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Statistical inference, ST703A, advanced level, 7.5 ECTS credits

Computer exercise 2

Assessment

This assignment is a compulsory part of the course. At the end of the session each group's/individual

results will be reviewed as pass or fail. Observe that in order to be able to �nish the assign-

ment in the speci�ed time, you are supposed to read the whole assignment and to perform the

preparatory exercises before you attend the computer session.

Special instruction for ST703A. To make �les and data available on your computer enter

the following commands:

• Go to System start, Statistical programs, and choose Matlab.

• Go to Current directory, and click on the top-right corner, 2. You get a dialog window,

Select a directory.

• Choose Den här datorn and then Inluppgifter på Studentserver statistik (M:)

• Go to casberlab directory.

If you are doing the exercise at another place, all necessary �les are downloadable from

Studentserver statistik (M:).

Preparatory exercises

• Repeat Section 9.2.2, check the structure of pivot con�dence interval for location and scale

parameters, check Example 9.1.3 and Example 9.1.6.

• Check the Example 9.2.7 and Example 9.2.8, and Example 9.2.13.

• Read the Section 9.2.4, check Example 9.2.16 and Example 9.2.17.

1 Interval Estimation

In this part of the Exercise we consider the use of the bootstrap for �nding approximate con�dence

intervals. Suppose that θ̂ is a point estimate of a (location) parameter θ, the true unknown value

of which is θ0, and suppose for the moment that the distribution of θ̂− θ0 is known. Then let the

α/2 and 1− α/2 be quantiles of this distribution which we denote by δ and δ̄ respectively, i.e

P (θ̂ − θ0 ≤ δ) =
α

2
, P (θ̂ − θ0 ≤ δ̄) = 1− α

2
.

Then

P (δ ≤ θ̂ − θ0 ≤ δ̄) = 1− α

or

P (θ̂ − δ̄ ≤ θ0 ≤ θ̂ − δ) = 1− α.
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Thus we have that (θ̂ − δ̄, θ̂ − δ) is 100(1− α)% con�dence interval.

However the known distribution of θ̂ − θ0 typically is not the case. Since θ0 is unknown, the

bootstrap technique suggest using θ̂ in its place: we can generate many samples (say b in total)

from a distribution with value θ̂ and for each sample construct an estimate of θ, say θ∗j , j =
1, . . . , b. The distribution of θ̂− θ0 is then approximated by that of θ∗− θ̂, the quantiles of which

are used to form an approximate con�dence interval.

Using the similar approach the bootstrap con�dence interval for the scale (or shape) parameter

θ can be constructed. We use

P (
θ̂

θ0
≤ δ) =

α

2
, P (

θ̂

θ0
≤ δ̄) = 1− α

2
.

Then

P (δ ≤ θ̂

θ0
≤ δ̄) = 1− α,

or

P (
θ̂

δ̄
≤ θ0 ≤

θ̂

δ
) = 1− α,

where we assume that the distribution of θ̂
θ0

can be approximated by that of θ∗

θ̂
, with the corre-

sponding quantiles δ and δ̄.

1.1 Bootstrap CI for parameters of gamma distribution

Now we apply the technique presented above to �nd approximate con�dence intervals for the

parameters of the gamma distribution �tted to the precipitation data. The �rst step gives the

ml estimates of α and λ (or β) using gamfit, (recall that the Matlab determines the estimate of

β = 1/λ).

>> [paramhat,ci]=gamfit(rain(:,1))

>> datarain=gamrnd(paramhat(1),paramhat(2),1,227);

>> b=1000; [bootstat,bootsam] = bootstrp(b,@gamfit, datarain);

>> alphaboot=bootstat(:,1);

>> delta=alphaboot/paramhat(1);

>> delta=sort(delta);

>> qq_delta=delta(round([b*0.025,b*0.975]))

>> ci_boot_alpha=[paramhat(1)/qq_delta(2),paramhat(1)/qq_delta(1)]

Explain what the Matlab code does. Use the same technique to compute the bootstrap con�dence

interval for β. Compare the bootstrap intervals for α and β with those obtained by gamfit.

Notice that there are a number of di�erent methods of using the bootstrap technique to �nd

approximate con�dence intervals. The preceding method was demonstrated because the fairly

direct reasoning behind it. Another popular method, the bootstrap percentile method, uses the

quantiles of the bootstrap distribution of θ̂ directly.

Answer:
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1.2 Analysis of earthquakes data using credibility and con�dence intervals

Recall Section 2.2 of the Computer Exercise 2 of the Probability course where we analysed

the variability of an estimator using Bayesian approach. The main goal was to evaluate the

probability of having a period of more than 1200 days between serious earthquakes using the

data dataquak; see Rychlik et al (2006). We investigated the posterior distribution of

p = P (X > 1200) = e−1200Λ,

given the non-informative prior prior of Λ, π(λ) = λ−1 It was shown that the posterior distribu-

tion of p can be approximated by the log-normal one, i.e

log(p) ∼ N (·, ·)

which is illustrated by

>> figure

>> x=[0.01:0.001:0.16];

>> pi_postpdf_p=lognpdf(x,-1200*(63/27120), 1200*sqrt(63/(27120^2)));

>> subplot(2,1,1)

>> plot(x,pi_postpdf_p)

>> title('Posterior density of p')

>> subplot(2,1,2)

>> pi_postcdf_p=logncdf(x,-1200*(63/27120), 1200*sqrt(63/(27120^2)));

>> plot(x,pi_postcdf_p)

>> title('Posterior distribution of p')

Use zoom and specify the credibility interval of p from the �gure you just plotted.

[p0.975, p0.025] =

To calculate the bootstrap con�dence interval for p we need the distribution of p̂/p0 which is

unknown. We approximate it by the distribution of δ = p∗/p̂ where p∗ is a bootstrap estimator

of p0 obtained by the following steps:

>> load data_quak

>> p_hat=exp(-1200./mean(data_quak))

>> b=1000;

>> [bootstat, bootsam]=bootstrp(b,@mean,data_quak);

>> data_boot=data_quak(bootsam);

>> p_star=exp(-1200./mean(data_boot));

>> delta= p_star./p_hat;

>> [f,x]=ecdf(delta);

>> ecdfhist(f,x,20)

>> colormap([0.5 0.5 0.5])

The last three steps give a normalized histogram representing the bootstrap distribution of δ.

Now we specify the quantiles of this distribution and get the con�dence interval:
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>> delta=sort(delta);

>> q_delta=delta(round([b*0.025,b*0.975]))

>> ci_boot=[p_hat/q_delta(2),p_hat/q_delta(1)]

Compare the credibility interval with the bootstrap based con�dence interval. Are they simi-

lar? Observe that the posterior distribution of p is skewed; you can relate the skewness of the

distribution to the closeness of the upper endpoint of the credibility interval to zero.

Answer:

2 Hypothesis Testing

Random variation in the data often makes it di�cult to determine whether samples taken un-

der di�erent conditions really are di�erent. Hypothesis testing is a tool for analyzing whether

sample-to-sample di�erences are signi�cant and require further investigation or are consistent

with random and expected data variation. Hypothesis testing for the di�erence in means of two

samples from a normal distribution can be performed using ttest2. Read the instructions for

this procedure using help ttest2 and apply it to solve the Problem 8.41 (c) in CB. Try di�erent

assumptions about population variances.

Answer:

Observe that besides ttest2 Matlab provides a number widely used parametric and nonpara-

metric hypothesis testing procedures summarized in Hypothesis tests.

Further we consider some examples of calculating the power of a test, that is the probability

that the test will reject the null hypothesis when the alternative hypothesis is true. We focus on

a two sided test

H0 : µ = µ0 vs H1 : µ 6= µ0

that rejects the null hypothesis whether the sample mean is too high or too low. The test

statistic is a t statistic, which is the di�erence between the sample mean and the mean being

tested, divided by the standard error of the mean. Under the null hypothesis, the test statistics

has Student t distribution with n − 1 degrees of freedom. To investigate the power of the test

we can look at power function as a function of µ using sampsizepwr function that allows for

computing the sample size and test power. For a given µ0 = 75, sample size n = 15 and σ = 6
the power function can be illustrated by

>> n=15;x = linspace(65,85);

>> power=sampsizepwr('t',[75 6],x,[],n);

>> plot(x,power);

>> xlabel('True mean')

>> ylabel('Power')

4



Investigate how power increases as µ moves away from the null hypothesis value in either direc-

tion. Investigate also how the sample size, n e�ects the shape of the power function.

Answer:

Using sampsizepwr function we can also determine the mean closest to µ0 that can be determined

to be signi�cantly di�erent from µ0 using a t test with a given sample size of n = n0 and given

power β(µ) = β0. Try for example

>> mu1 = sampsizepwr('t',[75 6],[],0.8,30)

and explain your results.
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