard four-step method works 
perfectly well. 

Step 1: Find the Sample Space 

The sample space is worked out with the tree diagram in Figure 9. 

Step 2: Define Events of Interest 

Let A be the event that the fair coin was chosen. Let B the event that the result of the flip was heads. The outcomes 
in each event are marked in the figure. We want to compute Pr {A | B}, the probability that the fair coin was chosen, 
given that the result of the flip was heads. 
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Figure 9: What is the probability that we flipped the fair coin, given that the result was heads? 

Step 3: Compute Outcome Probabilities 

First, we assign probabilities to edges in the tree diagram. Each coin is chosen with probability 1/2. If we choose 
the fair coin, then head and tails each come up with probability 1/2. If we choose the trick coin, then heads comes 
up with probability 1. By the Product Rule, the probability of an outcome is the product of the probabilities on the 
corresponding root-to-leaf path. All of these probabilities are shown in Figure 9. 

Step 4: Compute Event Probabilities 

Pr {A | B} = 
Pr {A ∩ B} 

(Product Rule)
Pr {B}
1/4 

=
1/4 + 1/2 

(Sum Rule for Pr {B}) 

1 
= 

3 

So the probability that the fair coin was chosen, given that the result of the flip was heads, is 1/3. 

7.2.4 A Variant of the Two Coins Problem [Optional] 

[Optional] Here is a variant of the two coins problem. Someone hands us either the fair coin or the trick coin, but we do 
not know which. We flip the coin 100 times and see heads every time. What can we say about the probability that we 
flipped the fair coin? Remarkably, nothing! That’s because we have no idea with what probability, if any, the fair coin 
was chosen. 

In fact, maybe we were intentionally handed the fair coin. If we try to capture this fact with a probability model, we 
would have to say that the probability that we have the fair coin is one. Then the conditional probability that we have 
the fair coin given that we flipped 100 heads remains one, because we do have it. 

A similar problem arises in polls around election time. A pollster picks a random American and ask his or her 
party affiliation. Suppose he repeats this experiment several hundred times and 60% of respondents say that they 
are Democrats. What can be said about the probability that a majority of Americans are Democrats? Nothing! 

To make the analogy clear, suppose the country contains only two people. There is either one Democrat and one 
Republican (like the fair coin), or there are two Democrats (like the trick coin). The pollster picks a random citizen 100 
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times; this is analogous to flipping the coin 100 times. Even if he always picks a Democrat (flips heads), he can not 
determine the probability that the country is all Democrat! 

Of course, if we have the fair coin, it is very unlikely that we would flip 100 heads. So in practice, if we got 100 heads, 
we would bet with confidence that we did not have the fair coin. This distinction between the probability of an event— 
which may be undefined—and the confidence we may have in its occurrence is central to statistical reasoning about 
real data. We’ll return to this important issue in the coming weeks. 

7.2.5 Medical Testing 

There is a degenerative disease called Zostritis that 10% of men in a certain population may suffer 
in old age. However, if treatments are started before symptoms appear, the degenerative effects 
can largely be controlled. 

Fortunately, there is a test that can detect latent Zostritis before any degenerative symptoms ap­
pear. The test is not perfect, however: 

•	 If a man has latent Zostritis, there is a 10% chance that the test will say he does not. (These 
are called “false negatives”.) 

•	 If a man does not have latent Zostritis, there is a 30% chance that the test will say he does. 
(These are “false positives”.) 

A random man is tested for latent Zostritis. If the test is positive, then what is the probability that 
the man has latent Zostritis? 

Step 1: Find the Sample Space 

The sample space is found with a tree diagram in Figure 10. 

Step 2: Define Events of Interest 

Let A be the event that the man has Zostritis. Let B be the event that the test was positive. The 
outcomes in each event are marked in Figure 10. We want to find Pr {A | B}, the probability that 
a man has Zostritis, given that the test was positive. 

Step 3: Find Outcome Probabilities 

First, we assign probabilities to edges. These probabilities are drawn directly from the problem 
statement. By the Product Rule, the probability of an outcome is the product of the probabilities 
on the corresponding root-to-leaf path. All probabilities are shown in the figure. 
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Figure 10: What is the probability that a man has Zostritis, given that the test is positive? 

Step 4: Compute Event Probabilities 

Pr {A | B} = 
Pr {A ∩ B}

Pr {B}
0.09 

= 
0.09 + 0.27 
1 

= 
4 

If a man tests positive, then there is only a 25% chance that he has Zostritis! 

This answer is initially surprising, but makes sense on reflection. There are two ways a man could 
test positive. First, he could be sick and the test correct. Second, could be healthy and the test 
incorrect. The problem is that most men (90%) are healthy; therefore, most of the positive results 
arise from incorrect tests of healthy people! 

We can also compute the probability that the test is correct for a random man. This event consists 
of two outcomes. The man could be sick and the test positive (probability 0.09), or the man could 
be healthy and the test negative (probability 0.63). Therefore, the test is correct with probability 
0.09 + 0.63 = 0.72. This is a relief; the test is correct almost 75% of the time. 

But wait! There is a simple way to make the test correct 90% of the time: always return a negative 
result! This “test” gives the right answer for all healthy people and the wrong answer only for the 
10% that actually have the disease. The best strategy is to completely ignore the test result!5 

5In real medical tests, one usually looks at some underlying measurement (e.g., temperature) and uses it to decide 
whether someone has the disease or not. “Unusual” measurements lead to a conclusion that the disease is present. But 
just how unusual a measurement should lead to such a conclusion? If we are conservative, and declare the disease 
present when things are even slightly unusual, we will have a lot of false positives. If we are relaxed, and declare 
the disease present only when the measurement is very unusual, then we will have a lot of false negatives. So by 
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There is a similar paradox in weather forecasting. During winter, almost all days in Boston are wet 
and overcast. Predicting miserable weather every day may be more accurate than really trying to 
get it right! This phenomenon is the source of many paradoxes; we will see more in coming weeks. 

7.3 Confusion about Monty Hall 

Using conditional probability we can examine the main argument that confuses people about the 
Monty Hall example of Section 3. 

Let the doors be numbered 1, 2, 3, and suppose the contestant chooses door 1 and then Carol opens 
door 2. Now the contestant has to decide whether to stick with door 1 or switch to door 3. To do 
this, he considers the probability that the prize is behind the remaining unopened door 3, given 
that he has learned that it is not behind door 2. 

To calculate this conditional probability, let W be the event that the contestant chooses door 1, 
and let Ri be the event that the prize is behind door i, for i = 1, 2, 3. The contestant knows that 
Pr {W } = 1/3 = Pr {Ri}, and since his choice has no efffect on the location of the prize, he can say 
that 

1 1 1
Pr {Ri ∩ W } = Pr {Ri} · Pr {W } =

3 
· 
3

=
9 

and likewise, 

Pr Ri ∩ W = (2/3)(1/3) = 2/9, 

for i = 1, 2, 3. 

Now the probability that the prize is behind the remaining unopened door 3, given that the con­
testant has learned that it is not behind door 2 is Pr R3 ∩ W � R2 ∩ W . But 

Pr R3 ∩ W � R2 ∩ W ::= 
Pr R �3 ∩ R2 ∩ W 

= 
Pr {R3} ∩ W � =

1/9
=

1 

Pr R2 ∩ W Pr R2 ∩ W 2/9 2 
. 

Likewise, Pr R1 ∩ W � R2 ∩ W = 1/2. So the contestant concludes that the prize is equally 
likely to be behind door 1 as behind door 3, and therefore there is no advantage to the switch 
strategy over the stick strategy. But this contradicts our earlier analysis! 

Whew, that is confusing! Where did the contestant’s reasoning go wrong? (Maybe, like some Ph.D. 
mathematicians, you are convinced by the contestant’s reasoning and now think we must have 
made a mistake in our earlier conclusion that switching is twice as likely to win than sticking.) 
Let’s try to sort this out. 

There is a fallacy in the contestant’s reasoning—a subtle one. In fact, his calculation that, given 
that the prize is not behind door 2, that it’s equally likely to be behind door 1 as door 3 is correct. 
His mistake is in not realizing that he knows more than that the prize is not behind door 2. He has 
confused two similar, but distinct, events, namely, 

shifting the decision threshold, one can trade off on false positives versus false negatives. It appears that the tester in 
our example above did not choose the right threshold for their test—they can probably get higher overall accuracy by 
allowing a few more false negatives to get fewer false positives. 
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1. the contestant chooses door 1 and the prize is not behind door 2, and, 

2. the contestant chooses door 1 and then Carol opens door 2.. 

These are different events and indeed they have different probabilities. The fact that Carol opens 
door 2 tells the contestant more than that the prize is not behind door 2. 

We can precisely demonstrate this with our sample space of triples (i, j, k), where the prize is 
behind door i, the contestant picks door j, and Carol opens door k. In particular, let Ci be the 
event that Carol opens door i. Then, event 1. is R2 ∩ W , and event 2. is W ∩ C2. 

We can confirm the correctness of the contestant’s calculation that the prize is behind door 1 given 
event 1: 

R2 ∩ W ::= {(1, 1, 2), (3, 1, 2), (1, 1, 3)}� � 1 1 1 2
Pr R2 ∩ W = =

18
+

9
+

18
=

9 

Pr 
� 
R1 �� R2 ∩ W 

� 
= 

Pr {{(1, 1, 2), (1, 1, 3)}} 1 
= 

2/9 2 
. 

But although the contestant’s calculation is correct, his blunder is that he calculated the wrong 
thing. Specifically, he conditioned his conclusion on the wrong event. The contestant’s situation 
when he must decide to stick or switch is that event 2. has occurred. So he should have calculated: 

W ∩ C2 ::= {(1, 1, 2), (3, 1, 2)}
1 1 1

Pr {W ∩ C2} = 
18

+
9

=
6 

Pr {R1 | W ∩ C2} = 
Pr {(1, 1, 2)} 

=
1 

1/6 3 
. 

In other words, the probability that the prize is behind his chosen door 1 is 1/3, so he should 
switch because the probability is 2/3 that the prize is behind the other door 3, exactly as we 
correctly concluded in Section 3. 

Once again, we see that mistaken intuition gets resolved by falling back on an examination of 
outcomes in the probability space. 

8 Case Analysis 

Combining the sum and product rules provides a natural way to determine the probabilities of 
complex events via case analysis. As a motivating example, we consider a rather paradoxical true 
story. 

8.1 Discrimination Lawsuit 

Several years ago there was a sex discrimination lawsuit against Berkeley. A female professor was 
denied tenure, allegedly because she was a woman. She argued that in every one of Berkeley’s 
22 departments, the percentage of male applicants accepted was greater than the percentage of 
female applicants accepted. This sounds very suspicious, if not paradoxical! 
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However, Berkeley’s lawyers argued that across the whole university the percentage of male appli­
cants accepted was actually lower than the percentage of female applicants accepted! This suggests 
that if there was any sex discrimination, then it was against men! Must one party in the dispute 
be lying? 

8.1.1 A false analysis 

Here is a fallacious analysis of the discrimination lawsuit. 

To clarify the arguments, let’s and express them in terms of conditional probabilities. Suppose that 
there are only two departments, EE and CS, and consider the experiment where we ignore gender 
and pick an applicant at random. Define the following events: 

• Let A be the event that the applicant is accepted. 

• Let FEE the event that the applicant is a female applying to EE. 

• Let FCS the event that the applicant is a female applying to CS. 

• Let MEE the event that the applicant is a male applying to EE. 

• Let MCS the event that the applicant is a male applying to CS. 

Assume that all applicants are either male or female, and that no applicant applied to both depart­
ments. That is, the events FEE , FCS , MEE , and MCS are all disjoint. 

The female plaintiff makes the following argument: 

Pr {A | FEE } < Pr {A | MEE } (7) 
Pr {A | FCS } < Pr {A | MCS } (8) 

That is, in both departments, the probability that a woman is accepted is less than the probability 
that a man is accepted. The university retorts that overall a woman applicant is more likely to be 
accepted than a man: 

Pr {A | FEE ∪ FCS } > Pr {A | MEE ∪ MCS } (9) 

It is easy to believe that these two positions are contradictory. 

[Optional] In fact, we might even try to prove this as follows: 

Pr {A | FEE } + Pr {A | FCS } < Pr {A | MEE } + Pr {A | MCS } (by (7) & (8)). (10) 

Therefore 

Pr {A | FEE ∪ FCS } < Pr {A | MEE ∪ MCS } , (11) 

which exactly contradicts the university’s position! 

However, there is a problem with this argument; equation (11) follows (10) only if we accept False Claim 7.4 above! 
Therefore, this argument is invalid. 
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In fact, the table below shows a set of application statistics for which the assertions of both the

plaintiff and the university hold: 

CS 0 females accepted, 1 applied 0% 
50 males accepted, 100 applied 50% 

EE 70 females accepted, 100 applied 70% 
1 male accepted, 1 applied 100% 

Overall 70 females accepted, 101 applied ≈ 70% 
51 males accepted, 101 applied ≈ 51% 

In this case, a higher percentage of males were accepted in both departments, but overall a higher 
percentage of females were accepted! Bizarre! 

Let’s think about the reason that this example is counterintuitive. Our intuition tells us that we 
should be able to analyze an applicant’s overall chance of acceptance through case analysis. A 
female’s overall chance of acceptance should be some sort of average of her chance of acceptance 
within each department, and similarly for males. Since the female’s chance in each department is 
smaller, her overall average chance ought to be smaller as well. What is going on? 

A correct analysis of the Discrimination Lawsuit problem rests on a proper rule for doing case 
analysis. This rule is called the Law of Total Probability. 

8.2 The Law of Total Probability 

Theorem 8.1 (Total Probability). If a sample space is the disjoint union of events B0, B1, . . . , then for 
all events A, 

Pr {A} = Pr {A ∩ Bi} . 
i∈N 

Theorem 8.1 follows immediately from the Sum Rule, because A is the disjoint union of A ∩ B0, 
A ∩ B1, . . . . 

A more traditional form of this theorem uses conditional probability. 

Corollary 8.2 (Total Probability). If a sample space is the disjoint union of events B0, B1, . . . , then for 
all events A, 

Pr {A} = Pr {A | Bi} Pr {Bi} . 
i∈N 

Example 8.3. The probability a student comes to class is 1/2 in rainy weather, but 1/10 in sunny 
weather. If the probability that it rains is 1/5, what is the probability the student comes to class? 

We can answer this question using the law of Total Probability. If we let C be the event that the 
student comes to class, and R the event that it rains, then we have � � � � � 

Pr {C} = Pr {C | R} Pr {R} + Pr C � R Pr R 

= (1/2) · (1/5) + (1/10) · (4/5) 
= 6/50 
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8.3 Resolving the Discrimination Lawsuit Paradox 

With the law of total probability in hand, we can perform a proper case analysis for our discrimi­
nation lawsuit. 

Let FA be the event that a female applicant is accepted. 

Assume that no applicant applied to both departments. That is, the events, FEE , that the female 
applicant is applying to EE, and FCS , that she is applying to CS, are disjoint (and in fact comple­
mentary). 

Since FEE and FCS partition the sample space, we can apply the law of total probability to analyze 
acceptance probability: 

Pr {FA}	 = Pr {FA | FEE } Pr {FEE } + Pr {FA | FCS } Pr {FCS } 

= (70/100) · (100/101) + (0/1) · (1/101) = 70/101, 

which is the correct answer. Notice that as we intuited, Pr {FA} is a weighted average of the condi­
tional probabilities of FA, where the weights (of 100/101 and 1/101 respectively) are simply the 
probabilities of being in each condition. 

In the same fashion, we can define the events MA and evaluate a male’s overall acceptance prob­
ability: 

Pr {MA}	 = Pr {MA | MEE } Pr {MEE } + Pr {MA | MCS } Pr {MCS } 

= (1/1) · (1/101) + (50/100) · (100/101) = 51/101, 

which is the correct answer. As before, the overall acceptance probability is a weighted average of 
the conditional acceptance probabilities. 

But here we have the source of our paradox: the weights of the weighted averages for males 
and females are different. For the females, the bulk of the weight (common department) falls on 
the condition (department) in which females do very well (EE); thus the weighted average for 
females is quite good. For the males, the bulk of the weight falls on the condition in which males 
do poorly (CS); thus the weighted average for males is poor. 

Which brings us back to the allegation in the lawsuit. Having precisely analyzed the arguments 
of the plaintiff and the defendent, you are in a position to judge how persuasive they are. If you 
were on the jury, would you find Berkeley guilty of gender bias in its admissions? 

8.4 On-Time Airlines 

[Optional] 

Here is a second example of the same paradox. Newspapers publish on-time statistics for airlines to help travelers 
choose the best carrier. The on-time rate for an airline is defined as follows: 

Airline on-time rate = 
#flights less than 15 minutes late 

#flights total 
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This seems reasonable, but actually can be completely misleading! Here is some on-time data for two airlines in the 
late 80’s. 

Alaska Air America West 
Airport #on-time #flights % #on-time #flights % 
Los Angeles 500 560 89 700 800 87 
Phoenix 220 230 95 4900 5300 92 
San Diego 210 230 92 400 450 89 
San Francisco 500 600 83 320 450 71 
Seattle 1900 2200 86 200 260 77 
OVERALL 3330 3020 87 6520 7260 90 

This is the same paradox as in the Berkeley lawsuit; America West has a better overall on-time percentage, but Alaska 
Airlines does a better job at every single airport! The problem is that Alaska Airlines flies proportionally more of its 
flights to bad weather airports like Seattle; whereas America West is based in fair-weather, low-traffic Phoenix! 

9 A Dice Game with an Infinite Sample Space 

Suppose two players take turns rolling a fair six-sided die, and whoever first rolls a 1 first is the 
winner. It’s pretty clear that the first player has an advantage since he has the first chance to win. 
How much of an advantage? 

The game is simple and so is its analysis. The only part of the story that turns out to require some 
attention is the formulation of the probability space. 

9.1 Probability that the First Player Wins 

Let W be the event that the first player wins. We want to find the probability Pr {W }. Now the 
first player can win in two separate ways: he can win on the first roll or he can win on a later roll. 
Let F be the event that the first player wins on the first roll. We assume the die is fair; that means 
Pr {F } = 1/6. 

So suppose the first player does not win on the first roll, that is, event F occurs. But now on the 
second move, the roles of the first and second player are simply the reverse of what they were on 
the first move. So the probability that the first player now wins is the same as the probability at 
the start of the game that the second player would win, namely 1 − Pr {W }. In other words, 

� F = 1 − Pr {W } . (12)
Pr


So


� F Pr
 =

1 
6 

+ (1 − Pr {W })5 
6 
.Pr {W } = Pr {F } + Pr


Solving for Pr {W } yields 

6
Pr {W } = 

11 
≈ 0.545. 

We have figured out that the first player has about a 4.5% advantage. 
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9.2 The Possibility of a Tie 

Our calculation that Pr {W } = 6/11 is correct, but it rests on an important, hidden assumption. 
We assumed that the second player does win if the first player does not win. In other words, there 
will always be a winner. This seems obvious until we realize that there may be a game in which 
neither player wins—the players might roll forever without rolling a 1. Our assumption is wrong! 

But a more careful look at the reasoning above reveals that we didn’t actually assume that there 
always is a winner. All we need to justify is the assumption that the probability that the second 
player wins equals one minus the probability that the first player wins. This is equivalent to 
assuming, not that there will always be a winner, but only that the probability is 1 that there is a 
winner. 

How can we justify this? Well, the probability of a winner exactly on the nth roll is the probability, 
(5/6)n−1 , that there is no winner on the first n − 1 rolls, times the probability, 1/6, that then there 
is a winner on the nth roll. So the probability that there is a winner is 

� � 
5 
�n−1 1 1 � � 

5 
�n−1∞ ∞ 

= 
6 6 6 6 

n=1 n=1 
∞ 

n=0 

�	
5 
6 

�n1

6


=


1

6

·
 1 

= 1,
1 − 5/6 

=


as required. 

9.3 The Sample Space 

Again, the calculation in the previous subsection was correct: the probability that some player wins 
is indeed 1. But we ought to feel a little uneasy about calculating an infinite sum of probabilities 
without ever having described the probability space. Notice that in all our previous examples this 
wasn’t much of an issue, because all the sample spaces were finite. But in the dice game, there are 
an infinite number of outcomes because the game can continue for any finite number of rolls. 

Following our recipe for modelling experiments, we should first decide on the sample space, 
namely, what is an outcome of our dice game? Since a game involves a series of dice rolls until 
a 1 appears, it’s natural to include as outcomes the sequences of rolls which determine a winner. 
Namely, we include as sample points all sequences of integers between 1 and 6 that end with a 
first occurrence of 1. 

For example, the sequences (1), (5, 4, 1), (6, 6, 6, 6, 1) are sample points describing wins by the first 
player—after 1, 3 and 5 rolls, respectively. Similarly, (2, 1) and (5, 4, 3, 1) are outcomes describing 
wins by the second player. On the other hand, (3, 2, 3) is not a sample point because no 1 occurs, 
and (3, 1, 2, 1) is not a sample point because it continues after the first 1. 

Now since we assume the die is fair, each number is equally likely to appear, so it’s natural to 
define the probability of any winning sample point of length n to be (1/6)n . 
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The outcomes in the event that there is a winner on the nth roll are the 5n−1 length-n sequences 
whose first 1 occurs in the nth position. Therefore this event has the probability 

� 
1 
�n � 

5 
�n−1 1

5n−1 = 
6 6 6 

. 

This is the probability that we used in the previous subsection to calculate that the probability is 1 
that there is a winner. 

Besides winning sequences, which are necessarily of finite length, we should consider including 
sample points corresponding to games with no winner. Now since the winning probabilities al­
ready total to one, any sample points we choose to reflect no-winner situations must be assigned 
probability zero, and moreover the event consisting of all the no-winner points that we include 
must have probability zero. 

A natural choice for the no-winner outcomes would be all the infinite sequences of integers be-
tween 2 and 6, namely, those with no occurrence of a 1. This leads to a legitimate sample space. 
But for the analysis we just did of the dice game, it makes absolutely no difference what no-win out- 
comes we include. In fact, it doesn’t matter whether we include any no-win points at all. 

It does seem a little strange to model the game in a way that denies the logical possibility of an 
infinite sequence of rolls. On the other hand, we have no need to model the details of the infinite 
sequences of rolls when there is no winner. So let’s define our sample space to include a single 
additional outcome which does represent the possibility of the game continuing forever with no 
winner; the probability of this “no winner” point is defined to be 0. So this choice of sample space 
acknowledges the logical possibility of an infinite game.6 

10 Independence 

10.1 The Definition 

Definition 10.1. Suppose A and B are events, and B has positive probability. Then A is indepen- 
dent of B iff 

Pr {A | B} = Pr {A} . 

In other words, that fact that event B occurs does not affect the probability that event A occurs. 

Figure 11 shows an arrangement of events such that A is independent of B. Assume that the 
probability of an event is proportional to its area in the diagram. In this example, event A occupies 
the same fraction of event B as of event S, namely 1/2. Therefore, the probability of event A is 1/2 
and the probability of event A, given event B, is also 1/2. This implies that A is independent of B. 

6Representing the no-winner event by a single outcome has the technical advantage that every set of outcomes is an 
event—which would not be the case if we explicitly included all the infinite sequences without occurrences of a 1 (cf., 
footnote 2). 
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sample
space

B
A

Figure 11: In this diagram, event A is independent of event B. 

10.2 An Example with Coins 

Suppose we flip two fair coins. Let A be the event that the first coin is heads, and let B be the event 
that the second coin is heads. Since the coins are fair, we have Pr {A} = Pr {B} = 1/2. In fact, the 
probability that the first coin is heads is still 1/2, even if we are given that the second coin is heads; 
the outcome of one toss does not affect the outcome of the other. In symbols, Pr {A | B} = 1/2. 
Since Pr {A | B} = Pr {A}, events A and B are independent. 

Now suppose that we glue the coins together, heads to heads. Now each coin still has probability 
1/2 of coming up heads; that is, Pr {A} = Pr {B} = 1/2. But if the first coin comes up heads, then 
the glued on second coin must be tails! That is, Pr {A | B} = 0. Now, since Pr {A | B} �= Pr {A}, 
the events A and B are not independent. 

10.3 The Independent Product Rule 

The Definition 10.1 of independence of events A and B does not apply if the probability of B is 
zero. It’s useful to extend the definition to the zero probability case by defining every event to be 
independent of a zero-probability event—even the event itself. 

Definition 10.2. If A and B are events and Pr {B} = 0, then A is defined to be independent of B. 

Now there is an elegant, alternative way to define independence that is used in many texts: 

Theorem 10.3. Events A and B are independent iff 

Pr {A ∩ B} = Pr {A} · Pr {B} . (Independent Product Rule) 

Proof. If Pr {B} = 0, then Theorem 10.3 follows immediately from Definition 10.2, so we may 
assume that Pr {B} > 0. Then 

A is independent of B iff Pr {A | B} = Pr {A} (Definition 10.1) 

iff 
Pr {A ∩ B} 

= Pr {A} (Definition 7.1)
Pr {B}

iff Pr {A ∩ B} = Pr {A} Pr {B} (multiplying by Pr {B} > 0) 
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The Independent Product Rule is fundamental and worth remembering. In fact, many texts use 
the Independent Product Rule as the definition of independence. 

Notice that because the Rule is symmetric in A and B, it follows immediately that independence 
is a symmetric relation. For this reason, we do not have to say, “A is independent of B” or vice 
versa; we can just say “A and B are independent”. 

10.4 Independence of the Complement 

We think of A being independent of B intuitively as meaning that “knowing” whether or not B 
has occurred has no effect on the probability of A. This intuition is supported by an easy, but 
important property of our formal Definition 10.1 of independence: 

Lemma 10.4. If A is independent of B, then A is independent of B. 

Proof. If A is independent of B, then 

Pr {A} Pr B = Pr {A} (1 − Pr {B}) (Complement Rule) 
= Pr {A} − Pr {A} Pr {B} 

= Pr {A} − Pr {A ∩ B} (independence) 
= Pr {A − B} (Difference Rule) 

= Pr A ∩ B (Definition of A − B). 

That is, 

Pr {A} Pr B = Pr A ∩ B 

so A and B are independent by Theorem 10.3. 

10.5 Disjoint Events vs. Independent Events 

Suppose that events A and B are disjoint, as shown in Figure 12; that is, no outcome is in both 
events. In the diagram, we see that Pr {A} is non-zero. On the other hand: 

A
B

sample space

Figure 12: This diagram shows two disjoint events, A and B. Disjoint events are not independent! 

Pr {A | B} = 
Pr {A ∩ B} 

= 0.
Pr {B} 

Therefore, Pr {A | B} �= Pr {A}, and so event A is not independent of event B. In general, disjoint 
events are not independent. 
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11 Independent Coins and Dice 

11.1 An Experiment with Two Coins 

Suppose that we flip two independent, fair coins. Let A be the event that the coins match; that is, 
both are heads or both are tails. Let B the event that the first coin is heads. Are these independent 
events? 

At first, the answer may appear to be “no”. After all, whether or not the coins match depends on 
how the first coin comes up; if we toss HH , then they match, but if we toss TH , then they do not. 

The preceding observation is true, but does not imply dependence. Independence is a precise, 
technical concept, and may hold even if there is a “causal” relationship between two events. In 
this case, the two events are independent, as we prove by the usual procedure. 

Claim 11.1. Events A and B are independent. 

T

H

H

H

T

T1/2

1/2

1/2

1/2

1/2

1/2

TT

TH

HT

HH

probabilitycoin2coin 1
event A:
coins
match?

event B:
1st coin
heads?

1/4

1/4

1/4

1/4
event
A    B?

Figure 13: This is a tree diagram for the two coins experiment. 

Proof. We must show that Pr {A | B} = Pr {A}. 

Step 1: Find the Sample Space. The tree diagram in Figure 13 shows that there are four outcomes in 
this experiment, HH , TH , HT , and TT . 

Step 2: Define Events of Interest. As previously defined, A is the event that the coins match, and B 
is the event that the first coin is heads. Outcomes in each event are marked in the tree diagram. 

Step 3: Compute Outcome Probabilities. Since the coins are independent and fair, all edge probabili­
ties are 1/2. We find outcome probabilities by multiplying edge probabilities on each root-to-leaf 
path. All outcomes have probability 1/4. 

Step 4: Compute Event Probabilities. 

Pr {HH} 1/4 1
Pr {A | B} = 

Pr {A ∩ B} 
= 

Pr {HH } + Pr {HT } 
=

1/4 + 1/4
=

2Pr {B} 
1 1 1

Pr {A} = Pr {HH} + Pr {TT } =
4

+
4

=
2 
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Therefore, Pr {A | B} = Pr {A}, and so A and B are independent events as claimed. 

11.2 A Variation of the Two-Coin Experiment 

Now suppose that we alter the preceding experiment so that the coins are independent, but not 
fair. That is each coin is heads with probability p and tails with probability 1 − p. Again, let A be 
the event that the coins match, and let B the event that the first coin is heads. Are events A and B 
independent for all values of p? 

The problem is worked out with a tree diagram in Figure 14. The sample space and events are the 
same as before, so we will not repeat steps 1 and 2 of the probability calculation. 

T

H

H

H

T

T

TT

TH

HT

HH

probability event A:
coins
match?

event B:
1st coin
heads?

event
A    B?

p

p

p

1-p

1-p

1-p

(1-p) 2

p(1-p)

p(1-p)

p2

coin 2
coin 1

Figure 14: This is a tree diagram for a variant of the two coins experiment. The coins are still 
independent, but no longer necessarily fair. 

Step 3: Compute Outcome Probabilities. Since the coins are independent, all edge probabilities are p 
or 1 − p. Outcome probabilities are products of edge probabilities on root-to-leaf paths, as shown 
in Figure 14. 

Step 4: Compute Event Probabilities. We want to determine whether Pr {A | B} = Pr {A}. 

Pr {HH} p2 

Pr {A | B} = 
Pr {A ∩ B} 

= 
Pr {HH} + Pr {HT } 

= 
p2 + p(1 − p)

= p
Pr {B}

Pr {A} = Pr {HH} + Pr {TT } = p2 + (1 − p)2 = 1 − 2p + 2p2 

Events A and B are independent only if these two probabilities are equal: 

Pr {A | B} = Pr {A} 

⇔ p = 1 − 2p + 2p2 

⇔ 0 = 1 − 3p + 2p2 

⇔ 0 = (1 − 2p)(1 − p) 

⇔ p =

1 
2 
, 1 
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The two events are independent only if the coins are fair or if both always come up heads. Evi­
dently, there was some dependence lurking in the previous problem, but it was cleverly hidden 
by the unbiased coins! 

11.3 Independence of Dice Events [Optional] 

[Optional] 

Suppose we throw two fair dice. Is the event that the sum is equal to a particular value independent of the event that 
the first throw yields a particular value? More specifically, let A be the event that the first die turns up 3 and B the 
event that the sum is 6. Are the two events independent? 

No, because 

Pr {B | A} = 
Pr {B ∩ A} 

=
1/36 

= 
1 

Pr {A} 1/6 6 
, 

whereas Pr {B} = 5/36. 

On the other hand, let A be the event that the first die turns up 3 and B the event that the sum is 7. Then 

Pr {B | A} = 
Pr {B ∩ A} 

=
1/36 

= 
1 

Pr {A} 1/6 6 
, 

whereas Pr {B} = 6/36. So in this case, the two events are independent. 

Can you explain the difference between these two results? 

12 Mutual Independence 

We have defined what it means for two events to be independent. But how can we talk about 
independence when there are more than two events? 

12.1 Example: Blood Evidence 

During the O. J. Simpson trial a few years ago, a probability problem involving independence 
came up. A prosecution witness claimed that only one in 200 Americans has the blood type found 
at the crime scene. The witness then presented facts something like the following: 

1 
• 

10 
of people have type O blood. 

1 
• 

5 
of people have a positive Rh factor. 

1 
• 

4 
of people have another special marker. 

The one in 200 figure came from multiplying these three fractions. Was the witness reasoning 
correctly? 

The answer depends on whether or not the three blood characteristics are independent. This 
might not be true; maybe most people with O+ blood have the special marker. When the math-
competent defense lawyer asked the witness whether these characteristics were independent, he 
could not say. He could not justify his claim. 
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12.2 Definition of Mutual Independence 

What sort of independence is needed to justify multiplying probabilities of more than two events? 
The notion we need is called mutual independence. 

Definition 12.1. Events A1, A2, . . . , An are mutually independent if for all i such that 1 ≤ i ≤ n and 
for all J ⊆ {1, . . . , n} − {i}, we have:    �� �  

Pr  
Ai �� Aj  

= Pr {Ai} . 
j∈J 

In other words, a collection of events is mutually independent if each event is independent of the 
intersection of every subset of the others. An equivalent way to formulate mutual independence 
is give in the next Lemma, though we will skip the proof. Some texts use this formulation as the 
definition. 

Lemma 12.2. Events A1, A2, . . . , An are mutually independent iff for all J ⊆ {1, . . . , n}, we have:   �  � 
Pr Aj = Pr {Aj } .   

j∈J j∈J 

For example, for n = 3, Lemma 12.2 says that 

Corollary. Events A1, A2, A3 are mutually independent iff all of the following hold: 

Pr {A1 ∩ A2} = Pr {A1} · Pr {A2}
Pr {A1 ∩ A3} = Pr {A1} · Pr {A3}
Pr {A2 ∩ A3} = Pr {A2} · Pr {A3}

Pr {A1 ∩ A2 ∩ A3} = Pr {A1} · Pr {A2} · Pr {A3} (13) 

Note that A is independent of B iff it is independent of B. This follows immediately from 
Lemma 10.4 and the fact that B = B. This result also generalizes to many events and provides yet 
a third equivalent formulation of mutual independence. Again, we skip the proof: 

Theorem 12.3. For any event, A, let A(1) ::=A and A(−1) ::=A. Then events A1, A2, . . . , An are mutually 
independent iff 

n n 

Pr A
( 
i
xi) = Pr A

( 
i
xi ) (14) 

i=1 i=1 

for all xi ∈ {1, −1} where 1 ≤ i ≤ n. 
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12.3 Carnival Dice Revisited 

We have already considered the gambling game of Carnival Dice in Section 6.1. Now, using in-
dependence we can more easily work out the probability that the player wins by calculating the 
probability of its complement. 

Namely, let Ai be the event that the ith die matches the player’s guess. So A1 ∪ A2 ∪ A3 is the event 
that the player wins. But 

Pr {A1 ∪ A2 ∪ A3} = 1 − Pr A1 ∪ A2 ∪ A3 = 1 − Pr A1 ∩ A2 ∩ A3 . 

Now, since the dice are independent, Theorem 12.3 implies � � � � � � � � � 
Pr A1 ∩ A2 ∩ A3 = Pr A1 Pr A2 Pr A3 = 5/6)3. 

Therefore � 91
Pr {A1 ∪ A2 ∪ A3} = 1 − 5/6)3 = 

216 
. 

This is the same value we computed previously using Inclusion-Exclusion. But with independent 
events, the approach of calculating the complement is often easier than using Inclusion-Exclusion. 
Note that this example generalizes nicely to a larger �number of dice—with 6 dice the probability 
of a match is 1 − 5/6)6 ≈ 67%, with 12 dice it is 1 − 5/6)12 ≈ 89%. Using Inclusion-Exclusion in 
these cases would have been messy. 

12.4 Circuit Failure Revisited 

Let’s reconsider the circuit problem from section 5.2, where a circuit containing n connections is 
to be wired up and Ai is the event that the ith connection is made correctly. Again, we want to 
know the probability that the entire circuit is wired correctly, but this time when we know that all 
the events Ai are mutually independent. 

If p ::= Pr Ai is the probability that the ith connection is made incorrectly, then because the event 
are independent, we can conclude that the probability that the circuit is correct is 

� n 
1 Pr {Ai} = 

(1 − p)n . For n = 10, and p = 0.01 as in section 5.2, this comes out to around 90.4%—very close to 
the lower bound. That’s because the lower bound is achieved when at most one error occurs at a 
time, which is nearly true in this case of independent errors, because the chance of more than one 
error is relatively small (less than 1%). 

12.5 A Red Sox Streak [Optional] 

[Optional] 

The Boston Red Sox baseball team has lost 14 consecutive playoff games. What are the odds of such a miserable streak? 

Suppose that we assume that the Sox have a 1/2 chance of winning each game and that the game results are mutually 
independent. Then we can compute the probability of losing 14 straight games as follows. Let Li be the event that the 
Sox lose the ith game. This gives: 
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Pr {L1 ∩ L2 ∩ · · · ∩ L14} = Pr {L1} Pr {L2 } · · · Pr {L14}� �14
1 

= 
2 
1 

= 
16, 384 

The first equation follows from the second definition of mutual independence. The remaining steps use only substitu­
tion and simplification. 

These are pretty long odds; of course, the probability that the Red Sox lose a playoff game may be greater than 1/2. 
Maybe they’re cursed. 

12.6 An Experiment with Three Coins 

This is a tricky problem that always confuses people! Suppose that we flip three fair coins and 
that the results are mutually independent. Define the following events: 

• A1 is the event that coin 1 matches coin 2 

• A2 is the event that coin 2 matches coin 3 

• A3 is the event that coin 3 matches coin 1 

Are these three events mutually independent? 

The sample space is easy enough to find that we will dispense with the tree diagram: there are 
eight outcomes, corresponding to every possible sequence of three flips: HHH , HHT , HTH , . . . . 
We are interested in events A1, A2, and A3, defined as above. Each outcome has probability 1/8. 

To see if the three events are mutually independent, we must prove a sequence of equalities. It 
will be helpful first to compute the probability of each event Ai: 

Pr {A1} = Pr {HHH } + Pr {HHT } + Pr {TTT } + Pr {TTH}
1 1 1 1 

= 
8

+
8

+
8

+
8 

1 
= 

2 

By symmetry, Pr {A2} = Pr {A3} = 1/2. Now we can begin checking all the equalities required 
for mutual independence. 

Pr {A1 ∩ A2}	 = 

= 

= 

= 

= 

Pr {HHH} + Pr {TTT }
1 1 
8

+
8 

1 
4 
1 1 · 
2 2 
Pr {A1} Pr {A2} 
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By symmetry, Pr {A1 ∩ A3} = Pr {A1} Pr {A3} and Pr {A2 ∩ A3} = Pr {A2} Pr {A3} must hold as 
well. We have now proven that every pair of events is independent. But this is not enough to 
prove that A1, A2, and A3 are mutually independent! We must check the fourth condition: 

Pr {A1 ∩ A2 ∩ A3} = Pr {HHH } + Pr {TTT }
1 1 

= 
8

+
8 

1 
= 

4 
1�= Pr {A1} Pr {A2} Pr {A3} =
8 
. 

The three events A1, A2, and A3 are not mutually independent, even though all pairs of events are 
independent! When proving a set of events independent, remember to check all pairs of events, 
and all sets of three events, four events, etc. 

12.7 Pairwise Independence 

It’s a common situation to have all pairs of events in some collection are independent, but not to 
know whether three or more of the events are going to be independent. It also turns out to be 
important enough that a special term has been defined for this situation: 

Definition. Events A1, A2, . . . An, . . . are pairwise independent if Ai and Aj are independent events 
for all i �= j. 

Note that mutual independence is stronger than pairwise independence. That is, if a set of events 
is mutually independent, then it must be pairwise independent, but the reverse is not true. For 
example, the events in the three coin experiment of the preceding subsection were pairwise inde­
pendent, but not mutually independent. 

In the blood example, suppose initially that we know nothing about independence. Then we 
can only say that the probability that a person has all three blood factors is no greater than the 
probability that a person has blood type O, which is 1/10. 

If we know that the three blood factors in the O. J. case appear pairwise independently, then we 
can conclude: 

Pr {person has all 3 factors} ≤ Pr {person is type O and Rh positive} 

= Pr {person is type O} Pr {person is Rh positive}
1 1 

= · 
10 5 
1 

= 
50 

Knowing that a set of events is pairwise independent is useful! However, if all three factors are 
mutually independent, then the witness is right; the probability a person has all three factors is 
1/200. Knowing that the three blood characteristics are mutually independent is what justifies the 
witness’s in multiplying the probabilities as in equation (13). The point is that we get progressively 
tighter upper bounds as we strengthen our assumption about independence. 

This example also illustrates an 
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Important Technicality: To prove a set of three or more events mutually independent, 
it is not sufficient to prove every pair of events independent! In particular, for three 
events we must also prove that equality (13) also holds. 

13 The Birthday Problem 

13.1 The Problem 

What is the probability that two students among a group of 100 have the same birthday? There 
are 365 birthdays (month, date) and 100 is less than a third of 365, so an offhand guess might be 
that the probability is somewhere between 1/3 and 2/3. Another approach might be to think of 
the setup as having 100 chances of winning a 365-to-1 bet; there is roughly only a 25% chance of 
winning such a bet. But in fact, the probability that some two among the 100 students have the 
same birthday is overwhelming: there is less than one chance in thirty million that all 100 students 
have different birthdays! 

As a matter of fact, by the time we have around two dozen students, the chances that two have 
the same birthday is close to 50%. This seems odd! There are 12 months in the year, yet at a point 
when we’ve only collected about two birthdays per month, we have usually already found two 
students with exactly the same birthday! 

There are two assumptions underlying these assertions. First, we assume that all birth dates are 
equally likely. Second, we assume that birthdays are mutually independent. Neither of these 
assumptions are really true. Birthdays follow seasonal patterns, so they are not uniformly dis­
tributed. Also, birthdays are often related to major events. For example, nine months after a 
blackout in the 70’s there was a sudden increase in the number of births in New England. Since 
students in the same class are generally the same age, their birthdays are more likely to be depen­
dent on the same major event than the population at large, so they won’t be mutually independent. 
But when there wasn’t some unusual event 18 to 22 years ago, student birthdays are close enough 
to being uniform that we won’t be too far off assuming uniformity and independence, so we will 
stick with these assumptions in the rest of our analysis. 

13.2 Solution 

There is an intuitive reason why the probability of matching birthdays is so high. The probability 
that a given pair of students have the same birthday is only 1/365. This is very small. But with 
around two dozen students, we have around 365 pairs of students, and the probability one of 
these 365 attempts will result in an event with probability 1/365 gets to be about 50-50. With 100 
students there are about 5000 pairs, and it is nearly certain that an event with probability 1/365 
will occur at least once in 5000 tries. 

In general, suppose there are m students and N days in the year. We want to determine the 
probability that at least two students have the same birthday. Let’s try applying our usual method. 
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Step 1. Find the Sample Space 

We can regard an outcome as an m-vector whose components are the birthdays of the m students 
in order. That is, the sample space is the set of all such vectors: 

S ::= {�b1, b2, . . . , bm� | bi ∈ {1, 2, . . . , N } for 1 ≤ i ≤ m} . 

There are N m such vectors. 

Step 2: Define Events of Interest 

Let A be the event that two or more students have the same birthday. That is, 

A ::= {�b1, b2, . . . , bm� | bi = bj for some 1 ≤ i �= j ≤ m} . 

Step 3: Compute Outcome Probabilities 

The probability of outcome �b1, b2, . . . , bm� is the probability that the first student has birthday 
b1, the second student has birthday b2, etc.. The ith person has birthday bi with probability 1/N . 
Assuming birth dates are independent, we can multiply probabilities to get the probability of a 
particular outcome: 

1
Pr {�b1, b2, . . . , bm�} = 

N m . 

So we have a uniform probability space—the probabilities of all the outcomes are the same. 

Step 4: Compute Event Probabilities 

The remaining task in the birthday problem is to compute the probability of the event that two or 
more students have the same birthday. Since the sample space is uniform, we need only count the 
number of outcomes in the event A. This can be done with Inclusion-Exclusion, but the calculation 
is involved. 

A simpler method is to use the trick of “counting the complement.” Let A be the complementary 
event; that is, let A ::= S − A. Then, since Pr {A} = 1 − Pr
 , we need only determine the

probability of event A.


In the event A, all students have different birthdays. The event consists of the following outcomes: 

{�b1, b2, . . . , bm� | all the bi’s are distinct} 

In other words, the set A consists of all m-permutations of the set of N possible birthdays! So now 
we can compute the probability of A: 

Pr
 =

P (N,m)


=

N m
 =


N !

(N − m)! N m
=


N m|S|
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and so 

N !
Pr {A} = 1 − 

(N − m)! N m , 

which is a simple formula for the probability that at least two students among a group of m have 
the same birthday in a year with N days. 

Letting m = 22 students and N = 365 days, we conclude that at least one pair of students have 
the same birthday with probability ≈ 0.476. If we have m = 23 students, then the probability rises 
to ≈ 0.507. So in a room with 23 students, the odds are in fact better than even that at least two 
have the same birthday. 

13.3 Approximating the Answer to the Birthday Problem 

We now know that Pr {A} = 1 − N !/((N − m)! N m), but this formula is hard to work with because 
it is not a closed form. Evaluating the expression for, say, N = 365 and m = 100 is a lot of 
work. It’s even harder to determine how big N must be for the probability of a birthday match 
among m = 100 students to equal, say, 90%. We’d also like to understand the growth rate of the 
probability as a function of m and N . 

It turns out that there is a nice asymptotic formula for the probability, namely, 

Pr A ∼ e− m 2 

2N . (15) 

as long as m = o(N 2/3). 

This formula actually has an intuitive explanation. The number of ways to pair m students is 
m 
2 ≈ m2/2. The event that a pair of students has the same birthday has probability 1/N . Now 

if these events were mutually independent, then using the approximation 1 − x ≈ e−x , we could 
essentially arrive at (15) by calculating 

� � m 2 � � 1 2 

Pr A ≈ 1 − 
N 
2 

≈ e− 1 · m 
N 2 

e− m 2 

= 2N . 

The problem is that the events that pairs of students have distinct birthdays are not mutually 
independent. For example, 

Pr {b1 = b3 | b1 = b2, b2 = b3} = 1 �= 1/N = Pr {b1 = b3} . 

But notice that if we have a set of nonoverlapping pairs of students, then the event that a given 
pair in the set have the same birthday really is independent of whether the other pairs have the 
same birthday. That is, we do have mutual independence for any set of nonoverlapping pairs. 
But if m is small compared to N , then the likelihood will be low that among the pairs with the 
same birthday, there are two overlapping pairs. In other words, we could expect that for small 
enough m, the events that pairs have the same birthday are likely to be distributed in the same 
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way as if they were mutually independent, justifying the independence assumption in our simple 
calculation. 

Of course this intuitive argument requires more careful justification. The asymptotic equality (15) 
can in fact be proved by an algebraic calculation using Stirling’s Formula and the Taylor series for 
ln(1 − x), but we will skip it. 

This asymptotic equality also shows why the probability that all students have distinct birthdays√ 
drops off rapidly as the number of students grows beyond N toward N 2/3 . The reason is that 
the probability (15) decreases in inverse proportion to a quantity obtained by squaring and then 
exponentiating the number of students. 

13.4 The Birthday Principle 

As a final illustration of the usefulness of the asymptotic equality (15), we determine as a func­
tion of N the number of students for which the probability that two have the same birthday is 
(approximately) 1/2. 

All we need do is set the probability that all birthdays are distinct to 1/2 and solve for the number 
of students. 

2 

e− m 
2N ∼ 

e	
m 2 

2N ∼ 
m2 

∼
2N 
m ∼ 

√ 

1 
2 

2 

ln 2 
√ √ 

2N ln 2 ≈ 1.177 N. 

Since the values of m here are Θ( N ) = o(N 2/3), the conditions for our asymptotic equality are 
met and we can expect our approximation to be good. 

√ 
For example, if N = 365, then 1.177 N = 22.49. This is consistent with out earlier calculation; 
we found that the probability that at least two students have the same birthday is 1/2 in a room 
with around 22 or 23 students. Of course, one has to be careful with the ∼ notation; we may 
end up with an approximation that is only good for very large values. In this case, though, our 
approximation works well for reasonable values. 

The preceding result is called the Birthday Principle. It can be interpreted this way: if you throw√ 
about N balls into N boxes, then there is about a 50% chance that some box gets two balls. 

For example, in 27 years there are about 10,000 days. If we put about 1.177
√

10, 000 ≈ 118 people 
under the age of 28 in a room, then there is a 50% chance that at least two were born on exactly 
the same day of the same year! As another example, suppose we have a roomful of people, and 
each person writes a random number between 1 and a million on a piece of paper. Even if there 
are only about 1.177

√
1, 000, 000 = 1177 people in the room, there is a 50% chance that two wrote 

exactly the same number! 
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