
Stockholm University Department of Statistics HT-2010

Probability Theory, ST701A, advanced level, 7.5 ECTS credits

Computer exercise 1

Assessment

This assignment is a compulsory part of the course. At the end of the session each group's/individual
results will be reviewed as pass or fail. Observe that in order to be able to �nish the assign-
ment in the speci�ed time, you are supposed to read the whole assignment and to perform the
preparatory exercises before you attend the computer session.

1 Exploring Probability Distributions

In this exercise, you will �rst be given an introduction to Matlab, which is an integrated technical
computing environment. Matlab will be used in the computer exercises throughout this course.
We then proceed by exploring the concepts of probability distributions by means of numerical
examples in Matlab.

Special instruction for ST701A. To make �les and data available on your computer enter
the following commands:

• Go to System start, Statistical programs, and choose Matlab.

• Go to Current directory, and click on the top-right corner, 2. You get a dialog window,
Select a directory.

• Choose Den här datorn and then Inluppgifter på Studentserver statistik (M:)

• Go to casberlab directory.

If you are doing the exercise at another place, all necessary �les are downloadable from
Studentserver statistik (M:).

1.1 Preparatory exercises

As a preparation the laboration you need to read the instructions for the computer exercise,
Sections 2.1, 3.2-3.3 4.5-4.6 in the course book by Casella, Berger (CB) and present answers to
the following questions

1. Make sure you understand what probability mass and density functions are and how they
are related to the distribution function.

2. De�ne the empirical cumulative distribution function for a sample x1, ..., xn from a random
variable (r.v.) X.

3. Write down de�nitions of covariance and correlation.

4. Give the de�nition of independent random variables. Write down the de�nitions of the
conditional and marginal pmf and pdf's, conditional expectation and variance.
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5. Determine the distribution of Y = σ · Z + µ if Z ∈ N (0, 1) and µ and σ > 0 are any
constants.

6. Let (X, Y ) be a two-dimensional normally distributed random variable with µX = 1,
µY = 2, σX = 1, σY = 0.5 and ρ = 0.3. Determine the distribution of X given that Y = 1.
(Hint: Recall the Exercise 4.45 from CB and explanations on p. 177).

7. De�ne α -quantile of a distribution.

8. Check proof of Thm 2.1.10 and make sure that you understand what is probability integral
transform (see e.g Example 5.6.3) and how the inverse transform sampling can be used to
generate observations from a population with continuous cdf FX(·).

9. Recall the Exercise 4.26 from CB and explain what is meant by the censored random
variables.

1.2 Matlab - the �rst steps

Skip this subsection if you are familiar with Matlab. Matlab allows the user to combine
numeric computation with advanced graphics and visualisation. Short commands can be execu-
ted interactively, but for more complicated problems, it is also possible to perform programming,
de�ning own functions ets. In addition to Matlab, several so-called toolboxes exist for speci�c
applications, like signal processing, control theory, �nite-element methods. In the computer ex-
ercises, we will make use of, among others, the commercial Statistics Toolbox. More information
about Matlab is found at http://www.mathwork.com/.

1.2.1 Use of matrices and vectors in Matlab

Matlab can be used as an advanced calculator; the most common functions are prede�ned. At
the Matlab prompt (�), you can for example calculate sin(π/4) + cos2(π/3) +

√
3.53 + 4 + e5 by

typing

>> sin(pi/4)*(cos(pi/3))^2+sqrt(3.5^3+4)+exp(5)

and the result appears on the screen. When you want to �nd out more about prede�ned functions
in Matlab, the help-command help is useful. It is a good rule to make use of it during the exercise,
even if not explicitly stated in the text! First, write help help. As an example, write help log

to �nd out which base Matlab is using as default in the logarithm function. Matlab is shorthand
for Matrix laboratory, and use of vectors and matrices is characteristic for Matlab. All data are
stored in vectors or matrices. (With a vector, we mean a row or column matrix.) The matrix

M =

(
5 0
7 3

)

is entered in the following way:

>> M=[5 0; 7 3]

An example of a vector is given by

>> v=[0 1 2 3 4 5 6];
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(A semicolon after a written statement prevents the echo on the screen, and may be useful if
long vectors are entered.) We show now how to build up vectors in a simple way: the v can also
be de�ned by typing

>> v=0:1:6

The command length or (size) determines the size of the vector (or a matrix):

>> vLength=length(v)

>> MSize=size(M)

It goes without saying that accessing elements in a vector is a very important step. Assume that
you want the value of the second element in the vector, as well as the values of the last three
elements. The solution is given by

>> v(2), v(4:6)

or, jointly,

>> v([2 4:6])

Observe that statements can follow consecutively, separated by commas or semicolons. Elements
in a vector can be sorted in increasing order by the command sort.

>> u=[8 -3 2.5]; uSort=sort(u)

1.2.2 Managing data and variables

We have de�ned a number of variables, and a list of current variables is given by writing who. The
command whos is similar, but also returns the size of the variables. Try yourself these commands;
do you recognize the names of the variables? One can remove all variables by typing clear. Type
help clear to �nd out how to only remove speci�c variables.
If a worksheet in Excel is saved on disk as a tab separated �le, one can import it to the Matlab
workspace: For example, a data sheet, stored as Data1.txt can be read into Matlab by typing
load Data1.txt-ascii at the Matlab prompt. The data in Data1.txt will then be loaded, and
afterwards, in Matlab's workspace, the data is referred to as Data1 , i.e. the �le name without its
extension. This works only on condition that, �rstly, the �le Data1.txt contains only numerical
values, and, secondly, all rows have the same number of elements, and, thirdly, the decimal sign
is a full stop (not a comma). If you run Matlab 7.9.0, you can use the much more general and
convenient command xlsread; type help fileformats for more information. If you want, you
can open Excel, enter up some data, save it (see that you get appropriate �le format), and try
to load it into the workspace of Matlab.

1.2.3 Data visualisation and graphics

Here we will investigate how to make simple plots in Matlab. The main goal is to learn how to
make a plot of a function f(x), i.e x → f(x). As a �rst example, let us consider y = f(x) =
cos(x), 0 < x < 4π. To make a plot we need �rst to de�ne vectors x and y. Let's do it as follows

>> x=[0:0.05:4*pi]; y=cos(x);
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Use command length which we explore previously, to determine the length of x and y. Two
vectors of the same length can be plotted against each other, i.e. x vs y using the following
command

>> plot(x,y)

A graphical window appears and the correspondent �gure is referred to as figure1. It is possible
have a number of graphical windows accessible simultaneously. The command plot can be given
several options, for example colour. Try to type

>> plot(x,y,'g')

Another option is the plot symbol. In order to plot the values marked as stars, we just recall the
vectors x and y are composed of a number of discrete points, and type

>> plot(x,y,'*')

It is possible to combine plot options. In help plot you can �nd out what the following command
will perform and check it yourself:

>> plot(x,y,'--rs')

The axis command may be used to display interesting regions in a �gure; try for example

>> axis([0 7 -2.1 2.1])

A plot is most often easier to study if a grid is inserted: try to �nd out how to use the command
grid and then apply a grid to the current plot.
The current �gure can deleted by the command clf. An empty window will remain on the
screen after this operation. If you also wish the window to disappear, then use the command
close instead.

2 Summarizing data: Methods based on empirical distributions

In this part, we will use numerical examples in Matlab to approach the concept probability

and distribution with the goal to complement theoretical probabilistic reasoning by an intuitive
understanding.

2.1 Exploring data. Empirical cumulative distribution functions and proba-

bility plots

In order to illustrate various distributional concepts we will use the arti�cial data which are
simulated from a number of probability distributions. This in fact is opposite to the real world
situation, where no labels or explanations of the distributional properties are found. However,
knowing the origin of the data makes it easier to perform data analyses. Note that simulated data
are also extensively used in real life research in order to investigate properties and performance
of statistical and data analysis methods.
To generate a random data set of 100 values, type
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>> data=randn(1,100);

What is the distribution of your random sample (use help randn)? Determine the density fun-
ction of this distribution.

Answer:

A good rule, whenever a new set of data is received: try to plot it in some type of graph! Use
for example the plot command: plot(data,'.-'). Another way of presenting the data is to
plot the sorted data: plot(sort(data),1:length(data),'-.'). From the data set which we
generate above, choose a relatively high number, say x = 1.7. It could be interesting to specify
the percentage of data which have values less than or equal to this number. When the size of
the generated sample increases, we may interpret the percentage as the probability of observing
a value less than x. The percentage is calculated in the following way:

>> x=1.7; percent=sum(data<=x)/length(data)

Check that you understand the command and try some other values of x. How do you expect
the percentage to change if you decrease/increase the value of x? Compare your results with the
sorted data graph.

Answer:

The inverse procedure, that is, specify the value of x which corresponds to a given percen-
tage/probability is also quite important. This is referred to as specifying the quantiles of a
distribution. We will investigate this in more details later on.

The similar plot can be obtained by the routine ecdf which computes empirical cumulative
distribution function (ecdf) of the data. This function returns two vectors, the values chosen,
collected in x and corresponding percentages collected in percent. To see the code one can use the
command type ecdf. The procedure simply creates a step function with a jump in cumulative
probability, P , of 1/n at each data point, x. The result of applying ecdf to the set of data data

is depicted in a new �gure after performing the following steps:

>> [percent,x]=ecdf(data);

>> figure(2);

>> subplot(2,1,1)

>> plot(x,percent,'.')

>> grid on

>> subplot(2,1,2)

>> ecdfhist(percent,x,10)

>> colormap([0.5 0.5 0.5])
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The upper panel of �gure 2 must be similar to the �gure 1 obtained before and shows how the
values in data set are distributed data presentation we, for each value of x = x0, can specify
a percentage of values in the sample with values less than x0. The lower panel of the �gure 2
represents empirical cumulative distribution unction histogram. This procedure computes the
bar heights in the empirical cdf, and normalizes them so that the area of the histogram is equal
to 1, unlike the hist procedure where bars heights represent bin counts. Di�erent number of
bins (in this case 10) can be speci�ed in teh last agrument of the function.

2.2 Large samples. Distribution function of a random variable

We now investigate a larger set of data, let say 2500 observations coming from the same distri-
bution as the previous data. We simulate data and plot them in a new �gure:

>> data=randn(1,2500);

>> [percent,x]=empcdf(data);

>> figure(3);

>> plot(x,percent,'.')

>> grid on

Given a large number of observations, the resulting empirical distribution approaches the true
distribution function. In our example, the data are generated from the normal distribution, i.e.
X ∈ N (0, 1). It is interesting to plot the theoretical distribution function, speci�ed by normcdf

together with the empirical one. To get both distributions in the same �gure perform the following
steps:

>> figure(3);

>> hold on

>> plot(x,normcdf(x),'r')

>> hold off

Interpret the �gure. What are on the x and y axes? How the number of observations e�ects the
graph properties? Try to use ecdfhist and superimpose the theoretical density function on the
normalized histogram by the following commands.

>> figure(4);

>> ecdfhist(percent,x,10)

>> colormap([0.5 0.5 0.5])

>> hold on

>> plot(x,normpdf(x), 'r-','LineWidth',2)

>> hold off

Answer:
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2.3 Quantiles and Q-Q plots

The concept of quantile is quite important in both probability and statistics and can be de�ned
in di�erent ways. Here we will use the following de�nition: If X is a continuous random variable
with a strictly increasing distribution function, FX(·), the α-quantile of the distribution is de�ned
to be the solution of the equation

P (X ≤ xα) = 1− α, or P (X ≥ xα) = α.

Special cases are α = 0.5 which corresponds to the median of FX(·) and α = 3/4 and α = 1/4,
which corresponds to the lower and upper quartiles of FX(·). Use your graph of the empirical
distribution from the exercise above and de�nition of quantile, try to estimate di�erent quantiles.
Start by α = 0.5 and estimate the median of xα. Proceed by the following steps

>> x = [normrnd(4,1,1,100) normrnd(6,0.5,1,200)];

>> q = [0:0.25:1]

>> y = quantile(x,q)

Compare your results with the exact values given by

>> norminv(1-alpha)

Answer:

Quantile-Quantile (Q-Q) plots are very useful graphical tools for comparing distribution func-
tions. The purpose of the quantile-quantile plot is to determine whether the sample in x is drawn
from a speci�c distribution (i.e one can qualitatively assess the �t of the data to a theoretical
distribution), or whether the samples in x and y come from the same distribution. If the samples
do come from the same distribution (same shape), even if one distribution is shifted and re-scaled
from the other (di�erent location and scale parameters), the plot will be linear. Suppose that
FX(·) is N (0, 1) and GY (·) is N (1, 1). Simulate 1000 observations from these distributions and
sketch a Q-Q plot using

>> qqplot(X,Y)

Repeat for G(·) being N (1, 4). Make also a Q-Q plot when F (·) and G(·) are exponential distri-
bution with parameters λ = 1 and λ = 2, respectively. Explain your results.

2.4 Some other probability distributions

Some commonly used distributions and distribution functions have their own names. They are
not only functional expressions in a mathematical sense but turn out to be appropriate analytical
tools for modelling various real life random phenomena. Furthermore, many named distribution
are special cases of the more common distributions. Many of the distributions (and relationships
between them) are listed in CB and almost all of them are implemented in the Statistics Toolbox.
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You are already familiar with normal distribution. Another important distribution which you
meet throughout the course is the exponential distribution whose pdf is

f(x|µ) =
1
µ

e−x/µ, 0 < x < ∞

The exponential distribution is a special case of the gamma distribution (obtained by setting
α = 1) in

f(x|α, β) =
1

Γ(α)βα
xα−1e−x/β , 0 < x < ∞, α > 0, β > 0,

where Γ(·) is the Gamma function.
The exponential distribution is especially important in modeling events that occur randomly
over time. Its main application area is in studies of lifetimes. The exponential distribution can
be used to model the length of life of an object, for example the lifetime of a light bulb or a
patient given a particular treatment. The exponential distribution has an interesting property,
known as the memorylessproperty. For X ∼ Exp(µ) and for s > t ≥ 0, it is the case that

P (X > s|X > t) =
P (X > s)
P (X > t)

= P (X > s− t) = e−(s−t)/µ.

See Section 3.3, CB. This means that for exponentially distributed lifetimes, the probability that
an object will survive an extra unit of time is independent of the current age of the object. To
exemplify this special property we perform the following steps.

>> x = 5:5:60;

>> xpd = x+0.1;

>> deltaF = (expcdf(xpd,40)-expcdf(x,40))./(1-expcdf(x,40))

Answer:

Explain commands and results.
To further investigate properties of exponential distribution we recall the Exercise 4.26 from CB
where the censored random variables X and D are considered. We generate random failure (life)
times as X ∼ Exp(10) and random censoring times as D ∼ Exp(20) by

>> x = exprnd(10,50,1);

>> d = exprnd(20,50,1);

Now as in the Exercise 4.26 we assume that instead of directly observing X and D we observe
the random variable Z = min(X, D), i.e minimum of these times

>> t = min(x,d);

>> censored = (x>d);

By the last command we control for whether the subject failed. The resulting vector censored
has the same size as x and its elements are 1 for observations that are right-censored and 0
for observations that are observed exactly. Now we can construct and plot empirical cumulative
distribution function which takes into account censoring, and compare the empirical cdf with the
known true cdf. We also superimpose a plot of the known population distribution function.
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>> [F,y] = ecdf(t,'censoring',censored);

>> stairs(y,F,'LineWidth',2)

>> hold on

>> xx = 0:.1:max(t);

>> yy = 1-exp(-xx/10);

>> plot(xx,yy,'g-','LineWidth',2)

By the last steps we superimpose a plot of the known population distribution function. Notice that
unlike default ecdf has an extra argument, censoring, which indicates that not all observations
are observed exactly. Try to vary parameters of the distributions of X and D and explain your
resulting graphs.
Optional: Observe that the exponential distribution is clearly not a best model for biological
survival/life times. If it would be used as a model for the time until death of a biological object,
it would imply that the probability of the object death did not depend on its age. This is a
consequence of the memorylessproperty of the exponential distribution. In real life, however, one
can expect that the probability that a 16-years-old will live at least 10 more years is not the
same as the probability that an 80-years-old will live at least 10 more years. The more �exible
distribution that can capture and model changing in the death rate ( failure rate) is the Weibull

distribution given by the following probability density

f(x|γ, β) =
γ

β
xγ−1e−xγ/β , 0 < y < ∞, γ > 0, β > 0.

A constant failure rate corresponds to the case γ = 1 which gives an exponential distribution as
a special case of Weibull. An increasing failure rate means that units are more likely to fail/die as
time goes on, and corresponds to the case of γ > 1. Use the previous analysis of the exponential
distribution and help wblrnd command to investigate how to model full and censored data from
the Weibull distribution. Try to use the simulated data to construct the empirical cdf and �t the
distribution.

2.5 Conditional distributions

The goal of this part of the laboration to give you understanding the concept of the conditio-

nal probability distribution. Conditional distributions and especially conditional moments (ex-
pectation and variance) are important concepts in statistical prediction analyses. In this part
of the laboration you will need two routines normal2d and condnormal. You can download it
from Studentserver statistik (M:), casberlab. We focus on two-dimensional normally dis-
tributed random variables (X, Y ) and explore the role of correlation coe�cient as a measure of
dependence between X and Y . The density function of (X, Y ) with bivariate normal parameters

µX , µY , σ2
X , σ2

Y and ρ = ρ(X, Y ) = Cov(X,Y )
σXσY

is

fX,Y (x, y) = C exp
{
− 1

2(1− ρ2)

[(x− µX

σX

)2
+
(y − µY

σY

)2
− 2ρ

(x− µX

σX

)(y − µY

σY

)]}
,

where the normalising constant is

C =
1

2πσXσY

√
1− ρ2

.

By determining the conditional density fX|Y (x|y) = fX,Y (x,y)
fY (y) you can see that the conditional

distribution of X given Y = y is univariate normal with parameters

E(X|Y = y) = µX + ρ
σX

σY
(y − µY ),
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Var(X|Y = y) = σ2
X(1− ρ2).

Observe that the conditional mean consists of µX plus a correction term which is a linear function
of y whereas the conditional variance depends on ρ only and decreases with increasing |ρ|. Later
on we will relate these facts to the elliptic countours if the joint density of (X, Y ). Analogous
expressions can be obtained for the multivariate normal distribution, i.e for the conditional
distribution of X1|X2 where X = [X1;X2]′ ∈ Nn(µ,Σ) with

µ = [µ1;µ2]′ and Σ =

(
Σ11 Σ12

Σ21 Σ22

)

where X1 and X2 are two sub-vectors of respective dimensions p and q with p+ q = n. Note that
Σ = ΣT , and Σ21 = ΣT

21.
Now we investigate graphically how the conditional distribution, expectation and variance of X
change when varying di�erent parameters in the expressions above. In other words, how our infor-
mation about X changes after observing that Y = y? To visualise e�ect of variation of Y we use
normal2d och condnormal which return �gures representing the involved distributions/densities.
The command
normal2d(µX , µY , σX , σY , ρ) produces a graph of the bivariate density function, its countur plot
and marginal densities of both X and Y . The command condnormal(µX , µY , σX , σY , ρ,′ y′, y0)
generates a graph of the conditional density functions for X given Y = y0. Try di�erent distri-
butions and investigate how the conditional expectation and variance are e�ected by small vs
large values of ρ, σX and σY . What do you observe when ρ = 0 or when ρ = 0.9?

Answer:

Use both normal2d and condnormal and hold on in order to investigate how varying of ρ and
σY e�ects the conditional density.

Answer:

2.6 Constructing dependent bivariate distributions

In this part, we �rst investigate a simulation technique for the dependent normal random variables
which is derived from the starting point of bivariate normality of (X, Y ). It is straightforward
to show (see e.g. CB, p 177) that the conditional distribution of X|Y = y and Y |X = x are also
normal, i.e.

Y |X = x ∼ N
(
µY + ρ

σY

σX
(x− µX), σ2

Y (1− ρ2)
)
.

We have used this fact in the previous section. Thus, in order to simulate n pairs of observations
from a bivariate normal distribution with parameters µX , µY , σX , σY and ρ we can �rst simulate
X as for example

>> n = 900; muX=0; muY=0; sigmaX=1; sigmaY=1; rho=0;

>> x=normrnd(muX,sigmaX^2, n,1);
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and then use the condition distribution of Y |X = x to simulate Y . Perform these steps and plot
the resulting observations by plot(x,y.'*'). Was the result as expected? Try to vary ρ and
investigate what happens with the graph if the correlation is near −1 or 1. Explain it analytically,
i.e. try to verify that the joint distribution of (X, Y ) becomes more concentrated about the line
y = µY + ρ σY

σX
(x− µX) when ρ is approaching −1 or 1.

Answer:

Now we turn to another approach for modeling bivariate distributions. Using the theory of uni-
variate random number generation we recall that by applying the inverse cumulative distribution
function of any distribution F (·) to a U(0, 1) random variable, we get a random variable whose
distribution is exactly F (·). This technique is known as the Inversion method. Similar two-step
transformation can be applied to each variable of a standard bivariate normal, creating depen-
dent random variables with arbitrary marginal distributions. Because the transformation works
on each component separately, the two resulting random variables need not even have the same
marginal distributions. For example, we can generate random vectors from a bivariate distribu-
tion with χ2(3) and t(6) marginals in the following way. Start from

>> n = 1000; rho = 0.8;

>> Z = mvnrnd([0 0], [1 rho; rho 1], n);

>> U = normcdf(Z); X = [chi2inv(U(:,1),3) tinv(U(:,2),6)];

Check what mvnrnd does and investigate functions chi2inv and tinv using help. Proceed by
the following steps

>> [n1,ctr1] = hist(X(:,1),20);

>> [n2,ctr2] = hist(X(:,2),20);

>> subplot(2,2,2); plot(X(:,1),X(:,2),'.'); axis([0 12 -8 8]); h1 = gca;

>> title('1000 Simulated dependent Chi2 and t values');

>> xlabel('X1 ~ Chi2(3)'); ylabel('X2 ~ t(6)');

>> subplot(2,2,4); bar(ctr1,-n1,1); axis([0 12 -max(n1)*1.1 0]); axis('off'); h2 = gca;

>> subplot(2,2,1); barh(ctr2,-n2,1); axis([-max(n2)*1.1 0 -8 8]); axis('off'); h3 = gca;

>> set(h1,'Position',[0.35 0.35 0.55 0.55]);

>> set(h2,'Position',[.35 .1 .55 .15]);

>> set(h3,'Position',[.1 .35 .15 .55]);

>> colormap([.7 .7 1]); grid

and explain the resulting �gures.

Answer:
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