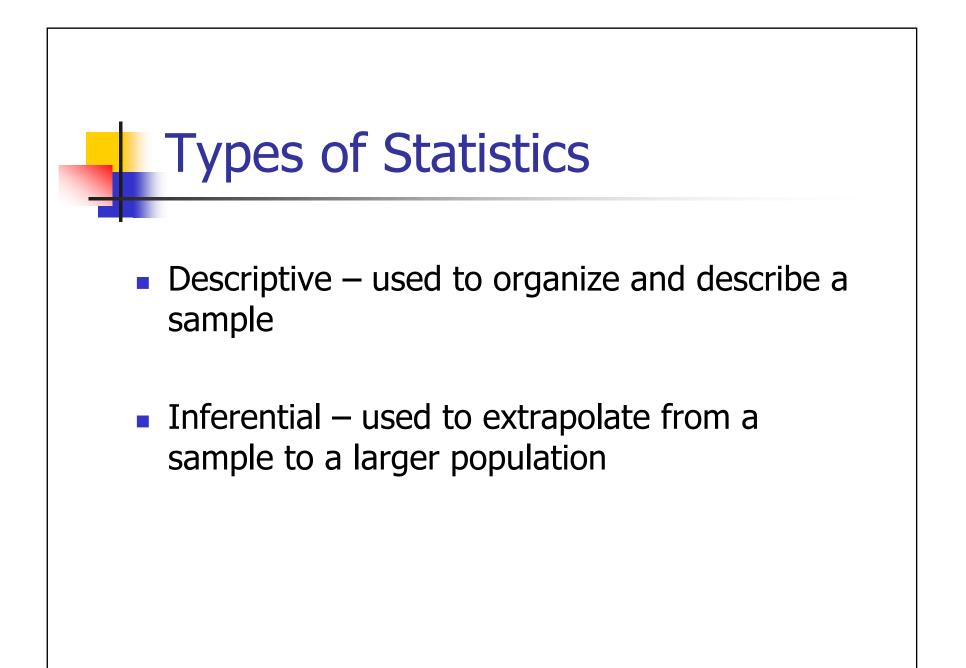

Introduction to Statistics

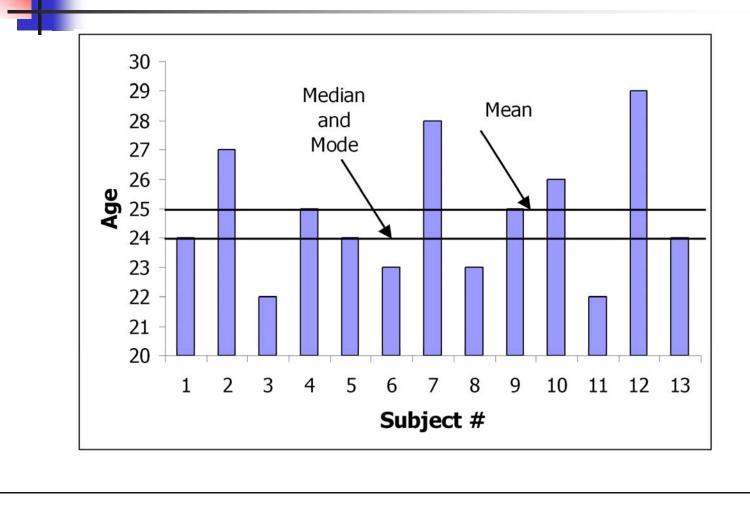
Bob Conatser Irvine 210 Research Associate Biomedical Sciences <u>conatser@oucom.ohiou.edu</u>

1

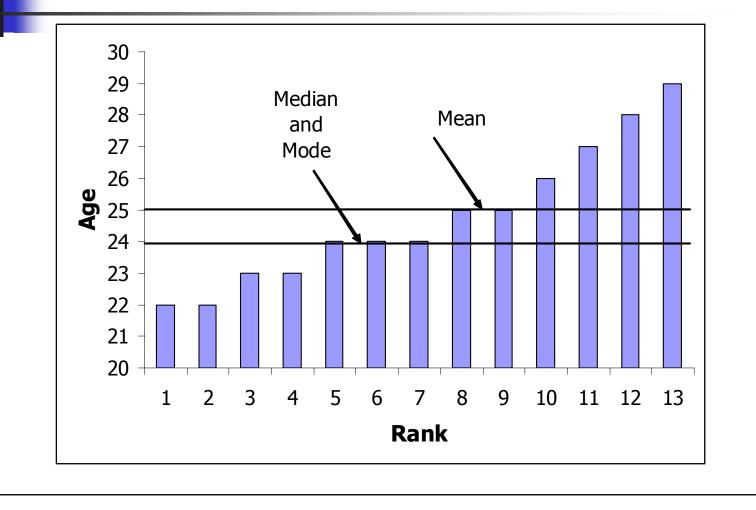


Types of Variables

- Independent Variable controlled or manipulated by the researcher; causes a change in the dependent variable. (x-axis)
- Dependent Variable the variable being measured (y-axis)
- Discreet Variable has a fixed value
- Continuous Variable can assume any value


Descriptive Statistics

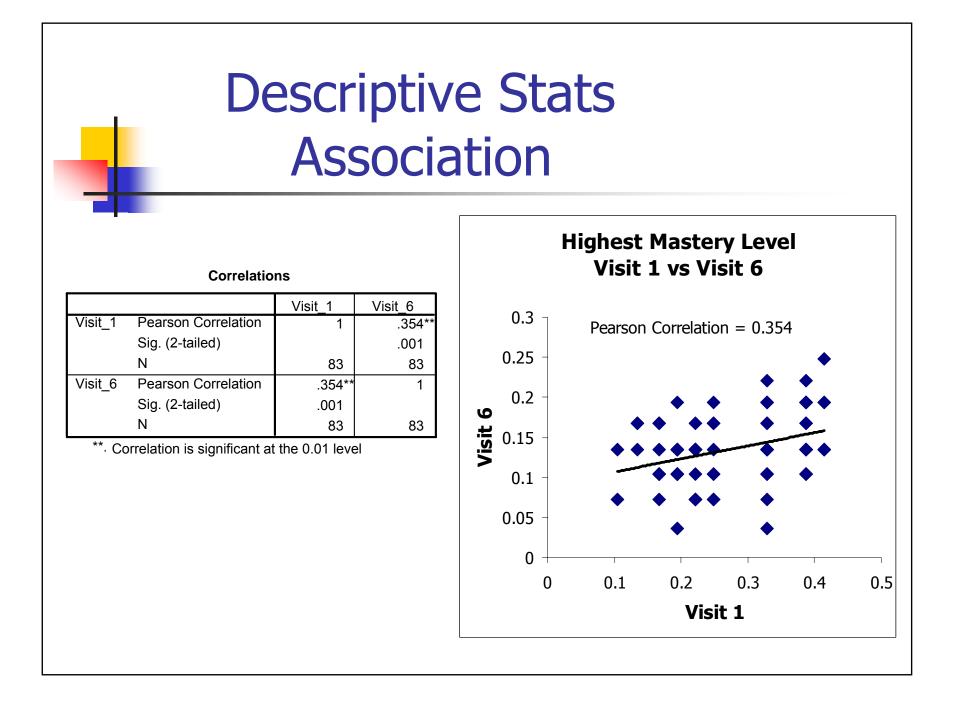
- Measures of Central Tendency
 - Mean (average)
 - Median (middle)
 - Mode (most frequent)
- Measures of Dispersion
 - variance
 - standard deviation
 - standard error
- Measures of Association
 - correlation

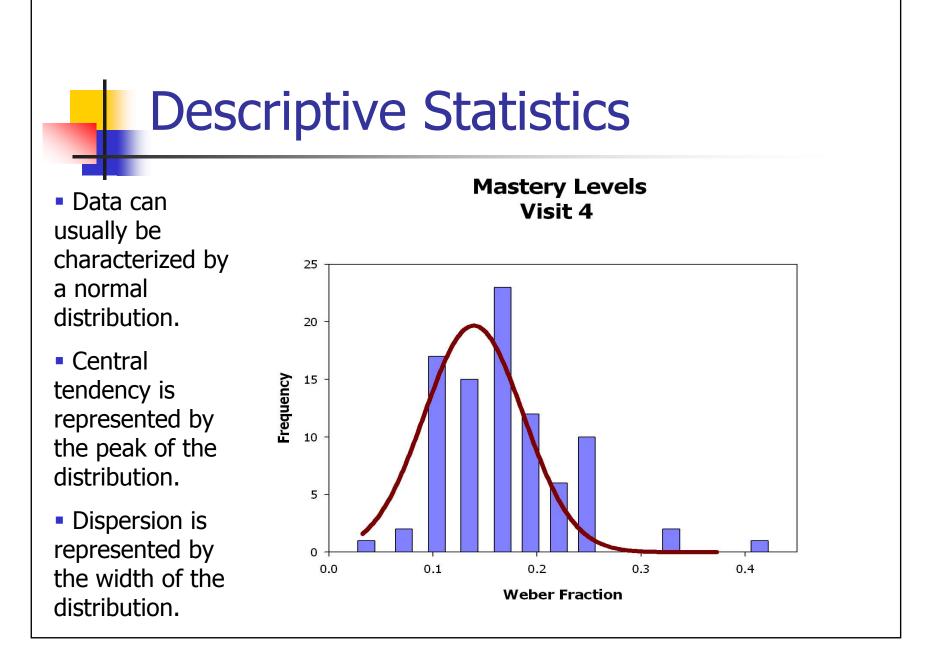

Descriptive Stats Central Tendency

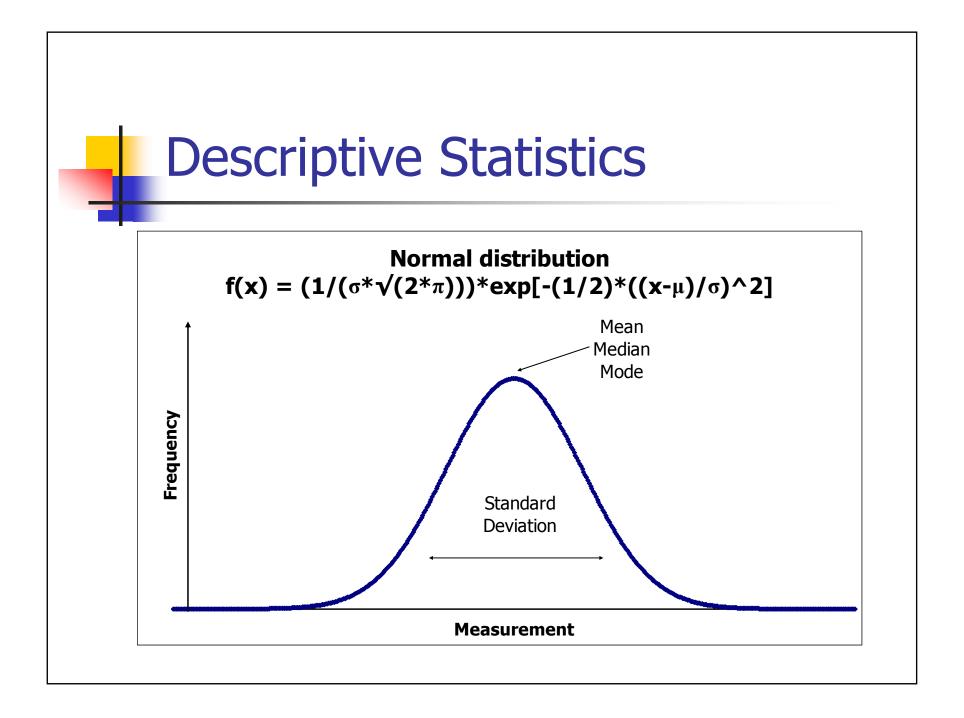
_																
	A	В	С	D	E	F	G	H		J	K	L	М	N	0	Р
1	Subject #	Age		mea	n -	add u	ıp all	ages	and (divide	e by t	he to	al			
2	1	24		Exce	l cor	mman	nd is =	=aver	age(l	o2:b2	.5)					
3	2	27		(24+	-27+	-22+2	25+2 4	4+23	+28+	23+	25+2	6+22	+29-	+24)	/ 13	
4	3	22		25												
5	4	25														
6	5	24		med	lian	- hal	fway	point	, equ	al nu	mber	of va	riabl	es on	both	sides
7	6	23		Exce	l cor	mman	nd is =	=med	ian(b	2:b2	3)					
8	7	28		22,2	2,23	8,23,2	4,24,	24,25	5,25,2	26,27	,28,2	29				
9	8	23		24												
10	9	25														
11	10	26		mod	le -	most	frequ	lent								
12	11	22		Exce	l cor	mman	nd is =	=mod	e(b2	b23)						
13	12	29		22,2	2,23	8,23,2	4,24,	24,25	5,25,2	26,27	,28,2	29				
14	13	24		24												
				1		1			1			1				i

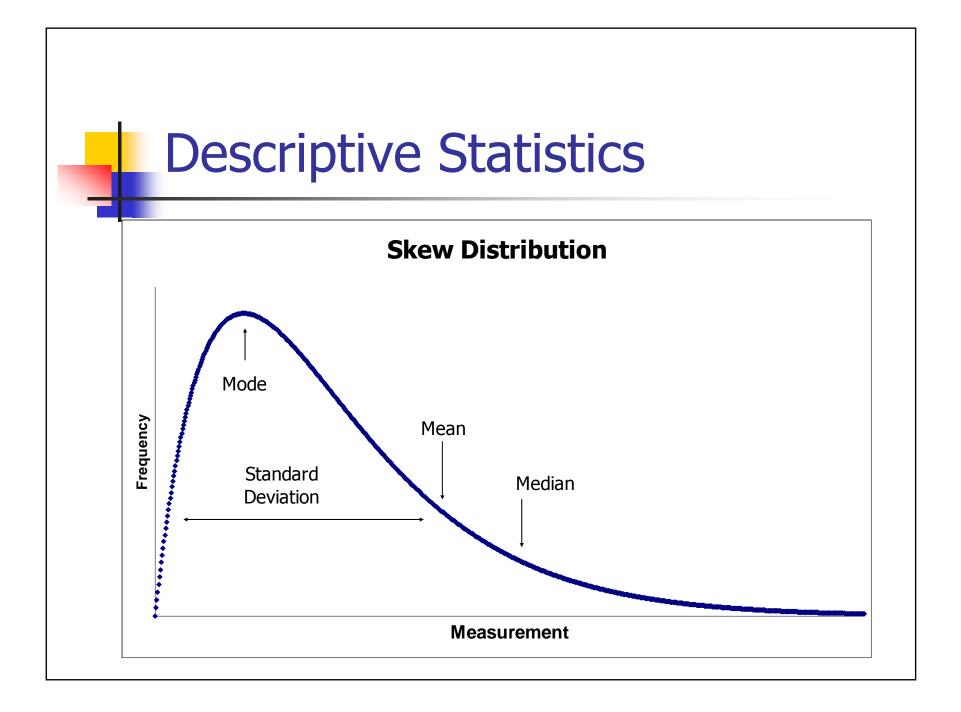
Descriptive Stats Central Tendency

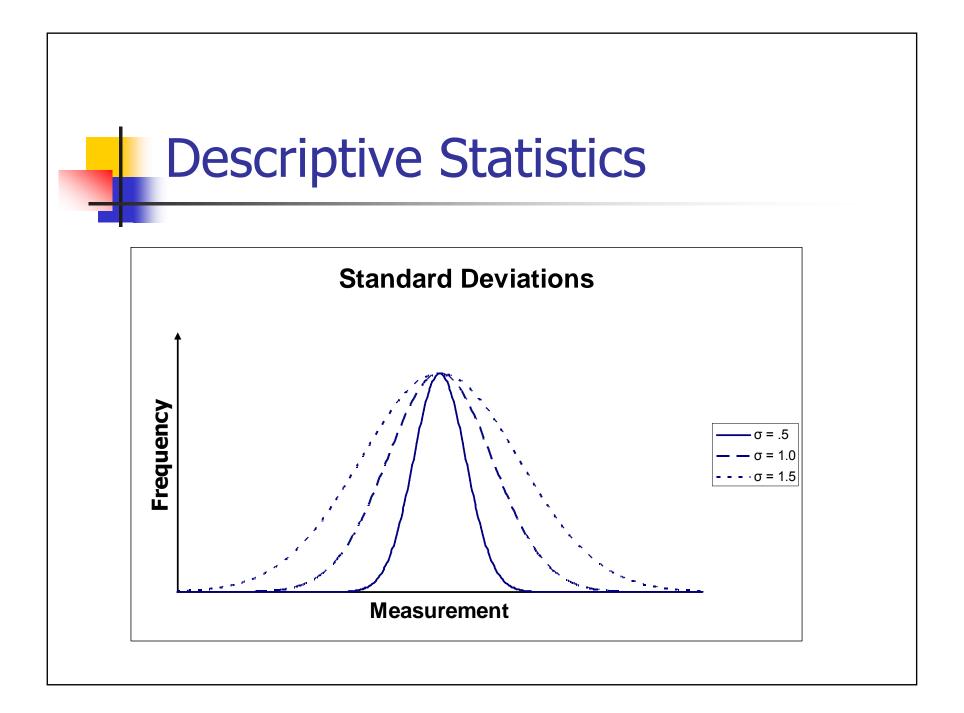


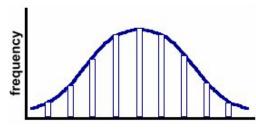

Descriptive Stats Central Tendency




Descriptive Stats Dispersion


		-							
	A	В	С	D E F G H I J K L M N O P					
1	Subject #	Age		mean - add up all ages and divide by the total					
2	1	24		Excel Command is =average(b2:b14)					
3	2	27		(24+27+22+25+24+23+28+23+25+26+22+29+24)/13 =					
4	3	22		25					
5	4	25							
6	5	24		Standard Deviation - square root of the sum of the squared					
7	6	23		ndividual differences with the mean divided by					
8	7	28		the total number of data points minus 1.					
9	8	23		$5.D. = \sqrt{[\Sigma(yi - ymean)^2/(N - 1)]}$					
10	9	25		Excel command is = stdev(b2:b14)					
11	10	26		2.2					
12	11	22							
13	12	29		Standard Error - Represents the spread in means if many					
14	13	24		samples of the same size are taken from the population.					
15				S.E. = S.D. $/\sqrt{N}$					





Inferential Statistics

Can your experiment make a statement about the general population?

Two types

1. Parametric

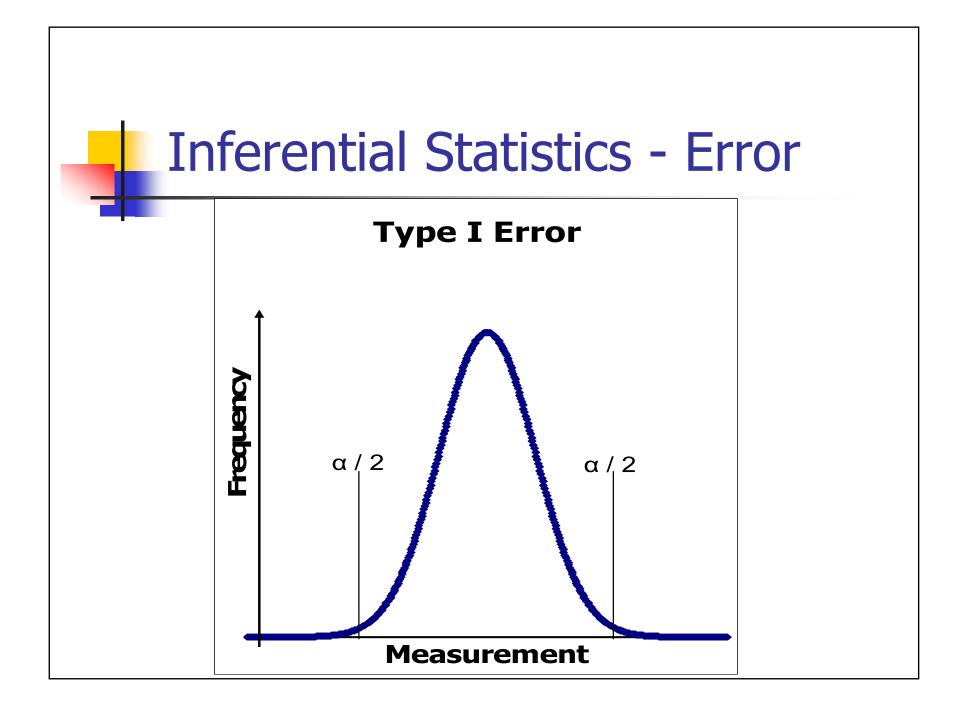
- Interval or ratio measurements
- Continuous variables
- Usually assumes that data is normally distributed
- 2. Non-Parametric
 - Ordinal or nominal measurements
 - Discreet variables
 - Makes no assumption about how data is distributed

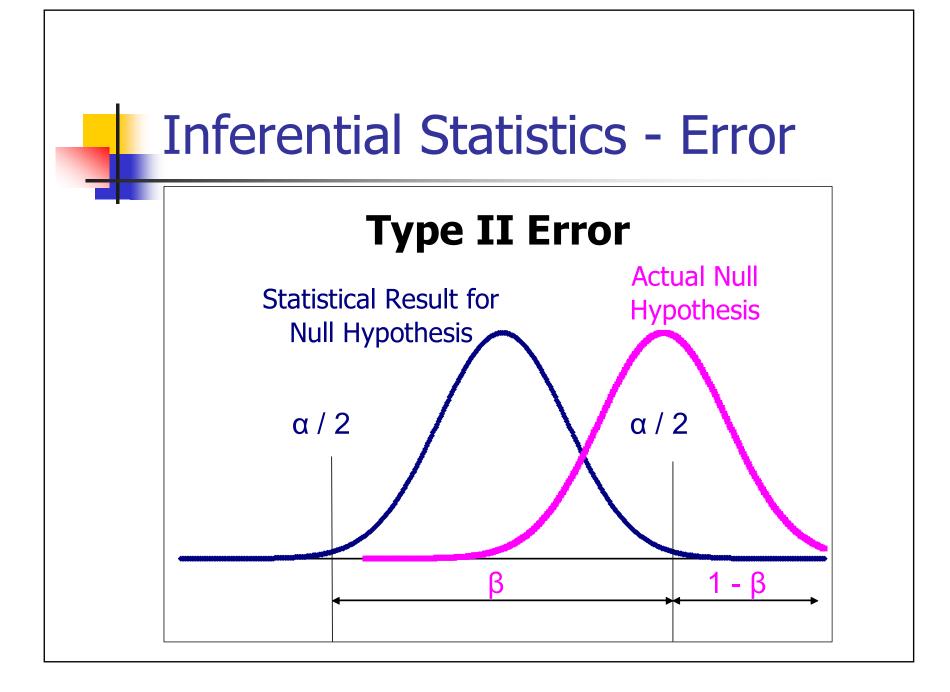
Inferential Statistics

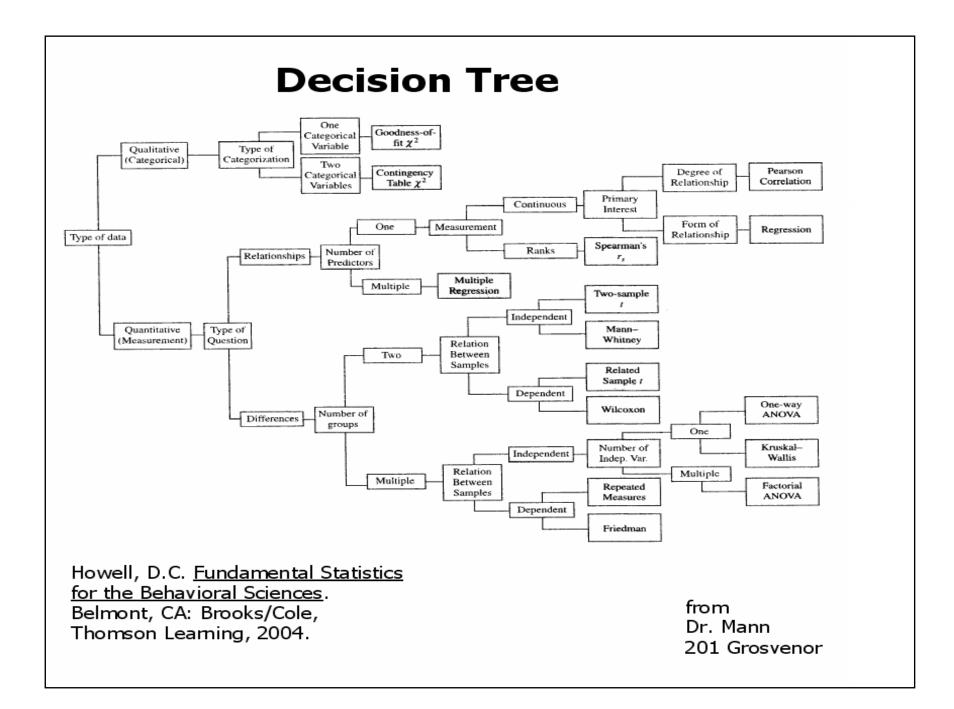
Null Hypothesis

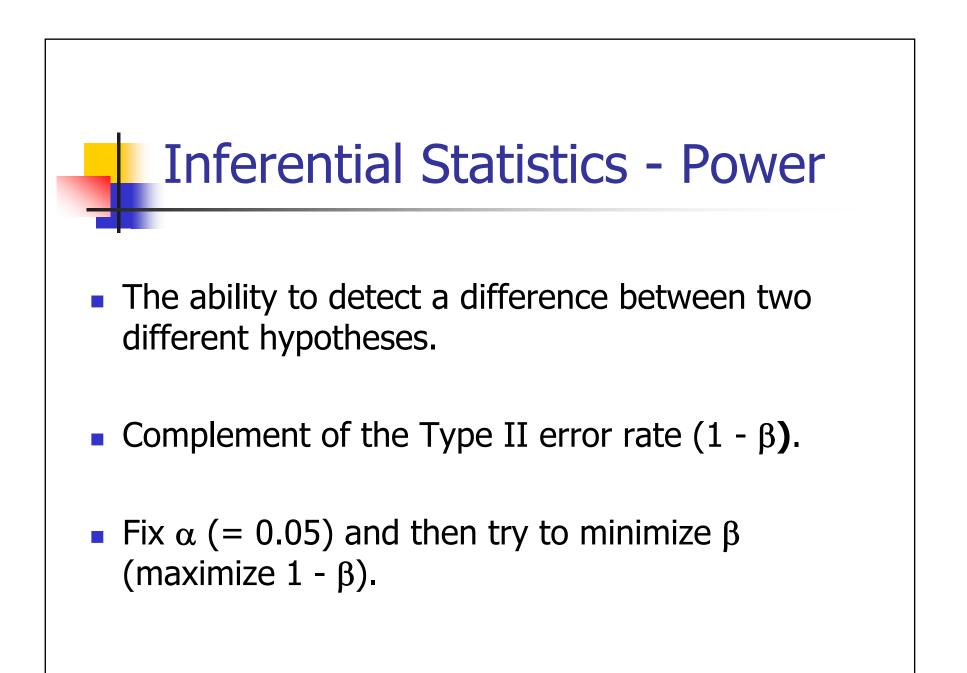
Statistical hypotheses usually assume no relationship between variables.

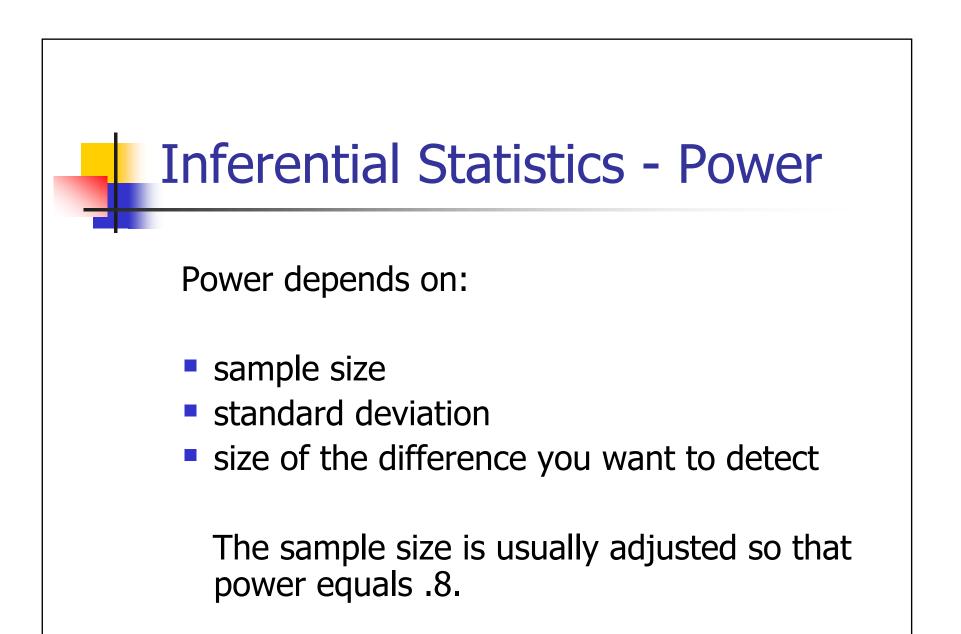
 There is no association between eye color and eyesight.


If the result of your statistical test is significant, then the original hypothesis is false and you can say that the variables in your experiment are somehow related.


Inferential Statistics - Error


Type I – false positive, α Type II – false negative, β


		Statistical Result for Null Hypothesis					
		Accepted	Rejected				
Actual Null	TRUE	Correct	Type I Error				
Hypothesis	FALSE	Type II Error	Correct				


Unfortunately, α and β cannot both have very small values. As one decreases, the other increases.

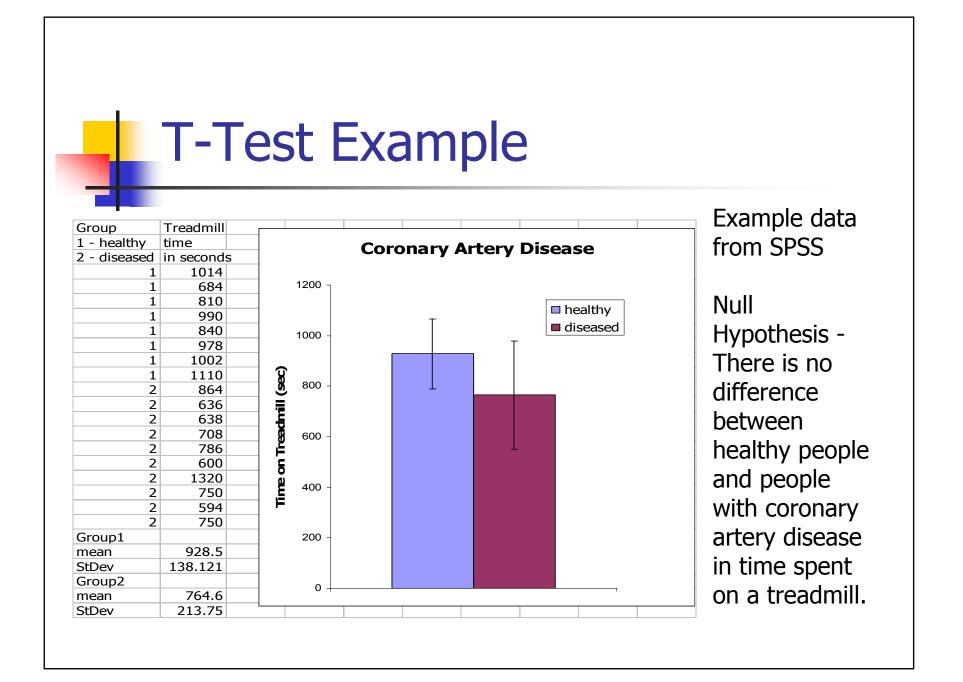
Inferential Statistics

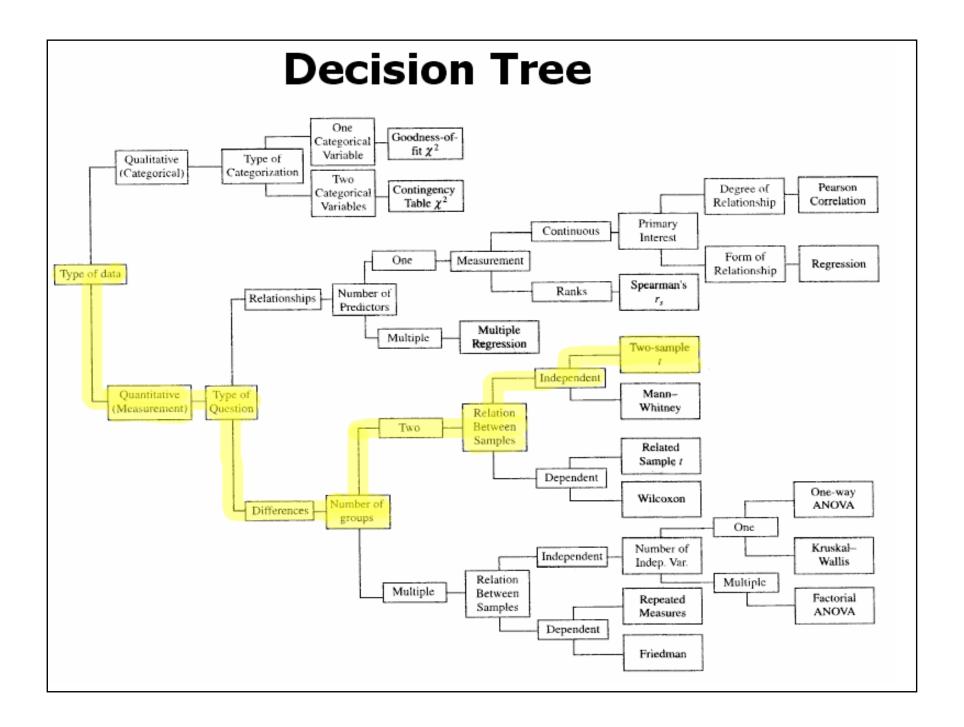
Effect Size

- Detectable difference in means / standard deviation
- Dimensionless
- ~ 0.2 small (low power)
- ~ 0.5 medium
- ~ 0.8 large (powerful test)

Inferential Statistics – T-Test

- Are the means of two groups different?
- Groups assumed to be normally distributed and of similar size.

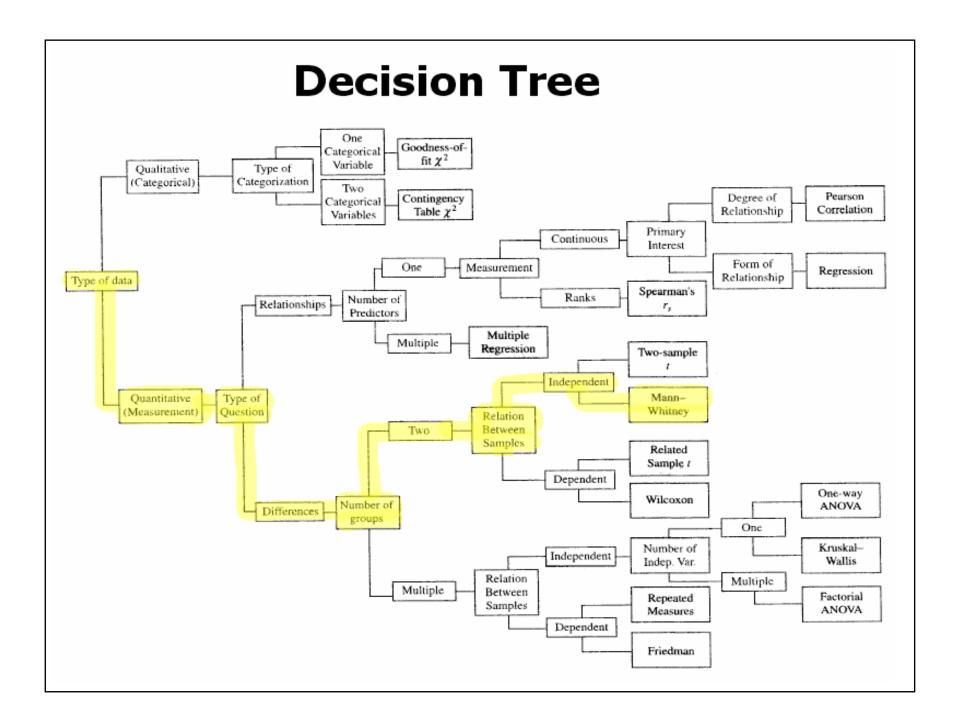

 $\mathbf{t}_{\alpha,\nu} = (\mathbf{Y}_1 - \mathbf{Y}_2) / \sqrt{[(\sigma_1^2 - \sigma_2^2) / n]} \text{ (equal sample sizes)}$


Y₁ and **Y**₂ are the means of each group σ_1 and σ_2 are the standard deviations n is the number of data points in each group α is the significance level (usually 0.05) v is the degrees of freedom (2 * (n - 1)) (Sokal & Rohlf)

Inferential Statistics – T-Test

	Two Tailed Significance (α)								
ν	0.2	0.1	0.05	0.01					
2	1.89	2.92	4.30	9.92					
3	1.64	2.35	3.18	5.84					
4	1.53	2.13	2.78	4,60					
5	1.48	2.02	2.57	4.03					
6	1.44	1.94	2.45	3.71					
7	1.41	1.89	2.36	3.50					
8	1.40	1.86	2.31	3.36					
9	1.38	1.83	2.26	3.25					
10	1.37	1.81	2.23	3.17					

Compare calculated **t**α,*v* value with value from table. If calculated value is larger, the null hypothesis is false. (Lentner, C., 1982, *Geigy Scientific Tables vol. 2*, CIBA-Geigy Limited, Basle, Switzerland)

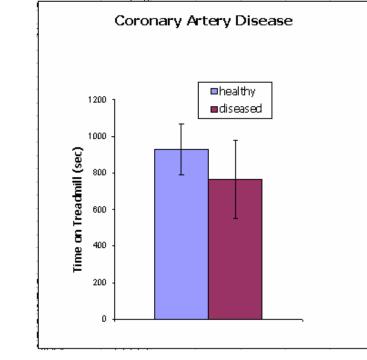


T-Test Example (cont.)

Independent Samples Test

			Test for Variances			t-test fo	or Equality o	f Means		
							Mean	Std. Error	95% Cor Interva Differ	l of the
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Treadmill time in seconds	Equal variances assumed	.137	.716	1.873	16	.080	163.900	87.524	-21.642	349.442
	Equal variances not assumed			1.966	15.439	.068	163.900	83.388	-13.398	341.198

Null hypothesis is accepted because the results are not significant at the 0.05 level.


Non-Parametric Statistics

- Makes no assumptions about the population from which the samples are selected.
- Used for the analysis of discreet data sets.
- Also used when data does not meet the assumptions for a parametric analysis ("small" data sets).

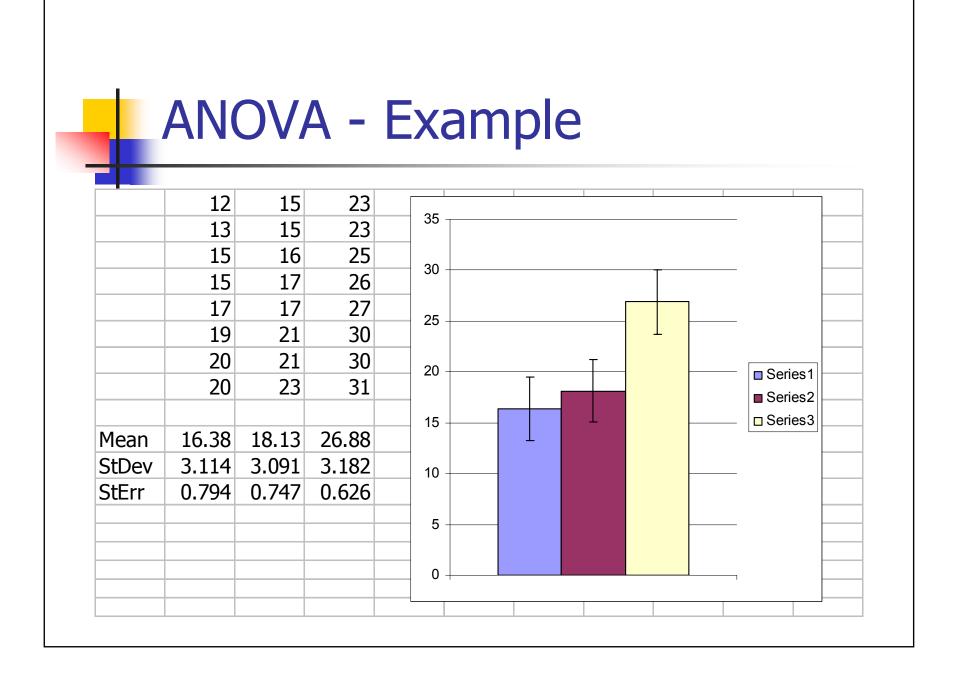
Non-Parametric Example I

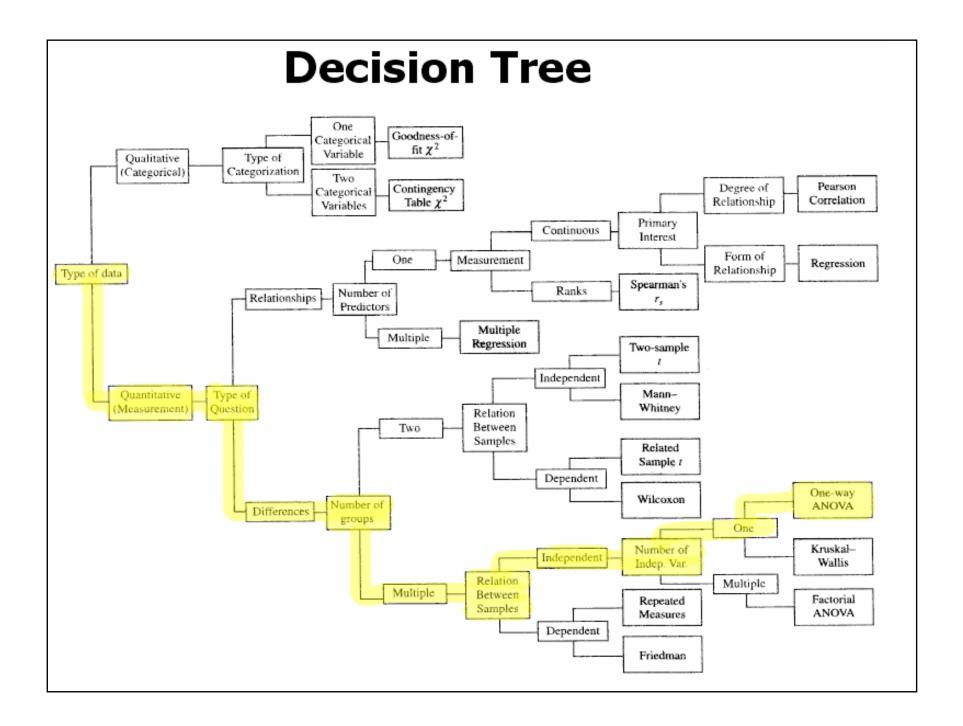
Mann-Whitney

Most commonly used as an alternative to the independent samples T-Test.

lest Statistics ²							
	Treadmill						
	time in						
	seconds						
Mann-Whitney U	15.000						
Wilcoxon W	70.000						
Z	-2.222						
Asymp. Sig. (2-tailed)	.026						
Exact Sig. [2*(1-tailed Sig.)]	.027 ^a						

a. Not corrected for ties.


b. Grouping Variable: group


Note difference in results between this test and T-Test.

Inferential Statistics - ANOVA

ANOVA – <u>Analysis</u> of <u>Va</u>riance

- Compares the means of 3 or more groups
- Assumptions:
 - Groups relatively equal.
 - Standard deviations similar. (Homogeneity of variance)
 - Data normally distributed.
 - Sampling should be randomized.
 - Independence of errors.
- Post-Hoc test

ANOVA - Results

Multiple Comparisons

3. Dependent Variable: VAR00001

Tukey HSD

Test of Homogeneity of Variances	

VAR00001

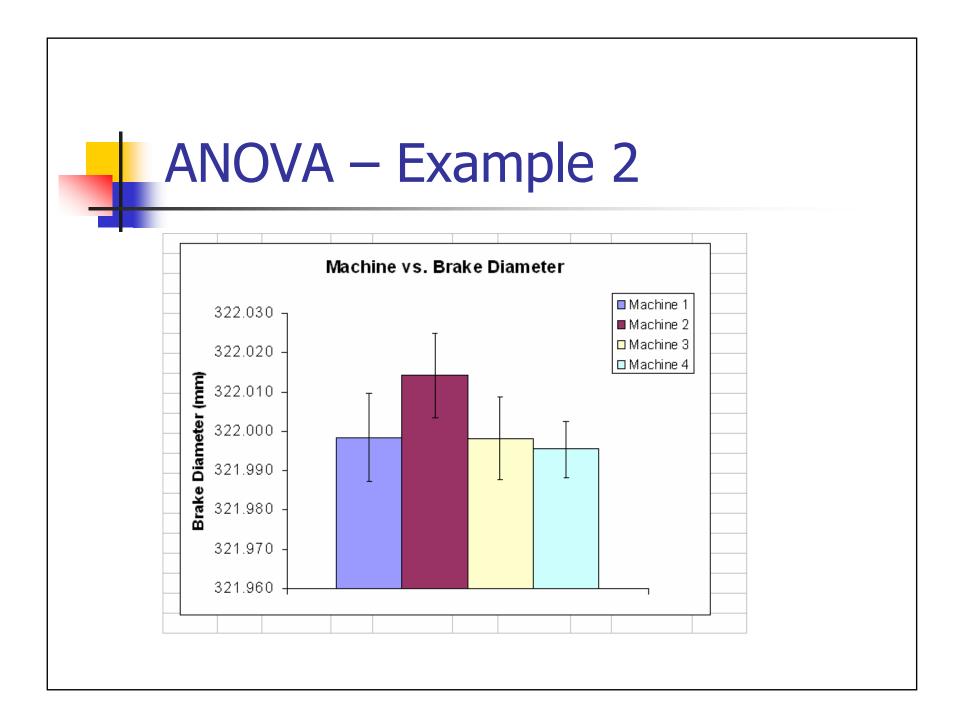
1.

Levene Statistic	df1	df2	Sig.
.001	2	21	.999

		Mean Difference		
(I) VAR00004	(J) VAR00004	(I-J)	Std. Error	Sig.
1.00	2.00	-1.75000	1.56458	.514
	3.00	-10.50000*	1.56458	.000
2.00	1.00	1.75000	1.56458	.514
	3.00	-8.75000*	1.56458	.000
3.00	1.00	10.50000*	1.56458	.000
	2.00	8.75000*	1.56458	.000

*. The mean difference is significant at the .05 level.

2. ANOVA


VAR00001

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	506.333	2	253.167	25.855	.000
Within Groups	205.625	21	9.792		
Total	711.958	23			

ANOVA – Example 2

1 321.984 1 322.004 1 322.000 1 322.003 1 322.002 	2 2 2 2	322.018 322.020 322.012 322.014 322.005 322.014	3 3 3 3 3	321.993 321.991	4 4 4 4	322.002 321.986 321.991 321.983 321.998 321.995	brake diamete
1 322.004 1 322.000 1 322.003	2 2 2	322.020 322.012 322.014	3 3 3	321.990 321.993 321.991	4 4 4	321.986 321.991 321.983	brake diamete
1 322.004 1 322.000 1 322.003	2 2 2	322.020 322.012 322.014	3 3 3	321.990 321.993 321.991	4 4 4	321.986 321.991 321.983	brake diamete
1 322.004 1 322.000	2 2	322.020 322.012	3	321.990 321.993	4 4	321.986 321.991	brake diamete
1 322.004	2	322.020	3	321.990	4	321.986	brake diamete
			-		-		brake diamete
1 321.984	2	322.018	3	322.009	4	322.002	· · · ·
- 521.501			v		•		machines in
1 321.984		322.018	3	322.002	4	321.990	
			3		4		difference amo
			3		4		There is no
		322.007	-		4		/1
		322.018	3		4	321.998	Null Hypothesi
		322.026	3	321.983	4	322.002	
		322.009	3	322.017	4	321.986	4 group ANOV
		322.029	3	321.984	4	322.003	
		322.011	3	322.002	4	322.006	brake diamete
1 322.005	2	322.031	3	321.990	4	322.003	Machine type
1 322.000	2	322.007	3	321.986	4	321.994	SPSS example
	1 322.005 1 322.022 1 321.991 1 322.011 1 321.995 1 322.006 1 321.976 1 321.998 1 321.996	1 322.005 2 1 322.022 2 1 321.991 2 1 322.011 2 1 321.995 2 1 322.006 2 1 321.976 2 1 321.976 2 1 321.998 2 1 321.996 2	1322.0052322.0311322.0222322.0111321.9912322.0291322.0112322.0091321.9952322.0261321.9762322.0181321.9982322.0181321.9962321.986	1322.0052322.03131322.0222322.01131321.9912322.02931322.0112322.00931321.9952322.02631322.0062322.01831321.9762322.00731321.9982322.01831321.9962321.9863	1322.0052322.0313321.9901322.0222322.0113322.0021321.9912322.0293321.9841322.0112322.0093322.0171321.9952322.0263321.9831322.0062322.0183322.0021321.9762322.0073322.0011321.9982322.0183322.0041321.9962321.9863322.016	1322.0052322.0313321.99041322.0222322.0113322.00241321.9912322.0293321.98441322.0112322.0093322.01741321.9952322.0263321.98341322.0062322.0183322.00241321.9762322.0073322.00141321.9982322.0183322.00441321.9962321.9863322.0164	1322.0052322.0313321.9904322.0031322.0222322.0113322.0024322.0061321.9912322.0293321.9844322.0031322.0112322.0093322.0174321.9861321.9952322.0263321.9834322.0021322.0062322.0183322.0024321.9981321.9762322.0173322.0014321.9911321.9982322.0183322.0044321.9961321.9962321.9863322.0164321.999

type vs. iameter ANOVA oothesis – no ce among es in iameter.

ANOVA – Example 2 - Results

ANOVA

Disc Brake Diameter (mm)

	Biee Brane Blaine					
•		Sum of				
2.		Squares	df	Mean Square	F	Sig.
	Between Groups	.004	3	.001	11.748	.000
	Within Groups	.006	60	.000		
	Total	.009	63			

Null hypothesis is rejected because result is highly significant.

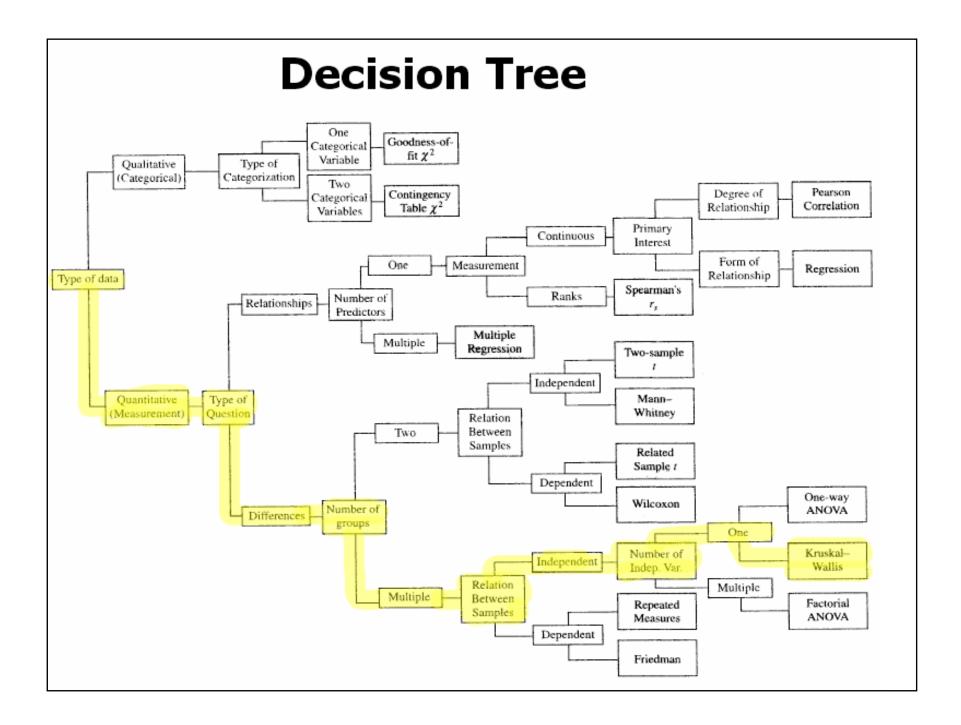
3.

Multiple Comparisons

Dependent Variable: Disc Brake Diameter (mm)

Tukey HSD

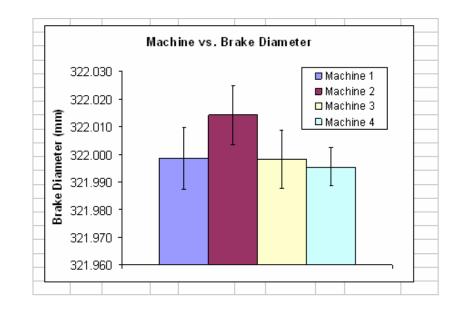
		Mean Difference	
(I) Machine Number	(J) Machine Number	(I-J)	Sig.
1	2	0157487*	.000
2	1	.0157487*	.000
	3	.0159803*	.000
	4	.0188277*	.000
3	2	0159803*	.000
4	2	0188277*	.000


* The mean difference is significant at the .05 level.

1.

Test of Homogeneity of Variances

Disc Brake Diameter (mm)


Levene Statistic	df1	df2	Sig.
.697	3	60	.557

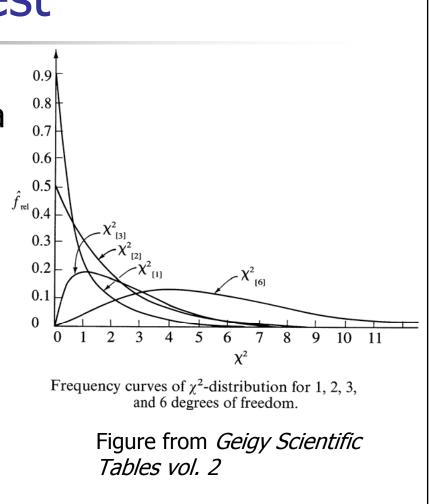
Non-Parametric ANOVA Example II

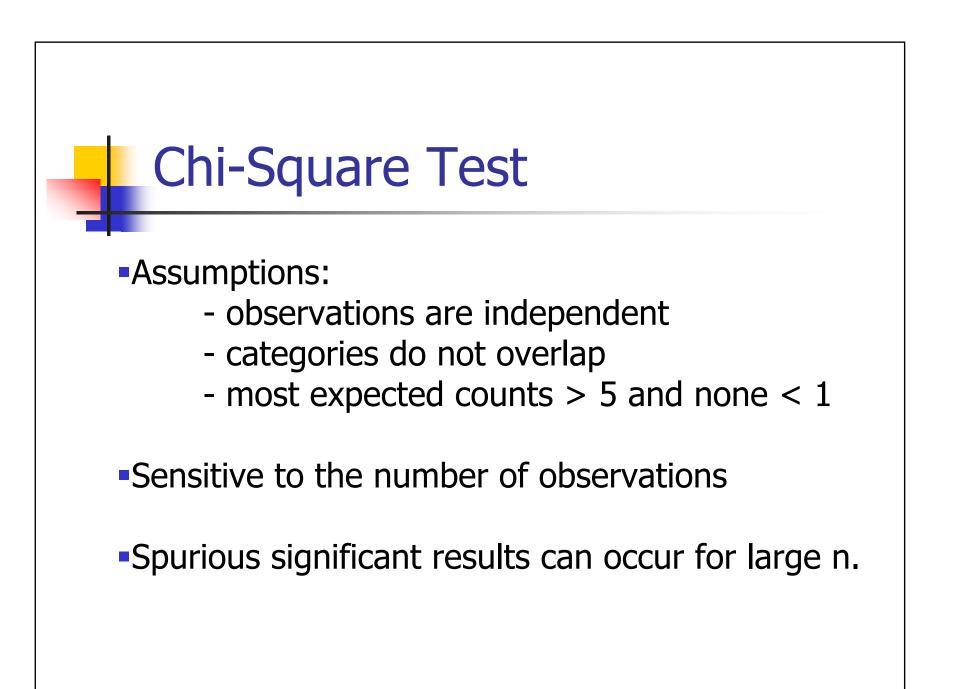
Kruskal-Wallis

The Kruskal-Wallis test is a non-parametric alternative to one-way analysis of variance.

The test result (shown below) is highly significant. A post hoc test (multiple Mann-Whitney tests) would be done to determine which groups were different.

	Brake_Dia
Chi-Square	23.563
df	3
Asymp. Sig.	.000


Test Statistics^{a,b}


a. Kruskal Wallis Test


b. Grouping Variable: Machine

Chi-Square Test

- used with categorical data
- two variables and two groups on both variables
- results indicate whether the variables are related

Chi-Square Example

A 1991 U.S. general survey of 225 people asked whether they thought their most important problem in the last 12 months was health or finances.

Null hypothesis – Males and females will respond the same to the survey.

1 - health
2 - finances
1
1
1
1
2
2
2
2

Chi-Square Example

Count

problem * group Crosstabulation

Cross-tabulation table shows how many people are in each category.

Count							
		gro					
		Males	Total				
problem	Health	35	57	92			
	Finance	56	77	133			
Total		91	134	225			

The nonsignificant result signifies that the null hypothesis is accepted.

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	.372 ^b	1	.542		
Continuity Correction	.223	1	.637		
Likelihood Ratio	.373	1	.541		
Fisher's Exact Test				.582	.319
Linear-by-Linear Association	.371	1	.543		
N of Valid Cases	225				

Chi-Square Tests

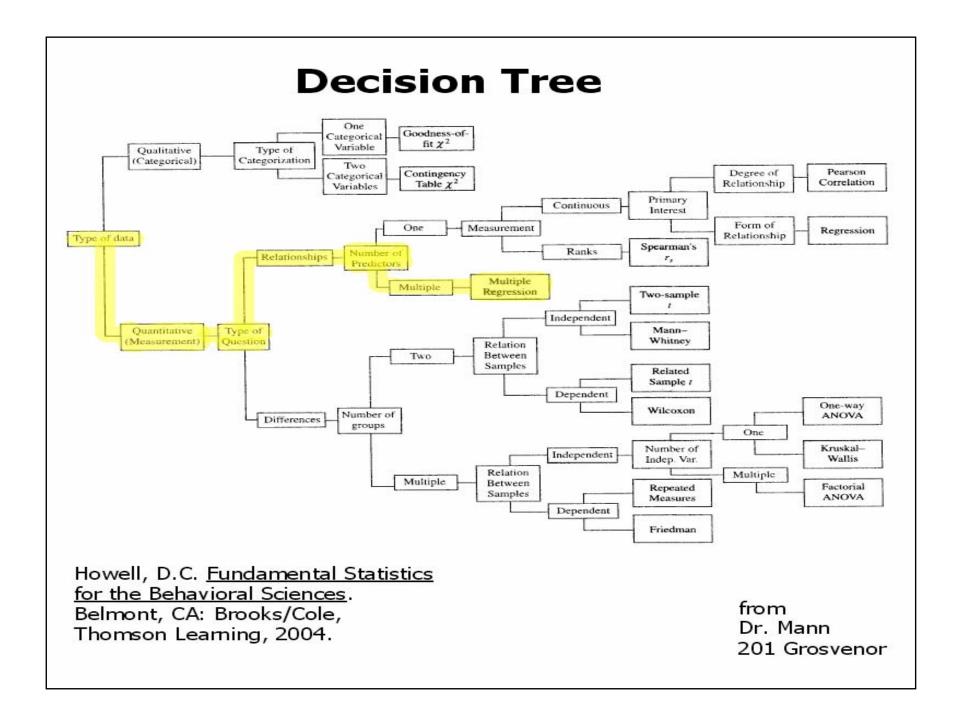
a. Computed only for a 2x2 table

b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 37. 21.

Chi-Square Example II

Chi-square test can be extended to multiple responses for two groups.

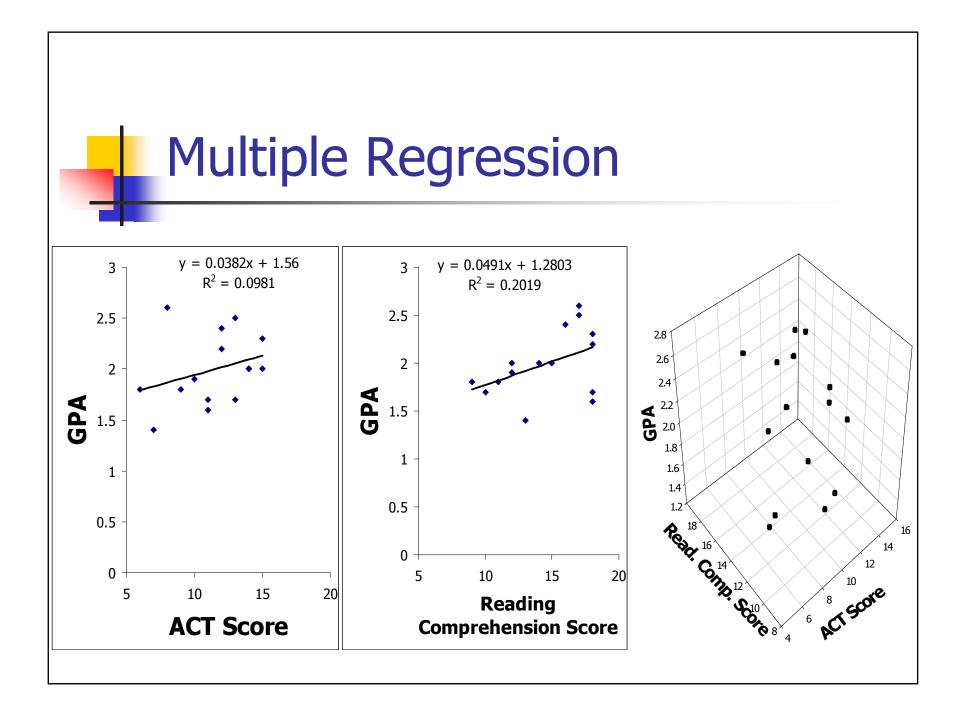
problem * group Crosstabulation


Count

	gro		
	Males	Females	Total
problem Health	35	57	92
Finance	56	77	133
Family	15	33	48
Personal	9	10	19
Miscellaneou	15	25	40
Total	130	202	332

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Squa	2.377 ^a	4	.667
Likelihood Ratio	2.400	4	.663
Linear-by-Linear Association	.021	1	.885
N of Valid Cases	332		


a.0 cells (.0%) have expected count less than 5. T minimum expected count is 7.44.

Multiple Regression

- Null Hypothesis GPA at the end of Freshman year cannot be predicted by performance on college entrance exams.
- GPA = a * ACT score + β
 * Read. Comp. score

	GPA	ACT	comp
1	2.20	12.00	18.00
2	1.40	7.00	13.00
3	1.80	9.00	9.00
4	1.60	11.00	18.00
5	2.50	13.00	17.00
6	1.90	10.00	12.00
7	2.00	14.00	12.00
8	2.40	12.00	16.00
9	2.60	8.00	17.00
10	1.80	6.00	11.00
11	1.70	13.00	18.00
12	2.00	15.00	15.00
13	1.70	11.00	10.00
14	2.00	14.00	14.00
15	2.30	15.00	18.00

Multiple Regression

ANOVAb

The analysis shows no significant relationship between college entrance tests and GPA.

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.373	2	.186	1.699	.224 ^a
	Residual	1.317	12	.110		
	Total	1.689	14			

a. Predictors: (Constant), Reading Comprehension score, ACT score

b. Dependent Variable: Grade Point Average in first year of college

	Unstandardized Coefficients		Standardized Coefficients		
Model	В	Std. Error	Beta	t	Sig.
1 (Constant)	1.172	.460		2.551	.025
ACT score	.018	.034	a = _{.151}	.537	.601
Reading Comprehension score	.042	.031	β = .386	1.374	.195

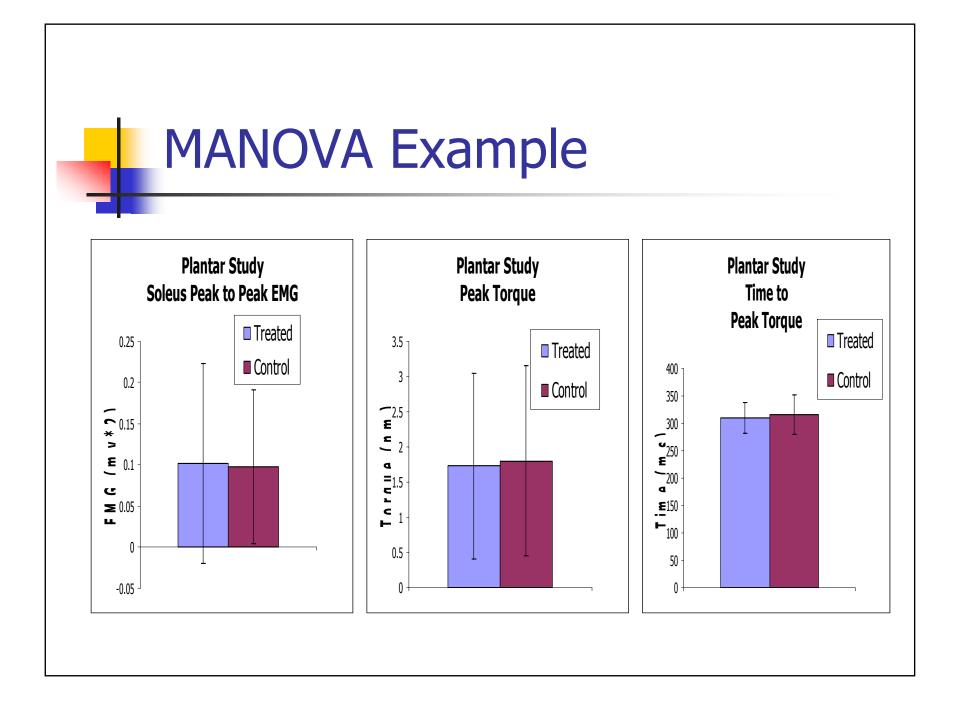
Coefficients^a

a. Dependent Variable: Grade Point Average in first year of college

MANOVA

Multivariate ANalysis of VAriance (MANOVA)

MANOVA allows you to look at differences between variables as well as group differences.


- assumptions are the same as ANOVA
- additional condition of multivariate normality
- also assumes equal covariance matrices (standard deviations between variables should be similar).

MANOVA Example

Subset of plantar fasciitis dataset.

Null Hypothesis There is no difference in soleus emg activity, peak torque, or time to peak torque for quick stretch measurements in people with plantar fasciitis who receive counterstrain treatment compared with the same group of people receiving a placebo treatment.

	- · ·			
	Treatment	Peak to Peak		
	Group	Soleus EMG	Stretch	Peak Torque
	1 - Treated		Torque milliseconds	
	2 - Control	millivolt*2	newton-mete	r
	1	0.0706	0.883	322.56
	1	0.0189	0.347	329.28
	1	0.0062	0.388	319.2
	1	0.0396	1.104	325.92
	1	0.0668	3.167	315.84
	1	0.2524	2.628	248.64
	1	0.0183	0.346	336
	1	0.0393	1.535	332.64
	1	0.1319	3.282	292.32
	1	0.3781	3.622	278.88
	2	0.039	0.557	299.04
	2	0.074	0.525	372.96
	2	0.0396	1.400	362.88
	2	0.0143	0.183	295.68
	2	0.076	3.074	322.56
	2	0.2213	3.073	258.72
	2	0.0196	0.271	346.08
	2	0.0498	2.278	302.4
		0.155	3.556	309.12
	2	0.2887	3.106	292.32
Treated				
Mean		0.10221	1.73017	310.128
StDev		0.12151083	1.31802532	28.15859087
Control				
Mean		0.09773	1.80212	316.176
StDev		0.09324085	1.35575411	35.22039409

MANOVA Results

Box's Test of Equality of Covariance Matrice's

Box's M	5.165
F	.703
df1	6
df2	2347.472
Sig.	.647

Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.

a. Design: Intercept+group

	F	df1	df2	Sig.
Soleus peak to peak emg (mv*2)	.349	1	18	.562
Peak quick stretch torque (nm)	.078	1	18	.783
Time to peak torque (milliseconds)	.550	1	18	.468

Tests the null hypothesis that the error variance of the dependent v is equal across groups.

a. Design: Intercept+group

Box's test checks for equal covariance matrices. A non-significant result means the assumption holds true.

Levene's tests checks for univariate normality. A non-significant result means the assumption holds true.

MANOVA Results

Multivariate Tests^b

Effect		Value	F	Hypothesis df	Error df	Sig.
Intercept	Pillai's Trace	.996	1207.992 ^a	3.000	16.000	.000
	Wilks' Lambda	.004	1207.992 ^a	3.000	16.000	.000
	Hotelling's Trace	226.499	1207.992 ^a	3.000	16.000	.000
	Roy's Largest Root	226.499	1207.992 ^a	3.000	16.000	.000
group	Pillai's Trace	.020	.109 ^a	3.000	16.000	.954
	Wilks' Lambda	.980	.109 ^a	3.000	16.000	.954
	Hotelling's Trace	.020	.109 ^a	3.000	16.000	.954
	Roy's Largest Root	.020	.109 ^a	3.000	16.000	.954

a. Exact statistic

b. Design: Intercept+group

The non-significant group result indicates that the null hypothesis is true. If the result had been significant, you would need to do post hoc tests to find out which variables were significant.

References

Bruning, James L. and Kintz, B.L. *Computational handbook of statistics (4th Edition)*. Massachusetts: Addison Wesley Longman, Inc., 1997.

Research Resource Guide 3rd Edition 2004-2005, <u>http://ohiocoreonline.org</u>, go to Research->Research Education.

Norusis, Marija J. SPSS 9.0 Guide to data analysis.New Jersey: Prentice-Hall, Inc., 1999.

Sokal, Robert R. and Rohlf, James F. *Biometry (2nd Edition).* New York: W.H. Freeman, 1981.

Stevens, James. *Applied Multivariate Statistics for the Social Sciences*. New Jersey: Lawrence Erlbaum Associates, Inc., 1986.

Lentner, Cornelius. *Geigy Scientific Tables vol. 2.* Basle, Switzerland: Ciba-Geigy Limited, 1982.