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Abstract

This work is to develop methodology to detect influential observations in linear
mixed model for multiple-period two-treatment cross-over designs. Existence of
explicit maximum likelihood estimates (MLEs) of variance parameters as well as
of mean parameters in the mixed model with treatment, residual, period and se-
quence effects is proven. Special reference is taken to the four-period ABBA|BAAB
design. Case-weighted perturbations are performed. The influence quantities on
each parameter estimate and their dispersion matrix are presented as closed-form
functions of residuals in the unperturbed model.

Keywords: Delta-beta influence, Explicit maximum likelihood estimate, Mixed
linear model, Multiple-period cross-over design, Perturbation scheme,
Variance-ratio influence

1. Introduction

Cross-over designs, also mentioned in the literature as change-over, multiple time
series or repeated measurements designs, are designs in which each subject receives
more than one treatment in certain order (Jones and Kenward, 1989). The cross-
over designs can reduce the number of subjects needed in studies, which in many
applications may be plots of land, animals or human beings. This is particularly
important if there are ethical concerns or with scarce or threatened populations.
Therefore, multiple-period cross-over designs are common employed in many fields.

From a statistical point of view, the main advantage of cross-over designs is that
they result in an increase of statistical power since each subject can serve as its
own control. Due to the fact that subjects in the study are often randomly se-
lected from a large population with unknown variance, subject effects are typically
random effects. Recently, interests is to study cross-over designs within the frame-
work of mixed linear models (see e.g. Carrière and Huang, 2000; Hedayat et al.,
2006; Yan and Locke, 2010; Hedayat and Zheng, 2010).

Although linear models are extensively applied in studies of cross-over designs,
most of the available contributions focus on the associated optimal designs or
tests under the assumed models. The sensitivity of the models, which is one of
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the most important issues when validating the model, is seldom discussed in cross-
over design studies. One way to formulate the sensitivity problem is to develop
statistics robust to minor perturbations on the cross-over design model (Putt and
Chinchilli, 2000). However, there are other formulations. Suppose that a minor
perturbation exists in a single or a few observations of the model. Influence anal-
ysis evaluates the changes on the estimators or test statistics after a perturbation
has been performed and aims to identify the observations that have dramatically
large influence. Such observations are defined as influential observations (Belsley
et al., 2004). This work aims to carry out influence analysis for multiple-period
two-treatment cross-over designs.

Except for Hao et al. (2011), no pervious work, by the authors’ knowledge, de-
velops methodology to detect influential observations in cross-over design, either
in mixed linear models or in fixed-effect linear models. We extend the delta-beta-
based local influence approach proposed by Hao et al. (2011) for two-sequence
two-period cross-over design to multiple-period cross-over designs. An underly-
ing mixed linear model is assumed. Closed-form maximum likelihood estimates
(MLEs) of the parameters in the cross-over designs are utilised. Although other
influence diagnostics for general linear mixed models are expected to be able to
detect the influential observations in cross-over designs, e.g. the methods in Lesaf-
fre and Verbeke (1998) or Christensen et al. (1992), the fact that our influential
quantities yield explicit expressions as functions of the residuals helps to interpret
the data and is computationally more efficient.

In the next section, we start with a mixed linear model for general two-treatment
cross-over designs. Examples of its specification in various cross-over designs are
provided. Basic tools of influence analysis, e.g. perturbation scheme and objective
functions of influence are defined in Section 3 and applied in the coming discus-
sion. Explicit results of the influence analysis for a balanced four-period cross-over
designs, which is referred to as the ABBA|BAAB design, are presented in Section
4. Section 5 contains our final conclusions and remarks.

2. Model

Throughout this paper, upper case letters with bold face denote matrices, bold
lower case letters denote column vectors and non-bold lower case letters with sub-
scripts are used to show elements of matrices or vectors. Let Ip , 1p and Jp = 1p1

T
p

denote the p× p identity matrix, the p× 1 vector and the p× p matrix with ele-
ments equal to 1, respectively. The symbol ⊗ represents the Kronecker product of
matrices. Moreover, the vector space generated by the columns of the p×q matrix
A, C(A), is given by C(A) = {a : a = Az, z ∈ Rq}. The orthogonal complement
to C(A) is denoted by C(A)⊥, and a matrix of which columns generate C(A)⊥ is
denoted by Ao. The p-dimensional multivariate normal distribution with mean
vector µµµ and covariance matrix ΣΣΣ is denoted Np(µµµ, ΣΣΣ).

In the following discussion, the terminology subject will be mentioned as a unit of
experiment, observation as data observed in single period within the subject, and
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a case is a subject or a observation in general.

2.1. General model for cross-over designs

The key feature of cross-over design modelling is that each response can be af-
fected not only by the “direct” effects of the treatment in the current period, but
possibly also by “residual” effects from treatments applied in previous periods.

This work will focus on the comparison of two treatments in a experiment, treat-
ment A and treatment B. It can be studied by a two-treatment cross-over design
d with s sequences and p periods. Following the notation of Kershner and Federer
(1981), we denote the design COD(2, s, p). Let yijk represent the response ob-
served during the k-th period on j-th subject within the i-th sequence under the
design d, with i = 1, 2, . . . , s; j = 1, 2, . . . , n; k = 1, 2, . . . , p. Kershner and Fed-
erer (1981) surveyed a list of frequently used linear models in cross-over designs,
which were rewritten by Carrière and Reinsel (1992) for two-treatment CODs as

yijk = µ+ αk + φΦd(i,k) + ρΦd(i,k−1) + λi + γij + εijk, (1)

where µ is the general mean, αk is the effect of the k-th period, and λi is the
effect of the i-th sequence. The function value of d(i, k) stands for the treatment
that is assigned to the i-th sequence during the k-th period by the design d. Let
d(i, k) = 1 denote treatment A, and d(i, k) = 2 treatment B. We define Φ1 = 1/2,
Φ2 = −1/2 and Φd(i,0) = 0. The parameter φ is the direct treatment effect contrast
between treatment A and B, and ρ is the first-order residual effect contrast between
treatment A and B. The effect γij represents random individual effect of the j-th
subject within sequence i, which is assumed to be γij i.i.d.∼ N(0, σ2

γ) and independent

of the random error εijk i.i.d.∼ N(0, σ2
e). The variances σ2

γ and σ2
e are supposed to

be unknown.

2.2. Reparametrization

Model (1) is over-parametrized. In order to eliminate the redundancy of the
parameters and to obtain unique mean estimators, reparametrization on nuisance
parameters, i.e period effects and sequence effects, is commonly done. Examples
of reparametrized (1) in various cross-over designs are provided.

COD Example I. AB and BA design.
In the simplest two-sequence two-period cross-over design, where s = 2 and p = 2,
subjects are administered with two sequences of treatments, to receive treatment
A followed by treatment B (sequence AB) or to receive treatment B followed by
treatment A (sequence BA). It implies a design function d(i, k) given by

d(i, k) =

{
1, if (i, k) ∈ {(1, 1), (2, 2)} ,
2, if (i, k) ∈ {(1, 2), (2, 1)} .

In matrix notation and standard mixed models notation, model (1) for the AB|BA
design is specified as

y = Xβββ + Zγγγ + εεε, (2)
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where the response vector y=(y111, y112, y121, . . . , y2n2)
T, the vector of random ef-

fects γγγ=(γ11, γ12, . . . , γ2n)T, and the vector of random errors εεε=(ε111, ε112, . . . , ε2n2)
T.

The matrix Z=I2⊗In⊗12 is the 4n×2n known incidence matrix for γγγ. Since in the
AB|BA design, the residual effect ρ is completely confounded with the treatment
and sequence effects, without loss of generality, the restrictions

α1 = −α2 = π/2,

λ1 = −λ2 = λ/4,

ρ = 0,

are set on the original mean parameters space of model (1). Define the parameter
βββ = (µ, π, φ, λ)T to be the vector of reparametrized unknown mean parameters.
The matrix X = (x111,x112,x121, . . . ,x2n2)

T is a 4n×4 known design matrix for βββ.
The column vector xijk is a row of X written as a column, which for j = 1, 2, . . . , n,
is given by

x1j1 =
(

1 1
2

1
2

1
4

)T
,

x1j2 =
(

1 −1
2
−1

2
1
4

)T
,

x2j1 =
(

1 1
2
−1

2
−1

4

)T
,

x2j2 =
(

1 −1
2

1
2
−1

4

)T
.

COD Example II. ABB and BAA design.
Consider a cross-over design with s = 2 and p = 3, where each subject is allocated
to the treatment sequence ABB or BAA. It implies a design function d(i, k) given
by

d(i, k) =

{
1, if (i, k) ∈ {(1, 1), (2, 2), (2, 3)} ,
2, if (i, k) ∈ {(1, 2), (1, 3), (2, 1)} .

In standard mixed model notation, model (1) for the ABB|BAA design is specified
as

y = Xβββ + Zγγγ + εεε, (3)

where the response vector y= (y111, y112, y113, y121, . . . , y2n3)
T, the random effects

γγγ= (γ11, γ12, . . . , γ2n)T, and the random errors εεε= (ε111, ε112, ε113, ε121, . . . , ε2n3)
T.

The matrix Z = I2 ⊗ In ⊗ 13 is the 6n × 2n known incidence matrix for γγγ. The
difference between the ABB|BAA and the AB|BA cross-over design model is that
the residual effect is not confounded. Without loss of generality, the restrictions

α1 = π1/2 + π2/3,

α2 = −π1/2 + π2/3,

α3 = −2/3φ2,

λ1 = −λ2 = (λ+ φ)/6,

are set on the original mean parameter space of (1). Define the parameter
βββ = (µ, π1, π2, φ, ρ, λ)T to be the vector of reparametrized unknown mean pa-
rameters. The matrix X = (x111,x112,x113,x121, . . . ,x2n3)

T is a 6n × 6 known
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design matrix for βββ, where the vector xijk for j = 1, 2, . . . , n, is given by

x1j1 =
(

1 1
2

1
3

2
3

0 1
6

)T
,

x1j2 =
(

1 −1
2

1
3
−1

3
1
2

1
6

)T
,

x1j3 =
(

1 0 −2
3
−1

2
−1

2
1
6

)T
,

x2j1 =
(

1 1
2

1
3
−2

3
0 −1

6

)T
,

x2j2 =
(

1 −1
2

1
3

1
3
−1

2
−1

6

)T
,

x2j3 =
(

1 0 −2
3

1
3

1
2
−1

8

)T
.

COD Example III. ABBA and BAAB design.
Consider a cross-over design with s = 2 and p = 4, where each subject is allocated
to the treatment sequence ABBA or BAAB. It implies a design function d(i, k)
given by

d(i, k) =

{
1, if (i, k) ∈ {(1, 1), (1, 4), (2, 2), (2, 3)} ,
2, if (i, k) ∈ {(1, 2), (1, 3), (2, 1), (2, 4)} .

In standard mixed model notation, model (1) for the ABBA|BAAB design is
specified as

y = Xβββ + Zγγγ + εεε, (4)

where y = (y111, y112, y113, y114, y121, . . . , y2n4)
T, γγγ = (γ11, γ12, . . . , γ2n)T, and

εεε=(ε111, ε112, ε113, ε114, ε121, . . . , ε2n4)
T. The matrix Z = I2⊗ In⊗ 14 is the 8n× 2n

known incidence matrix for γγγ. Without loss of generality, the restrictions

α1 = π1/2 + π2/3 + π3/4,

α2 = −π1/2 + π2/3 + π3/4,

α3 = −2/3π2 + π3/4,

α4 = −3/4φ3,

λ1 = −λ2 = (λ+ ρ)/8,

are set on the original mean parameter space of (1). Define the parameter
βββ = (µ, π1, π2, π3, φ, ρ, λ)T to be the vector of reparametrized unknown mean pa-
rameters. The matrix X=(x111, . . . ,x114,x121, . . . ,x2n4)

T is a 8n×7 known design
matrix for βββ, where the vector xijk is for j = 1, 2, . . . , n, given by

x1j1 =
(

1 1
2

1
3

1
4

1
2

1
8

1
8

)T
,

x1j2 =
(

1 −1
2

1
3

1
4
−1

2
5
8

1
8

)T
,

x1j3 =
(

1 0 −2
3

1
4
−1

2
−3

8
1
8

)T
,

x1j4 =
(

1 0 0 −3
4

1
2
−3

8
1
8

)T
,

x2j1 =
(

1 1
2

1
3

1
4
−1

2
−1

8
−1

8

)T
,

x2j2 =
(

1 −1
2

1
3

1
4

1
2
−5

8
−1

8

)T
,

x2j3 =
(

1 0 −2
3

1
4

1
2

3
8
−1

8

)T
,

x2j4 =
(

1 0 0 −3
4
−1

2
3
8
−1

8

)T
.

5



2.3. Explicit maximum likelihood estimates

There are alternative model setups for mean parameters of cross-over designs. For
example, the model without sequence effects is the most frequently used; Kershner
and Federer (1981) mention that the treatment-by-period interaction model is fre-
quently applied for COD(t, t, p), where the numbers of treatments and sequences
are equal; Afsarinejad and Hedayat (2002) propose a model with self and mixed
carry-over effects; Park et al. (2010) introduce the interaction terms of direct ef-
fects and residual effects to model.

Model (1) is preferred to its alternatives without sequence effects because it ensures
the existence of the explicit maximum likelihood estimators (MLEs) in general
COD(2, s, p), given that the variance parameters σ2

γ and σ2
e are unknown. One

important finding is that model (1) can always be represented as two randomly
independent homoscedastic linear models with independent sets of parameters.
This is shown in the following theorem where the explicit MLEs in (4) for the
ABBA|BAAB design are derived.

Theorem 2.1. In the two-sequence four-period cross-over design, where each sub-
ject is allocated to a treatment sequence ABBA or BAAB, model (4) is equivalent
to two independent homoscedastic models with functionally independent mean and
variance parameters given byys = X1βββ1 + ηηη1, ηηη1 ∼ N2n(0, σ2

1I2n),

yd = X2βββ2 + ηηη2, ηηη2 ∼ N6n(0, σ2
2I6n),

(5)

for some responses vectors ys and yd, and design matrices X1 and X2 of proper
sizes, where the parameters

βββ1 = (µ, λ)T, βββ2 = (π1, π2, π3, φ, ρ)T,

contain separate sets of mean parameters, and the two random-error vectors ηηη1
and ηηη2 are mutually independent, with separate variance parameters

σ2
1 = σ2

e + 4σ2
γ, σ2

2 = σ2
e .

Proof. The result can be proven by pre-multiplying with an orthogonal matrix

T = I2n ⊗ (Ts : Td)
T (6)

to both sides of model (4) which satisfy

C (Ts) = C
(
1
4
J4

)
and C (Td) = C (Ts)

⊥ .

Since the transformation matrix T is of full rank and orthogonal, a transformed
model can be inverted into (4) by the transformation TT. The two model systems
with respect to the transformation T are equivalent.
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Let us denote the subvector of the responses and the submatrix of the design
matrix in (4) for the ij-th subject by

yij = (yij1, yij2, yij3, yij4)
T,

Xij = (xij1, xij2, xij3, xij4)
T,

and the within-subject covariance matrix

ΣΣΣ = V ar(yij) = σ2
γJ4 + σ2

eI4,

for i = 1, 2, j = 1, 2, . . . , n. It can be verified that the transformation matrix T
has two effects on (4):

(i): On the variance parameter space of (4), i.e.

ΣΣΣ =
(
σ2
e + 4σ2

γ

)
PTs + σ2

ePTd , (7)

where
PTs = TsT

T
s = 1

4
J4, PTd = TdT

T
d = I4 − 1

4
J4, (8)

are orthogonal projections on C (Ts) and C (Td), respectively.

(ii): On the mean parameter space of (4), i.e.

C (XijL) ⊆ C (Ts) and C (XijL
o) ⊆ C (Ts)

⊥ = C (Td) , (9)

where

L =

(
1 0 0 0 0 0 0

0 0 0 0 0 0 1

)T

, Lo =


0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0



T

. (10)

Now we will show that the transformed model can be formulated as (5). Without
loss of generality, let

Ts =


1/2

1/2

1/2

1/2

 , Td =


1/2 1/

√
10 2/

√
10

−1/2 2/
√

10 −1/
√

10

−1/2 −2/
√

10 1/
√

10

1/2 −1/
√

10 −2/
√

10

 . (11)

The response vector of the transformed model can be partitioned into two vectors
written as

ys
2n×1

= (ys,11, ys,12, . . . , ys,2n)T , yd
6n×1

= (yT
d,11, y

T
d,12, . . . ,y

T
d,2n)T,

with
ys,ij = TT

s yij, yd,ij = TT
d yij, for i = 1, 2, j = 1, 2, . . . , n. (12)
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Based on (7), the variances satisfy

V ar (ys,ij) = σ2
e + 4σ2

γ, V ar
(
yd,ij

)
= σ2

e I3, Cov
(
ys,ij,yd,ij

)
= 0.

Based on (9), we have

LTXT
ijTd = 0, LoTXT

ijTs = 0,

which imply that

C
(
XT
ijTd

)
⊆ C (Lo) and C

(
XT
ijTs

)
⊆ C (L) . (13)

Because LLT and LoLoT are orthogonal projections on C (L) and C (Lo), respec-
tively, the expectations satisfy

E (ys,ij) = TT
sXijβββ = TT

sXijLL
Tβββ,

E
(
yd,ij

)
= TT

dXijβββ = TT
dXijL

oLoTβββ,

where
βββ = (µ, π1, π2, π3, φ, ρ, λ)T.

By denoting
σ2
1 = σ2

e + 4σ2
γ, σ2

2 = σ2
e ,

βββ1 = LTβββ, βββ2 = LoTβββ,

and

X1
2n×2

= (x1,11,x1,12, . . . ,x1,2n)T , X2
6n×5

=
(
XT

2,11,X
T
2,12, . . . ,X

T
2,2n

)T
,

with

xT
1,ij =TT

sXijL, X2,ij =TT
dXijL

o, for i=1, 2, j=1, 2, . . . , n, (14)

and since normality holds, the theorem is proven. �

Theorem 2.2. Consider a balanced ABBA|BAAB cross-over design with n sub-

jects in each sequence. Denote the averages of responses yi·k =
1

n

n∑
j=1

yijk, for

i = 1, 2, k = 1, 2, 3, 4.

(i) The MLE of βββ in (4) is given by

β̂ββ=



1
8
( y1·1 + y1·2 + y1·3 + y1·4)+ 1

8
( y2·1 + y2·2 + y2·3 + y2·4)

1
2
( y1·1 − y1·2)+ 1

2
( y2·1 − y2·2)

1
4
( y1·1 + y1·2 − 2 y1·3)+ 1

4
( y2·1 + y2·2 − 2 y2·3)

1
6
( y1·1 + y1·2 + y1·3 − 3 y1·4)+ 1

6
( y2·1+ y2·2+ y2·3− 3 y2·4)

1
20

(6y1·1− 3y1·2− 7y1·3+ 4y1·4)− 1
20

(6y2·1− 3y2·2− 7y2·3+ 4y2·4)

1
10

(2y1·1+ 4y1·2− 4y1·3− 2y1·4)− 1
10

(2y2·1+ 4y2·2− 4y2·3− 2y2·4)

( y1·1 + y1·2 + y1·3 + y1·4)−( y2·1 + y2·2 + y2·3 + y2·4)


.
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(ii) The dispersion matrix of β̂ββ is given by

D
[
β̂ββ
]

=
1

n



1
8
(4σ2

γ + σ2
e) 0 0 0 0 0 0

0 σ2
e 0 0 0 0 0

0 0 3σ2
e

4
0 0 0 0

0 0 0 2σ2
e

3
0 0 0

0 0 0 0 11σ2
e

20
σ2
e

5
0

0 0 0 0 σ2
e

5
4σ2

e

5
0

0 0 0 0 0 0 8(4σ2
γ + σ2

e)


.

(iii) Let the residual in the unperturbed model for a single subject be denoted by

rij =yij−Xijβ̂ββ, i=1, 2, j=1, 2, . . . , n. The residual of prediction for the j-th
subject within sequence ABBA equals

r1j = rW1j + PTd1rB.

The residual of the j-th subject with sequence BAAB equals

r2j = rW2j −PTd1rB.

We denote rWij the 4 × 1 vector of within-sequence residuals for the ij-th
subject and rB the 4× 1 vector of between-sequence residuals given by

rWij =


yij1 − yi·1
yij2 − yi·2
yij3 − yi·3
yij4 − yi·4

 , rB =
1

2


y1·1 − y2·1
y1·2 − y2·2
y1·3 − y2·3
y1·4 − y2·4

 , (15)

and the matrix

PTd1 =Td1T
T
d1, with Td1 =

(
2√
10
− 1√

10
1√
10
− 2√

10

)T
, (16)

is the orthogonal projection on the column space C (Td1).

(iv) The MLEs of σ2
e and σ2

γ equal

σ̂2
e =

1

6n

∑
ij

rTWij

(
I4 − 1

4
J4

)
rWij +

1

3
rTBPTd1rB,

σ̂2
γ =

1

24n

∑
ij

rTWij (J4 − I4) rWij −
1

12
rTBPTd1rB.

Proof. In the proof of Theorem 2.1, the transformation is invertible. Thus, MLEs
in (4) can be obtained from the MLEs in (5), and vice versa. According to (9),
we have

LTXT
ijPTs = LTXT

ij, LoTXT
ijPTd = LoTXT

ij.
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Therefore,

XT
1X1 = LTXT (I2n ⊗PTs)XL = LTXTXL = n

(
8 0

0 1
8

)
,

(
XT

1X1

)−1
=
(
LTXT(I2n⊗PTs)XL

)−1
=
(
LTXTXL

)−1
=

1

n

( 1
8

0

0 8

)
,

(
XT

1X1

)−1
XT

1,1jT
T
s =

(
LTXT (I2n ⊗PTs)XL

)−1
LTXT

1jPTs

=
(
LTXTXL

)−1
LTXT

1j =
1

n

(
1
8

1
8

1
8

1
8

1 1 1 1

)
,

(
XT

1X1

)−1
XT

1,2jT
T
s =

(
LTXT (I2n ⊗PTs)XL

)−1
LTXT

2jPTs

=
(
LTXTXL

)−1
LTXT

2j =
1

n

(
1
8

1
8

1
8

1
8

−1 −1 −1 −1

)
,

and

XT
2X2 = LoTXT (I2n ⊗PTd)XLo

= LoTXTXLo = n



1 0 0 0 0

0 4
3

0 0 0

0 0 3
2

0 0

0 0 0 2 −1
2

0 0 0 −1
2

11
8


,

(
XT

2X2

)−1
=
(
LoTXT (I2n ⊗PTd)XLo

)−1

=
(
LoTXTXLo

)−1
=

1

n



1 0 0 0 0

0 3
4

0 0 0

0 0 2
3

0 0

0 0 0 11
20

1
5

0 0 0 1
5

4
5


,

(
XT

2X2

)−1
XT

2,1jT
T
d =

(
LoTXT (I2n ⊗PTd)XLo

)−1
LoTXT

1jPTd

=
(
LoTXTXLo

)−1
LoTXT

1j =
1

n



1
2
−1

2
0 0

1
4

1
4
−1

2
0

1
6

1
6

1
6
−1

2

3
10
− 3

20
− 7

20
1
5

1
5

2
5
−2

5
−1

5


,
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(
XT

2X2

)−1
XT

2,2jT
T
d =

(
LoTXT (I2n ⊗PTd)XLo

)−1
LoTXT

2jPTd

=
(
LoTXTXLo

)−1
LoTXT

2j =
1

n



1
2
−1

2
0 0

1
4

1
4
−1

2
0

1
6

1
6

1
6
−1

2

− 3
10

3
20

7
20
−1

5

−1
5
−2

5
2
5

1
5


.

For each separate model in (5), the homoscedastic setup is satisfied. Then, the
MLEs of the mean parameters are identical with the ordinary least squares esti-
mators given by

β̂ββ1 =
(
XT

1X1

)−1
XT

1 ys =
(
LTXTXL

)−1
LTXTy

=

(
1
8
( y1·1 + y1·2 + y1·3 + y1·4) + 1

8
( y2·1 + y2·2 + y2·3 + y2·4)

( y1·1 + y1·2 + y1·3 + y1·4)− ( y2·1 + y2·2 + y2·3 + y2·4)

)
,

β̂ββ2 =
(
XT

2X2

)−1
XT

2 yd =
(
LoTXTXLo

)−1
LoTXTy

=



1
2
( y1·1 − y1·2) + 1

2
( y2·1 − y2·2)

1
4
( y1·1 + y1·2 − 2 y1·3)+ 1

4
( y2·1 + y2·2 − 2 y2·3)

1
6
( y1·1 + y1·2 + y1·3 − 3 y1·4)+ 1

6
( y2·1+ y2·2+ y2·3− 3 y2·4)

1
20

(6y1·1− 3y1·2− 7y1·3+ 4y1·4)− 1
20

(6y2·1− 3y2·2− 7y2·3+ 4y2·4)

1
10

(2y1·1+ 4y1·2− 4y1·3− 2y1·4)− 1
10

(2y2·1+ 4y2·2− 4y2·3− 2y2·4)


,

with dispersion matrices

D
[
β̂ββ1

]
= σ2

1

(
XT

1X1

)−1
=
σ2
e + 4σ2

γ

n

(
1
8

0

0 8

)
,

D
[
β̂ββ2

]
= σ2

2

(
XT

2X2

)−1
=
σ2
e

n



1 0 0 0 0

0 3
4

0 0 0

0 0 2
3

0 0

0 0 0 11
20

1
5

0 0 0 1
5

4
5


.

Thus, the results in (i) and (ii) are proven.
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It follows that the subject residual in (4) equals

r1j = y1j −X1jβ̂ββ

=


y1j1

y1j2

y1j3

y1j4

−


4
5

1
10
− 1

10
1
5

1
5
− 1

10
1
10
−1

5

1
10

19
20

1
20
− 1

10
− 1

10
1
20
− 1

20
1
10

− 1
10

1
20

19
20

1
10

1
10
− 1

20
1
20
− 1

10

1
5
− 1

10
1
10

4
5
−1

5
1
10
− 1

10
1
5



y1·1

y1·2
...

y2·4

 ,

r2j = y2j −X2jβ̂ββ

=


y2j1

y2j2

y2j3

y2j4

−


1
5
− 1

10
1
10
−1

5
4
5

1
10
− 1

10
1
5

− 1
10

1
20
− 1

20
1
10

1
10

19
20

1
20
− 1

10

1
10
− 1

20
1
20
− 1

10
− 1

10
1
20

19
20

1
10

−1
5

1
10
− 1

10
1
5

1
5
− 1

10
1
10

4
5



y1·1

y1·2
...

y2·4

 .

Thus, the result in (iii) is established.

The homoscedastic setups also imply that the MLEs of the variance parameters
in (5) equal

σ̂2
1 =

1

2n

∑
ij

(
TT
s rij

)T (
TT
s rij

)
=

1

2n

∑
ij

rTijPTsrij,

σ̂2
2 =

1

6n

∑
ij

(
TT
d rij

)T (
TT
d rij

)
=

1

6n

∑
ij

rTijPTdrij.

Since r1j = rW1j + PTd1rB, r2j = rW2j −PTd1rB, and the column spaces

C (Td1) ⊂ C (Td) = C (Ts)
⊥ ,

we get

σ̂2
1 =

1

2n

∑
j

(
rTW1jPTsrW1j

)
+

1

2n

∑
j

(
rTW2jPTsrW2j

)
=

1

2n

∑
ij

rTWijPTsrWij,

σ̂2
2 =

1

6n

∑
j

(
rTW1jPTdrW1j + 2rTBPTd1rW1j + rTBPTd1rB

)
+

1

6n

∑
j

(
rTW2jPTdrW2j − 2rTBPTd1rW2j + rTBPTd1rB

)
=

1

6n

∑
j

(
rTW1jPTdrW1j + rTBPTd1rB

)
+

1

3n
rTBPTd1

∑
j

rW1j

+
1

6n

∑
j

(
rTW2jPTdrW2j + rTBPTd1rB

)
− 1

3n
rTBPTd1

∑
j

rW2j

=
1

6n

∑
ij

rTWijPTdrWij +
1

3
rTBPTd1rB.
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The MLEs σ̂2
γ and σ̂2

e in (2) equal

σ̂2
e = σ̂2

2 =
1

6n

∑
ij

rTWijPTdrWij +
1

3
rTBPTd1rB

=
1

6n

∑
ij

rTWij

(
I4 − 1

4
J4

)
rWij +

1

3
rTBPTd1rB,

and

σ̂2
γ =

1

4

(
σ̂2
1 − σ̂2

2

)
=

1

24n

∑
ij

rTWij (3PTs −PTd) rWij −
1

12
rTBPTd1rB

=
1

24n

∑
ij

rTWij (J4 − I4) rWij −
1

12
rTBPTd1rB.

�

3. Delta-beta-based local influence

3.1. Basic concepts

The principal idea associated with local influence is assuming a small perturba-
tion on the interested model and aims to evaluate the changes of this perturbation
on key statistics, e.g. on the observed likelihood or on the maximum likelihood
estimates of parameters. According to the statistics of interest, the local influence
analysis can be categorised into two classes: the likelihood-based local influence
approach Cook (1986) and the delta-beta-based local influence approach Hao et al.
(2011).

To identify the influential observations in the ABBA|BAAB design, we extend the
methodology proposed by Hao et al. (2011) for 2× 2 cross-over design, namely
delta-beta-based local influence approach, to multiple-period cross-over designs.

Three important concepts used in the work of Hao et al. (2011) for 2×2 cross-over
design are the case-weighted perturbation scheme, the delta-beta influence func-
tion and the variance-ratio influence function. We express the general definitions
for them as follow.

Definition 3.1. Suppose that a perturbation scheme P (ωωω) exists such that the
response vector is modified from y to yP (ωωω), and the design matrix from X to XP (ωωω).
With respect to a subset I of observations, P (ωωω) is the case-weighted perturbation
scheme if and only if it satisfies the following two criteria.

(i) The subset I of observations is analogous to be removed when ωωω=0;

(ii) yP (ωωω0) = y and XP (ωωω0) = X for some null perturbation weight ωωω0.

Let us call the model
yP (ωωω) = XP (ωωω)βββ + Zγγγ + εεε (17)

13



the perturbed model of (4), which assumes γγγ ∼ N2n(0, σ2
γI2n), εεε∼ N8n(0, σ2

eI8n),
and Cov(γγγ, εεε)=0. The influence of the perturbation with respect to the set I on
mean parameters in (4) can be measured by the delta-beta influence.

Definition 3.2. Let β̂ββ(ωωω) be the MLE of βββ and D
[
β̂ββ(ωωω)

]
be the associated dis-

persion matrix under the perturbed model. The delta-beta influence contains two
statistics

(i) The statistic ∆β̂ββ with respect to a perturbation P (ωωω) on the subset I of
observations is defined by

∆Iβ̂ββ = β̂ββ(ωωω)− β̂ββ(ωωω0). (18)

(ii) The statistic ∆D
[
β̂ββ
]

with respect to a perturbation P (ωωω) on the subset I of

observations is defined by

∆ID
[
β̂ββ
]

= D̂
[
β̂ββ(ωωω)

]
− D̂

[
β̂ββ(ωωω0)

]
, (19)

where D̂
[
β̂ββ(ωωω)

]
and D̂

[
β̂ββ(ωωω0)

]
are estimators of D

[
β̂ββ(ωωω)

]
and D

[
β̂ββ(ωωω0)

]
, re-

spectively, when the MLEs of σ2
γ and σ2

e are inserted.

The influence of the perturbation with respect to the set I on variance parameters
in (4) can be measured by the variance-ratio influence.

Definition 3.3. Let σ2
e(ωωω) and σ2

γ(ωωω) be the MLEs of the variance parameters
under the perturbed model. The variance ratio for random errors (VRE) and the
variance ratio for random effects (VRR) with respect to the perturbation P (ωωω) on
the set I of observations are defined by

VREI =
σ̂2
e(ωωω)

σ̂2
e(ωωω0)

, (20)

VRRI =
σ̂2
γ(ωωω)

σ̂2
γ(ωωω0)

. (21)

A natural example of a case-weighted perturbation scheme with respect to subset
I is that all the observations within the subset are scaled by the same perturbation
weight ω. A perturbation defined by the following perturbation scheme to the ij-
th subject in the ABBA|BAAB design will be used through the next section. For
other possible perturbation schemes, we refer to Hao et al. (2011) and Beckman
et al. (1987).

Example. Let

yP (ω) =

(
ωyI

y[I]

)
, and XP (ω) =

(
ωXI

X[I]

)
, (22)
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for some non-negative ω belonging to the neighbourhood of 1. The vector yI and
the matrix XI denote the subvector of responses and the rows of design matrix
for the set I, respectively. The vector or matrix with index [I] represents the
associated vector or matrix with the set I removed. The null perturbation weight
mentioned in Definition 3.1 exists at ω0 = 1 for (22).

3.2. Basic algebra for influence analysis

The result presented in the following auxiliary lemma for the homoscedastic linear
model will be extended to the cross-over design models with unknown variance
within subjects in the subsequent.

Lemma 3.1. Let us consider the following homoscedastic linear model

y = Xβββ + εεε, εεε ∼ Nn(0, σ2
eIn), (23)

where βββ and σ2
e are unknown. Assume that the case-weighted perturbation scheme

P (ω) in (22) is applied to the subset I of observations in the above model. The
functions defined by (18) to (20) equal

∆Iβ̂ββ = (XTX)−1XT
I

(
HI −

1

1− ω2
I

)−1
rI , (24)

∆ID
[
β̂ββ
]

= σ̂2(XTX)−1XT
I

(
1

1− ω2
I−HI

)−1
XI(X

TX)−1, (25)

V REI = 1−
rTI

(
1

1− ω2
I−HI

)−1
rI

rTr
, (26)

where the matrix HI = XI

(
XTX

)−1
XT
I is the submatrix of the hat matrix

H = X
(
XTX

)−1
XT, and the vector rI = yI−XIβ̂ββ(1) is the subvector of residuals

r = y−Xβ̂ββ(1) for observations belonging to set I.

Proof. In the perturbed model, we have

XT
P (ω)XP (ω) = XT

[I]X[I] + ω2XT
I XI = XTX + (ω2 − 1)XT

I XI ,

and

XT
P (ω)yP (ω) = XT

[I]y[I] + ω2XT
I yI = XTy + (ω2 − 1)XT

I yI .

If the matrices A, A + BCD and C are non-singular, it is well-known that

(A + BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1.

For the perturbation let A = XTX, BT = D = XI , and C = (ω2 − 1)I. Then,

(
XT
P (ω)XP (ω)

)−1
=(XTX)−1+(XTX)−1XT

I

(
1

1− ω2
I−HI

)−1
XI(X

TX)−1.
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For the observations in set I, denote the predicted values in the unperturbed model

ŷI = XIβ̂ββ(1) = XI(X
TX)−1XTy.

Then, the MLE of βββ under the perturbation equals

β̂ββ(ω) =
(
XT
P (ω)XP (ω)

)−1 (
XT
P (ω)yP (ω)

)
= β̂ββ(1)+(XTX)−1XT

I

(
1

1−ω2
I−HI

)−1
ŷI + (ω2−1)(XTX)−1XT

I yI

+ (ω2 − 1)(XTX)−1XT
I

(
1

1− ω2
I−HI

)−1
HIyI

= β̂ββ(1)+(XTX)−1XT
I

(
1

1− ω2
I−HI

)−1
ŷI

+(XTX)−1XT
I

(
1

1−ω2
I−HI

)−1(
I−(ω2−1)HI+(ω2−1)HI

)
yI

= β̂ββ(1)− (XTX)−1XT
I

(
1

1− ω2
I−HI

)−1
rI ,

with dispersion matrix

D
[
β̂ββ(ω)

]
=
(
XT
P (ω)XP (ω)

)−1
σ2

= D[β̂ββ(1)] + σ2(XTX)−1XT
I

(
1

1− ω2
I−HI

)−1
XI(X

TX)−1.

The MLE of σ2 under the perturbation can be calculated by

nσ̂2(ω) = yT
P (ω)yP (ω) − yT

P (ω)XP (ω)β̂ββ(ω)

= yTy + (ω2 − 1)yT
I yI − yTXβ̂ββ(1)− (ω2 − 1)yT

I ŷI

+ ŷT
I

(
1

1−ω2
I−HI

)−1
rI + (ω2−1)yT

I HI

(
1

1−ω2
I−HI

)−1
rI

=
(
yTy− yTXβ̂ββ(1)

)
+ ŷT

I

(
1

1− ω2
I + HI

)−1
rI

+ yT
I

(
I− (ω2 − 1)HI + (ω2 − 1)HI

)( 1

1− ω2
I−HI

)−1
rI

= nσ̂2(1)− rTI

(
1

1− ω2
I−HI

)−1
rI .

�
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If the number of observations in set I is 1, the above Lemma can be simplified.

Corollary 3.2. If the subset I is composed of the i-th observation in model (23),
the functions calculated in Lemma 3.1 reduce to

∆iβ̂ββ =
(ω2 − 1)ri

(ω2 − 1)hii + 1
(XTX)−1xi,

∆iD
[
β̂ββ
]

=
(1− ω2)σ̂2

(ω2 − 1)hii + 1
(XTX)−1xix

T
i (XTX)−1,

V REi = 1 +
ω2 − 1

(ω2 − 1)hii + 1

r2i∑n
i=1 r

2
i

,

where the column vector xi is the i-th row of the design matrix X, the scalar
hii = xT

i (XTX)−1xi denotes the i-th diagonal element of the hat matrix for the

unperturbed model, and ri = yi − xiβ̂ββ(1) is the residual of the i-th observation.

4. Results for the ABBA|BAAB design

It will be proven in this section that the cross-over design model can be refor-
mulated in a form where influential quantities for deletion or perturbation have
closed-form solutions. The influences of the ij-th subject on the estimates of the
fixed effects and the variance parameters, which are defined in the previous section,
are presented in Theorem 4.1.

Theorem 4.1. Assume that the case-weighted perturbation scheme P(ω) in (22)
is applied to the observations of the j-th subject within the i-th sequence in model
(4). The functions defined by (18) to (21) are

(i)

∆ijβ̂ββ =
ω2 − 1

ω2 + n− 1
FiPTsrWij

+
ω2 − 1

ω2 + n− 1
GiPTd2rWij +

2(ω2 − 1)

ω2 + 2n− 1
GiPTd1rT ij,

(ii)

∆ijD
[
β̂ββ
]

=
1− ω2

n(ω2 + n− 1)
FiF

T
i (σ̂2

e + 4σ̂2
γ)

+
1− ω2

n(ω2 + n− 1)
GiPTd2G

T
i σ̂

2
e +

2(1−ω2)

n(ω2+2n−1)
GiPTd1G

T
i σ̂

2
e ,

(iii)

VREij = 1 +
(ω2 − 1)n

ω2 + n− 1

rTWijPTd2rWij∑
ij r

T
WijPTd2rWij +

∑
ij r

T
T ijPTd1rT ij

+
(ω2 − 1)2n

ω2 + 2n− 1

rTT ijPTd1rT ij∑
ij r

T
WijPTd2rWij +

∑
ij r

T
T ijPTd1rT ij

,
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VRRij = 1 +
(ω2−1)n

ω2+n−1

rTWij (3PTs −PTd2) rWij∑
ij r

T
Wij(3PTs−PTd2) rWij+

∑
ij r

T
T ijPTd1rTij

− (ω2−1)2n

ω2+2n−1

rTT ijPTd1rT ij∑
ij r

T
Wij (3PTs −PTd2) rWij +

∑
ij r

T
T ijPTd1rT ij

,

where the vectors

rWij =


yij1−yi·1
yij2−yi·2
yij3−yi·3
yij4−yi·4

 , rT ij =


yij1−y··1
yij2−y··2
yij3−y··3
yij4−y··4

 ,

are defined as the within-sequence residual and the total residual of the j-th subject
in the i-th sequence, respectively. The matrices

Fi = nL
(
LTXTXL

)−1
LTXT

ij, (27)

Gi = nLo
(
LoTXTXLo

)−1
LoTXT

ij, (28)

i = 1, 2, with L and Lo defined by (10), and the orthogonal projections

PTs = TsT
T
s , PTd1 = Td1T

T
d1, PTd2 = I4 −PTs −PTd1 ,

with

Ts =
(

1
2

1
2

1
2

1
2

)T
,

Td1 =
(

2√
10
− 1√

10
1√
10
− 2√

10

)T
,

are decided only by the cross-over design function d(i, k).

Proof. Use the matrix T defined in (6) to pre-multiply both sides of the perturbed
model. The restriction on the perturbation scheme that the observations within
each subject are scaled by the same perturbation weight enables the perturbed
model to be splitted into the following two models{

ys,P (ω) = X1,P (ω)βββ1 + ηηη1,

yd,P (ω) = X2,P (ω)βββ2 + ηηη2,
(29)

where the parameters βββ1, βββ2, the random terms ηηη1 and ηηη2 have the same meaning
as those given in (5). Let us denote the perturbed response variables

ys,P (ω) = (yT
s,[ij] : ωys,ij)

T and yd,P (ω) = (yT
d,[ij] : ωyT

d,ij)
T,

and the perturbed design matrices

X1,P (ω) = (XT
1,[ij] : ωx1,ij)

T and X2,P (ω) = (XT
2,[ij] : ωXT

2,ij)
T,

18



where yd,ij, ys,ij, x1,ij and X2,ij are defined in (12) and (14).

By applying similar simplifications as the proof of Theorem 2.2, the submatrices
of the hat matrices of the above models before perturbation associated with the
ij-th subject equal

h1,ij = xT
1,ij(X

T
1X1)

−1x1,ij = TT
sXijL

(
LTXTXL

)−1
LTXT

ijTs,

H2,ij = X2,ij(X
T
2X2)

−1XT
2,ij = TT

dXijL
o
(
LoTXTXLo

)−1
LoTXT

ijTd,

where Ts and Td are defined by (6).

Obviously, h1,ij and H2,ij depend on the choices of Ts and Td. However, since Ts

in (6) is given uniquely by

Ts =
(

1
2

1
2

1
2

1
2

)T
,

we have

h1,ij =
1

n
, i = 1, 2, j = 1, 2, . . . , n.

Let us do a spectral decomposition on H2,ij. Without loss generality, a choice of
Td in (11) is utilised through this proof in order to simplify the decomposition,
because it follows

H2,ij =
1

n

 1 0 0

0 1 0

0 0 1
2

 , i = 1, 2, j = 1, 2, . . . , n.

Later, (11) will be referred to as the canonical transformation for the ABBA|BAAB
design because its columns can be divided into three sets of normalized orthogonal
vectors which span the column spaces

C(Ts), C(Td1) and C(Ts : Td1)
⊥,

respectively, where Td1 is introduced by (16) and determined only by the design
matrix of treatment effects and residual effects in (4). The orthogonal projections
on the above column spaces are denoted by PTs , PTd1 and PTd2 in the given order.

It follows that

ω2 − 1

(ω2 − 1)h1,ij + 1
=

(ω2 − 1)n

ω2 + n− 1
,

(
H2,ij −

1

1− ω2
I3

)−1
=


(ω2−1)n
ω2+n−1 0 0

0 (ω2−1)n
ω2+n−1 0

0 0 (ω2−1)2n
ω2+2n−1

 .

According to Lemma 3.1, Corollary 3.2 and Theorem 2.2 (iii), if the perturbation
occurs within sequence ABBA, the MLEs in (29) equal,
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β̂ββ1(ω) = β̂ββ1(1) +
ω2 − 1

(ω2 − 1)h1,1j + 1
(XT

1X1)
−1x1,1jT

T
s r1j

= β̂ββ1(1) +
(ω2 − 1)n

ω2 + n− 1

(
LTXTXL

)−1
LTXT

1jrW1j,

β̂ββ2(ω) = β̂ββ2(1) + (XT
2X2)

−1XT
2,1j

(
H2,1j −

1

1− ω2
I3

)−1
TT
d r1j

= β̂ββ2(1) +
(
LoTXTXLo

)−1
LoTXT

1jTd

(
H2,1j−

1

1− ω2
I3

)−1
TT
d (rW1j+PTd1rB)

= β̂ββ2(1) +
(ω2 − 1)n

ω2 + n− 1

(
LoTXTXLo

)−1
LoTXT

1jPTd2rW1j

+
(ω2 − 1)2n

ω2 + 2n− 1

(
LoTXTXLo

)−1
LoTXT

1jPTd1(rW1j+rB).

with the corresponding dispersion matrices

D
[
β̂ββ1(ω)

]
=

ω2−1

(ω2−1)h1,1j+1
(XT

1X1)
−1x1,1jx

T
1,1j(X

T
1X1)

−1σ2
1 +D

[
β̂ββ1(1)

]
=

(1− ω2)n

ω2 + n− 1

(
LTXTXL

)−1
LTXT

1jX1jL
(
LTXTXL

)−1
σ2
1 +D

[
β̂ββ1(1)

]
,

D
[
β̂ββ2(ω)

]
= (XT

2X2)
−1X2,1j

(
1

1− ω2
I3 −H2,1j

)−1
XT

2,1j(X
T
2X2)

−1σ2
2 +D

[
β̂ββ2(1)

]
=

(1− ω2)n

ω2 + n− 1

(
LoTXTXLo

)−1
LoTXT

1jPTd2X1jL
o
(
LoTXTXLo

)−1
σ2
2

+
(1−ω2)2n

ω2+2n−1

(
LoTXTXLo

)−1
LoTXT

1jPTd1X1jL
o
(
LoTXTXLo

)−1
σ2
2 +D

[
β̂ββ2(1)

]
,

and

σ̂2
1(ω) = σ̂2

1(1) +
ω2 − 1

(ω2 − 1)h1,1j + 1

1

2n
rT1jPTsr1j

= σ̂2
1(1) +

ω2 − 1

2(ω2 + n− 1)
rTW1jPTsrW1j,

σ̂2
2(ω) = σ̂2

2(1) +
1

6n
rT1jTd

(
H2,1j −

1

1− ω2
I3

)−1
TT
d r1j

= σ̂2
2(1) +

ω2 − 1

6(ω2 + n− 1)
rTW1jPTd2rW1j

+
ω2 − 1

3(ω2 + 2n− 1)
(rTW1j + rTB)PTd1(rW1j + rB).
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Using the parametrization that σ2
e = σ2

2 and σ2
γ = 1

4
(σ2

1 − σ2
2),

σ̂2
e(ω) = σ̂2

e(1) +
ω2 − 1

6(ω2 + n− 1)
rTW1jPTd2rW1j

+
ω2 − 1

3(ω2 + 2n− 1)
(rTW1j + rTB)PTd1(rW1j + rB),

σ̂2
γ(ω) = σ̂2

γ(1) +
ω2 − 1

24(ω2 + n− 1)
rTW1j (3PTs −PTd2) rW1j

− ω2 − 1

12(ω2 + 2n− 1)
(rTW1j + rTB)PTd1(rW1j + rB).

Similarly, if the perturbed subject from sequence BAAB, we obtain

β̂ββ1(ω) = β̂ββ1(1) +
ω2 − 1

(ω2 − 1)h1,2j + 1
(XT

1X1)
−1x1,2jT

T
s r2j

= β̂ββ1(1) +
(ω2 − 1)n

ω2 + n− 1

(
LTXTXL

)−1
LTXT

2jrW2j,

β̂ββ2(ω) = β̂ββ2(1) + (XT
2X2)

−1XT
2,2j

(
H2,2j −

1

1− ω2
I3

)−1
TT
d r2j

= β̂ββ2(1) +
(
LoTXTXLo

)−1
LoTXT

2jTd(
H2,2j−

1

1− ω2
I3

)−1
TT
d (rW2j−PTd1rB)

= β̂ββ2(1) +
(ω2 − 1)n

ω2 + n− 1

(
LoTXTXLo

)−1
LoTXT

2jPTd2rW2j

+
(ω2 − 1)2n

ω2 + 2n− 1

(
LoTXTXLo

)−1
LoTXT

2jPTd1(rW2j−rB).

with the corresponding dispersion matrices

D
[
β̂ββ1(ω)

]
=

ω2−1

(ω2−1)h1,2j+1
(XT

1X1)
−1x1,2jx

T
1,2j(X

T
1X1)

−1σ2
1 +D

[
β̂ββ1(1)

]
=

(1− ω2)n

ω2 + n− 1

(
LTXTXL

)−1
LTXT

2jX2jL
(
LTXTXL

)−1
σ2
1 +D

[
β̂ββ1(1)

]
,

D
[
β̂ββ2(ω)

]
= (XT

2X2)
−1X2,2j

(
1

1− ω2
I3 −H2,2j

)−1
XT

2,2j(X
T
2X2)

−1σ2
2 +D

[
β̂ββ2(1)

]
=

(1− ω2)n

ω2 + n− 1

(
LoTXTXLo

)−1
LoTXT

2jPTd2X2jL
o
(
LoTXTXLo

)−1
σ2
2

+
(1−ω2)2n

ω2+2n−1

(
LoTXTXLo

)−1
LoTXT

2jPTd1X2jL
o
(
LoTXTXLo

)−1
σ2
2 +D

[
β̂ββ2(1)

]
,
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and

σ̂2
e(ω) = σ̂2

e(1) +
ω2 − 1

6(ω2 + n− 1)
rTW2jPTd2rW2j

+
ω2 − 1

3(ω2 + 2n− 1)
(rTW2j − rTB)PTd1(rW2j − rB),

σ̂2
γ(ω) = σ̂2

γ(1) +
ω2 − 1

24(ω2 + n− 1)
rTW2j (3PTs −PTd2) rW2j

− ω2 − 1

12(ω2 + 2n− 1)
(rTW2j − rTB)PTd1(rW2j − rB).

The estimators replacing σ̂2
e(1) and σ̂2

γ(1) are obtained via Theorem 2.2 (iv), and

rWij =


yij1−yi·1
yij2−yi·2
yij3−yi·3
yij4−yi·4

, rW1j +rB =


y1j1−y··1
y1j2−y··2
y1j3−y··3
y1j4−y··4

, rW2j −rB =


y2j1−y··1
y2j2−y··2
y2j3−y··3
y2j4−y··4

,

where yi·k =
1

n

n∑
j=1

yijk and y··k =
1

2n

2∑
i=1

n∑
j=1

yijk, i = 1, 2, k = 1, 2, 3, 4. Hence, we

get explicit solutions of V RRij and V REij.

Next, using the parametrization

βββ = Lβββ1 + Loβββ2,

we have

∆ijβ̂ββ = L∆ijβ̂ββ1 + Loβββ2∆ijβ̂ββ2, (30)

∆ijD
[
β̂ββ
]

= LD
[
β̂ββ1

]
LT + LoD

[
β̂ββ2

]
LoT. (31)

By replacing (27) and (28) to (31) and (31), the explicit solutions of ∆ijβ̂ββ and

∆ijD
[
β̂ββ
]

are achieved.

�

5. Discussion

The results in Theorem 4.1 show that the subject-level influence quantities men-
tioned in Section 3 are only decided by the within-sequence residual rWij, total
residual of the perturbed subject rT ij, and a column space C(Td1).

Although this work has put special insight into the ABBA|BAAB design, the
methodology for influence analysis proposed by this work can be easily generalised
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to other multiple-period two-treatment cross-over designs as long as the column
space C(Td1) is identified. For example, in the ABAB|BABA design, a similar
C(Td1) is defined by

Td1 =
(

1√
2

0 − 1√
2

0
)T

.

Deviation and expression of C(Td1) and the closed-form influence quantities in
general form for two-treatment cross-over designs are beyond this paper and are
required further efforts.
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