
Stockholm University Department of Statistics VT-2011

Statistical inference, ST703A, advanced level, 7.5 ECTS credits

Computer exercise 1

Assessment

This assignment is a compulsory part of the course. At the end of the session each group's/individual

results will be reviewed as pass or fail. Observe that in order to be able to �nish the assign-

ment in the speci�ed time, you are supposed to read the whole assignment and to perform the

preparatory exercises before you attend the computer session.

1 Estimation of Parameters

This exercise is concerned with parameter estimation, the method of moments and the tradi-

tional method of maximum likelihood are demonstrated using Matlab. We will also focus on

two di�erent approaches to investigate the variability of estimates, the bootstrap technique and

Bayesian analysis. These two methods will then be used for �nding interval estimators. Simple

examples of the hypotheses testing and some properties of power function are demonstrated.

Special instruction for ST703A. To make �les and data available on your computer enter

the following commands:

• Go to System start, Statistical programs, and choose Matlab.

• Go to Current directory, and click on the top-right corner, 2. You get a dialog window,

Select a directory.

• Choose Den här datorn and then Inluppgifter på Studentserver statistik (M:)

• Go to casberlab directory.

If you are doing the exercise at another place, all necessary �les are downloadable from

Studentserver statistik (M:).

1.1 Preparatory exercises

• Read section 9.2.4 in CB and go through Example 9.2.16.

• Read section 10.1.4 in CB and go through Examples 10.1.19-10.1.22.

2 The Method of Moments and Maximum Likelihood Estimation

We will take the following basic approach to the study of parameter estimation. The observed

data will be regarded as realizations of random variables X1, . . . , Xn, whose joint distribution

depends on an unknown parameter θ. Note that θ can be a vector, such as (α, β) in gamma

distribution. An estimate of θ will be a function of Xis and will hence be a random variable with

the probability distribution called its sampling distribution. We will use approximations to the
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sampling distribution to assess the variability of the estimate.

In this part we will use numerical examples in Matlab to investigate the properties of point

estimates. We will also be concerned with sampling distributions of estimates and with assessing

variability using bootstrap.

2.1 Poisson Distribution

As a concrete example, let us consider a study done at the National Institute of Science and

Technology (Steel et al 1980, see Rice (1996)). Asbestos �bers on �lters were counted as part

of a project to develop measurements standards for asbestos concentration. Asbestos dissolved

in water was spread on a �lter, and punches of 3-mm diameter were taken from the �lter and

mounted on a transmission electron microscope. An operator counted the number of �bers in

each of 23 grid squares, yielding the counts that are stored in the �le

asbestos.mat

The Poisson distribution, Po(λ) would be a plausible model for describing the variability from

grid square to grid square in this situation and could be used to characterize the inherent va-

riability in future measurements. Determine the method of moments estimate of λ. Specify the

log-likelihood function for λ and determine the ML estimate. Are these two estimates the same?

Answer:

To make a visual inspection of the log-likelihood function based on the asbestos data we can plot

it using the following commands:

>> lambda=[20:0.05:30];

>> l=log(lambda)*sum(asbestos)-23*lambda-sum(log(factorial(asbestos)));

>> plot(lambda,l)

Explain your results.

If the experiment were to be repeated, the counts, and therefore the estimate would not be

the same. In order to investigate how stable the obtained estimates are we turn to the standard

technique based on deriving the sampling distribution of the estimate or an approximation to that

distribution. In our example the statistical model stipulates that the individual counts Xi are iid

from Po(λ0). Letting S =
∑n

i=1 Xi, the parameter estimate λ̂ = S/n is a random variable, and

to determine its sampling distribution we observe that by the properties of Poisson distribution,

S ∼ Po(nλ0). Thus the pmf of λ̂ is

P (λ̂ = ν) = P (S = nν) =
(nλ0)nνe−nλ0

(nν)!

for such ν that nν is a nonegative integer. Suggest an approximation to the distribution of S

and λ̂ if nλ0 is large and determine corresponding parameters. Plot the density of the suggested

approximate distribution.
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Answer:

Use the estimated standard error sλ̂ =
√

λ̂
n instead of the standard error of λ̂, σλ̂ =

√
λ0
n

when deriving the approximation and compute s from the asbestos data. Give some ideas about

theoretical justi�cation of using λ̂ instead of λ0. Use properties of the approximate distribution

to make assessments about the variability of the estimates.

Answer:

In some cases the sampling distribution is of an explicit form depending upon the unknown

parameters. In these cases we could substitute our estimates for unknown parameters in order

to approximate the sampling distributions. In other cases the form of sampling distribution is

not so obvious, but we could use bootstrap resampling technique to simulate it. Furthermore by

using the bootstrap we avoid doing perhaps di�cult analytic calculations. We have seen that

in the case of Po(λ) the closed form approximation of the sampling distribution of λ̂ can be

obtained. The bootstrap approximation can also be suggested using

>> [bootstat,bootsam] = bootstrp(1000,@mean, asbestos);

>> [f,x]=ecdf(bootstat);

>> ecdfhist(f,x,20)

Explain commands and results.

2.2 Gamma distribution

Here we will use the following form of the density of gamma distribution

f(x|α, λ) =
1

Γ(α)
λαxα−1e−λx, 0 ≤ x < ∞, α, λ > 0

and assume that both parameters are unknown. Observe that in the notations of CB λ = 1/β,

see p.99. Recall that during the lecture 3 were we used the method of moments to estimate α

and λ that can shortly be presented as follows: the �rst two population moments of the gamma

distribution are

E(X) =
α

λ
, E(X2) =

α(α + 1)
λ2

.

Then, using the sample moments

m1 =
x1 + . . . + xn

n
, m2 =

x2
1 + . . . + x2

n

n

we get

α̂ =
m2

1

m2 −m2
1

and λ̂ =
m1

m2 −m2
1
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It appears that it would be di�cult to derive the exact forms of the sampling distributions of α̂

and λ̂ since they are each rather complicated functions of the sample X1, . . . , Xn. To evaluate

the variability of α̂ λ̂ we use the bootstrap approach.

As an example, we consider the �t of the amount of precipitation during 227 storms in Illinois

from 1960 to 1964 to a gamma distribution (LeCam and Neyman 1967, see Rice). The idea with

the data analysis was to characterize the natural variability in precipitation from storm to storm.

The data gathered are summarised in the �le rain.mat. The �rst column of the data represents

the average amount of rainfall (in inches) from each storm, the second column represents the

corresponding year of measurements where 0 stands for 1960, 1 for 1961, and so on. Display the

data as a normalized histogram and explain why gamma distribution is a good candidate for a

model.

Answer:

Calculate then the method of moments estimators for this data and use these estimators as

parameters to �t the density of gamma distribution to the data. Apply then gammafit to the

data to specify the ML estimators of α and λ, and plot the �tted density with α̂ML and λ̂ML
on the same �gure using hold on, (details of gammafit will be discussed later). Explain the

discrepancy between the �tted densities? Keep in mind that the gamma distribution is only a

possible model for the data and should not be taken as being literally true.

Answer:

We now turn to the analysis of the sampling distributions of λ̂ and α̂ obtained by the method of

moments. We generate many samples of the size n = 227 from the rain data and then illustrate

the estimates variability by histograms.

>> [boot_mean,bootsam] = bootstrp(1000,@mean,rain(:,1));

>> [boot_var,bootsam] = bootstrp(1000,@var,rain(:,1));

>> m_1=bootstat_mean;

>> m_2=boot_var+m_1.*m_1;

>> alphahat=m_1.*m_1./(m_2-m_1.*m_1)

>> betahat=(m_2-m_1.*m_1)./m_1;

>> figure

>> subplot(1,2,1)

>> hist(alphahat)

>> subplot(1,2,2)

>> hist(betahat)

>> colormap([0.5 0.5 0.5])

The obtained histograms indicate the variability that is inherent in estimating the parameters

from a sample of the size n = 227. Can you suggest some approximations to the obtained

distributions from the shape of histograms?
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The variability shown by the histograms can be summarized by calculating the standard devia-

tions of the 1000 estimates, thereby providing estimated standard errors of λ̂ and α̂. To be more

precise, if we get 1000 estimates of α denoted by α∗
i , i = 1, . . . , 1000, the standard error of α̂ is

estimated as

sα̂ =

√√√√ 1
1000

1000∑
i=1

(α∗
i − ᾱ)2

where ᾱ is the mean of the 1000 values. Calculate the standard errors for λ̂ and α̂ using the

bootstrap samples above and explain your results.

Answer:

Now we turn to the method of maximum likelihood and investigate the variability of ml estimates

of α and λ using the same precipitation data summarised in the �le rain.mat. When both α

and λ are unknown, the log-likelihood function of an i.i.d sample X1, . . . , Xn is

l(α, λ) = nα log(λ) + (α− 1)
n∑

i=1

log xi − λ
n∑

i=1

xi − n log Γ(α).

By calculating the partial derivatives ∂l/∂α and ∂l/∂λ and setting them equal to zero we �nd

λ̂ = α̂
x̄ and by substituting this into the equation for ∂l/∂α we obtain a nonlinear equation for

the ML estimate of α:

n log(α̂)− n log x̄ +
n∑

i=1

log xi − n
Γ′(α̂)
Γ(α̂)

= 0.

This equation cannot be solved in the closed form and therefore obtaining the exact sample

distributions of the estimates would appear to be intractable. Recall that we discussed the same

problem with the ML estimates of gamma distribution parameters, see Exercise 7.10 in CB.

However iterative methods for �nding estimates are used in gamfit(data) function which returns

the maximum likelihood estimates (MLEs) for the parameters of the gamma distribution given

the data in vector data. Do the following steps

>> [paramhat,ci]=gamfit(rain(:,1))

>> datarain = gamrnd(paramhat(1),paramhat(2),1,227);

>> [bootstat,bootsam] = bootstrp(1000,@gamfit, datarain);

>> bootstat

>> figure

>> subplot(1,2,1)

>> hist(bootstat(:,1))

>> subplot(1,2,2)

>> hist(bootstat(:,2))

>> colormap([0.5 0.5 0.5])

The �rst step gives us the ML estimates for α and β = 1/λ obtained from the rain data. To

evaluate the variability of these estimates we use the bootstrap, and since the true values of α
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and β are unknown we let our ML estimates play their roles. Explain the commands above. Can

we regard the obtained histograms as approximations to the sampling distributions of α̂ and β̂?

Answer:

Now we can compare the sampling distributions of α and β = 1/λ obtained by method of

moments and maximum likelihood. What can you conclude about the dispersion of these distri-

butions? Relate your conclusion to the properties of estimators. Calculate the standard errors for

α̂ and β̂ and compare them to those for estimates obtained by the methods of moments. Observe

that two di�erent bootstrap approaches were used when specifying the method of moments and

the ml estimates. Explain what is the di�erence and how does it e�ect the variability of estimates.

Optional: Try to use the same bootstrap approaches for both estimation techniques and compare

the variability of resulting estimates.

Answer:
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