Lec 9: Blocking and Confounding for 2^k Factorial Design

Ying Li

December 2, 2011

Ying Li Lec 9: Blocking and Confounding for 2^k Factorial Design

-≣->

2^k factorial design

- Special case of the general factorial design; k factors, all at two levels
- The two levels are usually called low and high (they could be either quantitative or qualitative)
- Very widely used in industrial experimentation

伺下 イヨト イヨト

Example

Consider an investigation into the effect of the concentration of the reactant and the amount of the catalyst on the conversion in a chemical process.

- A: reactant concentration, 2 levels
- B: catalyst, 2 levels
- 3 replicates, 12 runs in total

Fa	ctor	Treatment		Replicate				
Α	В	Combination	Ι	II	III	Total		
-		A low, B low	28	25	27	80		
+	-	A high, B low	36	32	32	100		
100	+	A low, B high	18	19	23	60		
+	+	A high, B high	31	30	29	90		

A	В	
—	—	(1) = 28 + 25 + 27 = 80
+	—	a = 36 + 32 + 32 = 100
-	+	b = 18 + 19 + 23 = 60
+	+	ab = 31 + 30 + 29 = 90

$$A = \frac{1}{2n} \{ [ab - b] + [a - (1)] \}$$
$$B = \frac{1}{2n} \{ [ab - a] + [b - (1)] \}$$
$$AB = \frac{1}{2n} \{ [ab - b] - [a - (1)] \}$$

・ロ・・母・・ヨ・・ヨ・ ・ ヨ・ うへぐ

Manual Calculation

۲

۲

۲

$$A = rac{1}{2n} \{ [ab - b] + [a - (1)] \}$$

 $Contrast_A = ab + a - b - (1)$
 $SS_A = rac{Contrast_A}{4n}$

Ying Li Lec 9: Blocking and Confounding for 2^k Factorial Design

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Regression Model

For $2^2\times 1$ experiment

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \varepsilon$$

$$\begin{aligned} (1) &= \beta_0 + \beta_1(-1) + \beta_2(-1) + \beta_{12}(-1)(-1) + \varepsilon_1 \\ a &= \beta_0 + \beta_1(1) + \beta_2(-1) + \beta_{12}(1)(-1) + \varepsilon_2 \\ b &= \beta_0 + \beta_1(-1) + \beta_2(1) + \beta_{12}(-1)(1) + \varepsilon_3 \\ ab &= \beta_0 + \beta_1(1) + \beta_2(1) + \beta_{12}(1)(1) + \varepsilon_4 \end{aligned}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \ \mathbf{y} = \begin{bmatrix} (1) \\ a \\ b \\ ab \end{bmatrix}, \mathbf{X} = \begin{bmatrix} 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_{12} \end{bmatrix}, \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \end{bmatrix}$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Regression Model

The least square estimates:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$= \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}^{-1} \begin{bmatrix} (1) + a + b + ab \\ a + ab - b - (1) \\ b + ab - a - (1) \\ (1) - a - b + ab \end{bmatrix}$$

$$\hat{\boldsymbol{\beta}}_{1} \\ \hat{\boldsymbol{\beta}}_{2} \\ \hat{\boldsymbol{\beta}}_{12} \end{bmatrix} = \frac{1}{4}\mathbf{I}_{4} \begin{bmatrix} (1) + a + b + ab \\ a + ab - b - (1) \\ b + ab - a - (1) \\ (1) - a - b + ab \end{bmatrix} = \begin{bmatrix} \underbrace{(1) + a + b + ab}{4} \\ \frac{a + ab - b - (1)}{4} \\ \frac{b + ab - a - (1)}{4} \\ \underbrace{(1) - a - b + ab}{4} \end{bmatrix}$$

The regression coefficient estimates are exactly half of the "usual" effect estimates

Analysis Procedure for a Factorial Design

- Estimate factor effects.
- Formulate model
- Statistical testing (ANOVA).
- Refine the model
- Analyze residuals (graphical)
- Interpret results

- Lack of replication causes potential problems in statistical testing
 - Replication admits an estimate of pure error (a better phrase is an internal estimate of error)
 - With no replication, fitting the full model results in zero degrees of freedom for error
- Potential solutions to this problem
 - Pooling high-order interactions to estimate error
 - Normal probability plotting of effects

イロト イヨト イヨト イヨト

■ FIGURE 6.9 The impact of the choice of factor levels in an unreplicated design

- If the factors are spaced too closely, it increases the chances that the noise will overwhelm the signal in the data.
- More aggressive spacing is usually best.

For example, because of

- Different batches of raw material.
- Restrictions caused by equipment and instruments.
- Time.

同 と く き と く き と

Factorial design with replicates as blocks

Example TABLE 7. Chemical Proces	1 s Experiment in Thre	ee Blocks	
	Block 1	Block 2	Block 3
	(1) = 28	(1) = 25	(1) = 27
	a = 36	a = 32	a = 32
	b = 18	b = 19	b = 23
	ab = 31	ab = 30	ab = 29
Block totals:	$B_1 = 113$	$B_2 = 106$	$B_3 = 111$

(1日) (1日) (日)

Analysis result

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-Value
Blocks	6.50	2	3.25		
A (concentration)	208.33	1	208.33	50.32	0.0004
B (catalyst)	75.00	1	75.00	18.12	0.0053
AB	8.33	1	8.33	2.01	0.2060
Error	24.84	6	4.14		
Total	323.00	11			

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

A special situation:

- only 1 replicate
- a batch of raw material is only large enough for 2 combinations.

(< ≥) < ≥)</p>

A special situation:

- only 1 replicate
- a batch of raw material is only large enough for 2 combinations.

・ 同・ ・ ヨ・

< ≣⇒

The main effect of A, B and AB:

$$A = \frac{1}{2}[ab + a - b - (1)]$$
$$B = \frac{1}{2}[ab + b - a - (1)]$$
$$AB = \frac{1}{2}[ab + (1) - a - b]$$

Ying Li Lec 9: Blocking and Confounding for 2^k Factorial Design

A ■

< 注 → < 注 → 二 注

AB is **confounded** with blocks.

Confounding

- a design technique for arranging a complete factorial experiment in blocks.
- the technique causes information about certain treatment effects (usually higher-order interaction) to be indistinguishable form, or confounded with, blocks.

TABLE 7.3

Table of Plus and Minus Signs for the 2² Design

Treatment		Fa	actorial Eff	ect	
Combination	I	A	В	AB	Block
(1)	+	-	-	+	2
а	+	+	-	-	1
b	+	-	+	-	1
ab	+	+	+	+	2

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

This approach can be used to confound any 2^k design in two blocks.

Treatment				Fac	torial E	ffect			
Combination	1	A	B	AB	С	AC	BC	ABC	Block
(1)	+	-	-	+	-	+	+	-	1
a	+	+	-	_			+	+	2
b	+	-	+	-		+	-	+	2
ab	+	+	+	+	-	-			1
c	+		-	+	+	-	-	+	2
ac	+	+		-	+	+			1
bc	+	-	+	-	+	-	+	-	1
abc	+	+	+	+	+	+	+	+	2

TABLE 7.4 Table of Plus and Minus Signs for the 2³ Design

・ロン ・回と ・ヨン ・ヨン

2

The 2^3 design in two blocks with ABC confounded:

(a) Geometric view

Block 2		
a		
ь		
с		
abc		

(b) Assignment of the eight runs to two blocks

イロン イヨン イヨン イヨン

æ

Use defining contrast for constructing the blocks

A defining contrast

$$L = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k$$

- x_i; the level of ith factor
- α_i is exponent appearing on the ith factor in the effect to to be confounded.

Example

Consider a 2^3 design with ABC confounded with blocks. The defining contrast corresponding to ABC is

$$L = x_1 + x_2 + x_3$$

(1):
$$L = 0 + 0 + 0 = 0$$

ab: $L = 1 + 1 + 0 = 2$
ac: $L = 1 + 0 + 1 = 2$
bc: $L = 0 + 1 + 1 = 2$
a: $L = 1 + 0 + 0 = 1$
b: $L = 0 + 1 + 0 = 1$
c: $L = 0 + 0 + 1 = 1$
abc: $L = 1 + 1 + 1 = 3$

- 4 回 2 - 4 □ 2 - 4 □

Use the principal block for constructing the blocks

(b) Assignment of the eight runs to two blocks

- The block containing (1) is called the **principal block**.
- Any element in the principal block may be generated by multiplying two other elements in the principal block modulus 2.
- Treatment combinations in the other block may be generated by multiplying one element in the new block by each element in the principal block modulus 2.

Four blocks in a 2^5

Ying Li Lec 9: Blocking and Confounding for 2^k Factorial Design

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Four blocks in a 2⁵

- Select two defining interactions
- Say ADE and BCE, the two defining contrasts are

$$L_1 = x_1 + x_4 + x_5$$

 $L_2 = x_2 + x_3 + x_5$
So $(L_1, L_2) = (0, 0), (0, 1), (1, 0), or(1, 1)$

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Block 1	Block 2	Block 3	Block 4		
$L_{1} = 0$	$L_{1} = 1$	$L_{1} = 0$	$L_1 = 1$ $L_2 = 1$		
L ₂ = 0	$L_2 = 0$	L ₂ = 1			
(1) abe	a be	b abce	e abcde		
ad ace	d abde	abd ae	ade bd		
bc cde	abc ce	c bcde	bce ac		
abcd bde	bcd acde	acd de	ab cd		

・ロ・・母・・ヨ・・ヨ・ ・ ヨ・ うへぐ

It is defined as the product of ADE and BCE modulus 2.

$$(ADE)(BCE) = ABCDE^2 = ABCD$$

ADE, BCE and ABCD are confounded with blocks in this design

通 ト イヨ ト イヨト

Question

Which alternative is better:

- ADE and BCE or
- ABCDE and ABD??

((日)) (日) (日)

æ

TABLE 7.9

Number of	Number of	Block	Effects Chosen to	Internations Conformated with Planter
ractors, k	DIOCKS, 2	Size, 2 .	Generate the blocks	Interactions Contounded with Blocks
3	2	4	ABC	ABC
	4	2	AB, AC	AB, AC, BC
4	2	8	ABCD	ABCD
	4	4	ABC, ACD	ABC, ACD, BD
	8	2	AB, BC, CD	AB, BC, CD, AC, BD, AD, ABCD
5	2	16	ABCDE	ABCDE
	4	8	ABC, CDE	ABC, CDE, ABDE
	8	4	ABE, BCE, CDE	ABE, BCE, CDE, AC, ABCD, BD, ADE
	16	2	AB, AC, CD, DE	All two- and four-factor interactions (15 effects)
6	2	32	ABCDEF	ABCDEF
	4	16	ABCF, CDEF	ABCF, CDEF, ABDE
	8	8	ABEF, ABCD, ACE	ABEF, ABCD, ACE, BCF, BDE, CDEF, ADF
	16	4	ABF, ACF, BDF, DEF	ABF, ACF, BDF, DEF, BC, ABCD, ABDE, AD, ACDE, CE, CDF, BCDEF, ABCEF, AEF, BE
	32	2	AB, BC, CD, DE, EF	All two-, four-, and six-factor interactions (31 effects)
7	2	64	ABCDEFG	ABCDEFG
	4	32	ABCFG, CDEFG	ABCFG, CDEFG, ABDE
	8	16	ABC, DEF, AFG	ABC, DEF, AFG, ABCDEF, BCFG, ADEG, BCDEG
	16	8	ABCD, EFG, CDE, ADG	ABCD, EFG, CDE, ADG, ABCDEFG, ABE, BCG, CDFG, ADEF, ACEG, ABFG, BCEF, BDEG, ACF, BDF
	32	4	ABG, BCG, CDG,	ABG, BCG, CDG, DEG, EFG, AC, BD, CE, DF, AE,
			DEG, EFG	BF, ABCD, ABDE, ABEF, BCDE, BCEF, CDEF, ABCDEFG, ADG, ACDEG, ACEFG, ABDFG, ABCEG, BEG, BDEFG, CFG, ADDF, ACDF, ABCF, AFG, BCDFG
	64	2	AB, BC, CD, DE, EF, FG	All two-, four-, and six-factor interactions (63 effects)

Suggested Blocking Arrangements for the 2⁴ Factorial Design

・ロ・・母・・ヨ・・ヨ・ ・ ヨ・ うへぐ

Example

A chemical product is produced in a pressure vessel. A factorial experiment is carried out in the pilot plant to study the factors thought to influence the filtration rate of this product. The four factors are all present at two levels. They are:

- A: temperature
- B: pressure
- C: concentration of formaldehyde
- D: stirring rate

向下 イヨト イヨト

Contra	ast Co	nstant	ts for tl	ne 24 I	Design										
	А	B	AB	С	AC	BC	ABC	D	AD	BD	ABD	CD	ACD	BCD	ABCD
(1)	_	-	+	-	+	+	-	_	+	+	-	+	-	-	+
a	+	-	-	-	-	+	+	-	-	+	+	+	+	-	-
b	-	+	-	-	+	-	+	-	+	_	+	+	-	+	-
ab	+	+	+	-	_	-	-	-	-	-	-	+	+	+	+
с	-	-	+	+	-	-	+	_	+	+	-	-	+	+	-
ac	+	-	—	+	+	-	-	-	-	+	+	-	_	+	+
bc	_	+	-	+	-	+	-	-	+	-	+	-	+	-	+
abc	+	+	+	+	+	+	+	-	-	-	-	-	-	-	-
d	_	-	+	-	+	+	-	+	-	-	+	-	+	+	-
ad	+	-	-	-	-	+	+	+	+	-	-	-	-	+	+
bd	-	+	-	-	+	-	+	+	-	+	-	-	+	-	+
abd	+	+	+	_	-	-	-	+	+	+	+	-	-	-	-
cd	-	-	+	+	-	-	+	+	-	_	+	+	_	-	+
acd	+	_	—	+	+	-	-	+	+	-	-	+	+	_	_
bcd	_	+	_	+	-	+	_	+	-	+	_	+	_	+	_
abcd	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

■ TABLE 6.11 Contrast Constants for the 2⁴ Design

・ロト・(四ト・(川下・(日下・(日下)

TABLE 6.10

Pilot Plant Filtration Rate Experiment

Run Factor						Filtration
Number	Ā	B	C	D	Run Label	(gal/h)
1	-	-	-	-	(1)	45
2	+	-	-	_	а	71
3	-	+	-	—	b	48
4	+	+	-	-	ab	65
5	-	-	+	-	С	68
6	+	-	+	-	ac	60
7	-	+	+	-	bc	80
8	+	+	+	-	abc	65
9	_	-	-	+	d	43
10	+	-	-	+	ad	100
11	-	+	-	+	bd	45
12	+	+	-	+	abd	104
13	-	-	+	+	cd	75
14	+	-	+	+	acd	86
15	-	+	+	+	bcd	70
16	+	+	+	+	abcd	96

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Ying Li

Run Number	Run Label	Filtration Rate (gal/h)
1	(1)	45
2	а	71
3	Ь	48
4	ab	65
5	С	68
6	ac	60
7	bc	80
8	abc	65
9	d	43
10	ad	100
11	bd	45
12	abd	104
13	cd	75
14	acd	86
15	bcd	70
16	abcd	96

Block 1	Block 2		
(1) = 25	<i>a</i> = 71		
<i>ab</i> = 45	<i>b</i> = 48		
<i>ac</i> = 40	c = 68		
<i>bc</i> = 60	<i>d</i> = 43		
ad = 80	<i>abc</i> = 65		
<i>bd</i> = 25	<i>bcd</i> = 70		
<i>cd</i> = 55	<i>acd</i> = 86		
<i>abcd</i> = 76	<i>abd</i> = 104		

(b) Assignment of the 16 runs to two blocks

◆□ → ◆□ → ◆目 → ◆目 → ◆□ →

Model Term	Regression Coefficient	Effect Estimate	Sum of Squares	Percent Contribution
Α	10.81	21.625	1870.5625	26.30
В	1.56	3.125	39.0625	0.55
С	4.94	9.875	390.0625	5.49
D	7.31	14.625	855.5625	12.03
AB	0.062	0.125	0.0625	< 0.01
AC	-9.06	-18.125	1314.0625	18.48
AD	8.31	16.625	1105.5625	15.55
BC	1.19	2.375	22.5625	0.32
BD	-0.19	-0.375	0.5625	< 0.01
CD	-0.56	-1.125	5.0625	0.07
ABC	0.94	1.875	14.0625	0.20
ABD	2.06	4.125	68.0625	0.96
ACD	-0.81	-1.625	10.5625	0.15
BCD	-1.31	-2.625	27.5625	0.39
Block (ABCD)		-18.625	1387.5625	19.51

Ying Li Lec 9: Blocking and Confounding for 2^k Factorial Design

■ TABLE 6.12

Factor Effect Estimates and Sums of Squares for the 2⁴ Factorial in Example 6.2

Model Term	Effect Estimate	Sum of Squares	Percent Contribution	
A	21.625	1870.56	32.6397	
В	3.125	39.0625	0.681608	
С	9.875	390.062	6.80626	
D	14.625	855.563	14.9288	
AB	0.125	0.0625	0.00109057	
AC	-18.125	1314.06	22.9293	
AD	16.625	1105.56	19.2911	
BC	2.375	22.5625	0.393696	
BD	-0.375	0.5625	0.00981515	
CD	-1.125	5.0625	0.0883363	
ABC	1.875	14.0625	0.245379	
ABD	4.125	68.0625	1.18763	
ACD	-1.625	10.5625	0.184307	
BCD	-2.625	27.5625	0.480942	
ABCD	1.375	7.5625	0.131959	

Partial confounding

Different confounding in different replicates.

Instead of this...

Replicate I		Replicate II		Replicate III		Replicate IV	
Block 1	Block 2	Block 1	Block 2	Block 1	Block 2	Block 1	Block 2
(1)	abc	(1)	abc	(1)	abc	(1)	abc
ac	a	ac	a	ac	a	ac	a
ab	ь	ab	b	ab	ь	ab	ь
bc	c	bc	c	bc	c	bc	c

A ►

< 注入 < 注入

... we can do this

◆□→ ◆□→ ◆注→ ◆注→ □注□

Recommended problems

- 7.2
- 7.18
- 7.19
- 7.20

Ying Li Lec 9: Blocking and Confounding for 2^k Factorial Design

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ