Lec 7: Nested Designs and Split-plot Designs

Ying Li

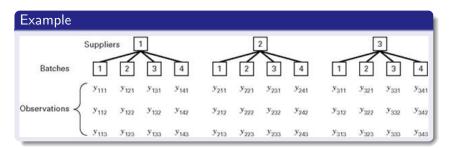
November 28, 2011

Two-stage nested design

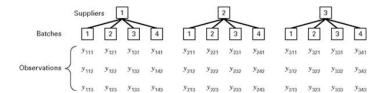
An arrangement of experiment with the levels of factor B under the levels of factor A.

Two-stage nested design

An arrangement of experiment with the levels of factor B under the levels of factor A.



Nested Factors

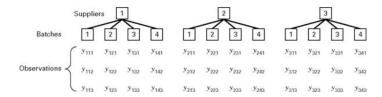


Question?

Why is this a nested design, rather than a factorial design?

Nested Factors

Statistical Model for Nested Design



ANOVA table

■ TABLE 14.2

Analysis of Variance Table for the Two-Stage Nested Design

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	
A	$bn \sum (\overline{y}_{i} - \overline{y}_{})^2$	a-1	MS_A	
B within A	$n\sum\sum(\overline{y}_{ij.}-\overline{y}_{i})^2$	a(b-1)	$MS_{B(A)}$	
Error	$\sum \sum \sum (y_{ijk} - \overline{y}_{ij.})^2$	ab(n-1)	MS_E	
Total	$\sum \sum \sum (y_{ijk} - \overline{y}_{})^2$	abn-1		

ANOVA table

■ TABLE 14.2

Analysis of Variance Table for the Two-Stage Nested Design

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square
A	$bn\sum_{i}(\overline{y}_{i}-\overline{y}_{})^{2}$	a-1	MS_A
B within A	$n\sum\sum (\overline{y}_{ij.}-\overline{y}_{i})^2$	a(b-1)	$MS_{B(A)}$
Error	$\sum \sum \sum (y_{ijk} - \overline{y}_{ij.})^2$	ab(n-1)	MS_E
Total	$\sum \sum \sum (y_{ijk} - \overline{y}_{})^2$	abn-1	

The appropriate statistics for testing the effects of factors A and B depend on whether A and B are fixed or random.

• A: Supplier; B(A): Batch

- A: Supplier; B(A): Batch
- A: Year; B(A): Experiment

- A: Supplier; B(A): Batch
- A: Year; B(A): Experiment
- A: School; B(A): Pupil

- A: Supplier; B(A): Batch
- A: Year; B(A): Experiment
- A: School; B(A): Pupil
- A: Shop; B(A): Product

Expected Values

■ TABLE 14.1

Expected Mean Squares in the Two-Stage Nested Design

E(MS)	A Fixed B Fixed	A Fixed B Random	A Random B Random
$E(MS_A)$	$\sigma^2 + \frac{bn\sum \tau_i^2}{a-1}$	$\sigma^2 + n\sigma_\beta^2 + \frac{bn\sum \tau_i^2}{a-1}$	$\sigma^2 + n\sigma_\beta^2 + bn\sigma_\tau^2$
$E(MS_{B(A)})$	$\sigma^2 + \frac{n \sum \sum \beta_{j(i)}^2}{a(b-1)}$	$\sigma^2 + n\sigma_\beta^2$	$\sigma^2 + n\sigma_\beta^2$
$E(MS_E)$	σ^2	σ^2	σ^2

Expected Values

■ TABLE 14.1

Expected Mean Squares in the Two-Stage Nested Design

E(MS)	A Fixed B Fixed	A Fixed B Random	A Random B Random
$E(MS_A)$	$\sigma^2 + \frac{bn\sum \tau_i^2}{a-1}$	$\sigma^2 + n\sigma_\beta^2 + \frac{bn\sum \tau_i^2}{a-1}$	$\sigma^2 + n\sigma_\beta^2 + bn\sigma_\tau^2$
$E(MS_{B(A)})$	$\sigma^2 + \frac{n \sum \sum \beta_{j(i)}^2}{a(b-1)}$	$\sigma^2 + n\sigma_\beta^2$	$\sigma^2 + n\sigma_\beta^2$
$E(MS_E)$	σ^2	σ^2	σ^2

This table gives information about how to test hypotheses and how to estimate variance components.

Example

■ TABLE 14.3 Coded Purity Data for Example 14.1 (Code: y_{iik} = Purity − 93)

	Batches		Suppl	lier 1			Supp	plier 2			Supp	lier 3	
		1	2	3	4	1	2	3	4	1	2	3	4
		1	-2	-2	1	1	0	-1	0	2	-2	1	3
		-1	-3	0	4	-2	4	0	3	4	0	-1	2
		0	-4	1	0	-3	2	-2	2	0	2	2	1
Batch totals	y_{ij}	0	-9	-1	5	-4	6	-3	5	6	0	2	6
Supplier totals	y			5				4				14	

ANOVA

■ TABLE 14.4

Analysis of Variance for the Data in Example 14.1

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Expected Mean Square	F_0	P-Value
Suppliers	15.06	2	7.53	$\sigma^2 + 3\sigma_B^2 + 6\sum_i \tau_i^2$	0.97	0.42
Batches (within						
suppliers)	69.92	9	7.77	$\sigma^2 + 3\sigma_B^2$	2.94	0.02
Error	63.33	24	2.64	σ^2		
Total	148.31	35				

ANOVA

■ TABLE 14.5 Incorrect Analysis of the Two-Stage Nested Design in Example 14.1 as a Factorial (Suppliers Fixed, Batches Random)

Source of	Sum of	Degrees of	Mean		12/2/17
Variation	Squares	Freedom	Square	F_0	P-Value
Suppliers (S)	15.06	2	7.53	1.02	0.42
Batches (B)	25.64	3	8.55	3.24	0.04
$S \times B$ interaction	44.28	6	7.38	2.80	0.03
Error	63.33	24	2.64		
Total	148.31	35			

Compare

■ TABLE 14.4 Analysis of Variance for the Data in Example 14.1

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Expected Mean Square	F_0	P-Value
Suppliers	15.06	2	7.53	$\sigma^2 + 3\sigma_\beta^2 + 6\sum_i \tau_i^2$	0.97	0.42
Batches (within						
suppliers)	69.92	9	7.77	$\sigma^2 + 3\sigma_B^2$	2.94	0.02
Error	63.33	24	2.64	σ^2		
Total	148.31	35				

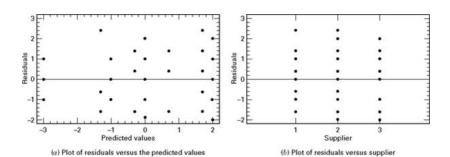
■ TABLE 14.5

Incorrect Analysis of the Two-Stage Nested Design in Example 14.1 as a Factorial (Suppliers Fixed, Batches Random)

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F.	P-Value
N SS		2		1.02	700,4500
Suppliers (S)	15.06	2	7.53	1.02	0.42
Batches (B)	25.64	3	8.55	3.24	0.04
$S \times B$ interaction	44.28	6	7.38	2.80	0.03
Error	63.33	24	2.64		
Total	148.31	35			

Model validation

Model validation

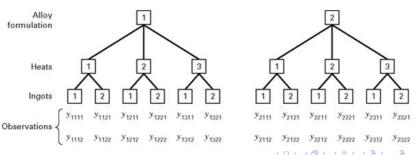


Nested Designs Split-plot Designs

Three Stage Nested Design

Example

- Suppose a foundry wishes to investigate the hardness of 2 formulations of a metal alloy.
- 3 heat of each alloy formulation are prepared.
- 2 ingots are selected at random.



■ TABLE 14.7

Analysis of Variance for the Three-Stage Nested Design

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	
Α	$bcn\sum_{i}(\overline{y}_{i}-\overline{y}_{})^{2}$	a-1	MS_A	
B (within A)	$cn\sum_{i}\sum_{j}(\overline{y}_{ij}-\overline{y}_{})^{2}$	a(b-1)	$MS_{B(A)}$	
C (within B)	$n\sum_{i}\sum_{j}\sum_{k}(\overline{y}_{ijk}-\overline{y}_{})^{2}$	ab(c-1)	$MS_{C(B)}$	
Error	$\sum_{i}\sum_{j}\sum_{k}\sum_{l}(y_{ijkl}-\overline{y}_{ijk})^{2}$	abc(n-1)	MS_E	
Total	$\sum_{i}\sum_{j}\sum_{k}\sum_{l}(y_{ijkl}-\overline{y}_{})^{2}$	abcn-1		

■ TABLE 14.8

Expected Mean Squares for a Three-Stage Nested Design with A and B Fixed and C Random

Model Term	Expected Mean Square
$ au_i$	$\sigma^2 + n\sigma_{\gamma}^2 + \frac{bcn\sum \tau_i^2}{a-1}$
$oldsymbol{eta}_{j(i)}$	$\sigma^2 + n\sigma_{\gamma}^2 + \frac{cn\sum\sum\sum \beta_{j(i)}^2}{a(b-1)}$
$\gamma_{k(ij)}$	$\sigma^2 + n\sigma_{\gamma}^2$
$\epsilon_{\mathit{l(ijk)}}$	σ^2

Nested-factorial Designs

Example

- An industrial engineer is studying the hand insertion of electronic components on printed circuit boards to improve the speed of the assembly operation.
- 3 assembly fixtures.
- 2 workplace layout.
- 4 operator for each fixture-layout combination.

■ TABLE 14.9

Assembly Time Data for Example 14.2

	Layout 1								
Operator	1	2	3	4	1	2	3	4	y
Fixture 1	22	23	28	25	26	27	28	24	404
	24	24	29	23	28	25	25	23	
Fixture 2	30	29	30	27	29	30	24	28	447
	27	28	32	25	28	27	23	30	
Fixture 3	25	24	27	26	27	26	24	28	401
	21	22	25	23	25	24	27	27	
Operator totals, y,z,	149	150	171	149	163	159	151	160	
Layout totals, y,_		6	19			6	33		1252 = y

Mixed Interactions

Interactions between a fixed factor and a random factor

- Restricted model: The sums of the interaction effects over the level of the fixed factor equals 0.
- Unrestricted model.

■ TABLE 14.10

Expected Mean Squares for Example 14.2

Model Term	Expected Mean Square
$ au_i$	$\sigma^2 + 2\sigma_{ au\gamma}^2 + 8\sum au_i^2$
$oldsymbol{eta_j}$	$\sigma^2 + 6\sigma_{\gamma}^2 + 24\sum \beta_j^2$
$\gamma_{k(j)}$	$\sigma^2 + 6\sigma_{\gamma}^2$
$(aueta)_{ij}$	$\sigma^2 + 2\sigma_{\tau\gamma}^2 + 4\sum\sum (\tau\beta)_{ij}^2$
$(au\gamma)_{ik(j)}$	$\sigma^2 + 2\sigma_{ au\gamma}^2$
$\epsilon_{(ijk)l}$	σ^2

■ TABLE 14.11

Analysis of Variance for Example 14.2

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-Value
Fixtures (F)	82.80	2	41.40	7.54	0.01
Layouts (L)	4.08	1	4.09	0.34	0.58
Operators (within layouts), $O(L)$	71.91	6	11.99	5.15	< 0.01
FL	19.04	2	9.52	1.73	0.22
FO(L)	65.84	12	5.49	2.36	0.04
Error	56.00	24	2.33		
Total	299.67	47			

■ TABLE 14.12

Minitab Balanced ANOVA Analysis of Example 14.2 Using the Restricted Model

Analysis	of	Variance	(Balanced	Designs)

Factor	Type	Levels	Values			
Layout	fixed	2	1	2		
Operator(Layout)	random	4	1	2	3	4
Fixture	fixed	3	1	2	3	
Analysis of Varianc	e for Time					
***********				24		

Source	DF	55	MS		Ρ.
Layout	1	4.083	4.083	0.34	0.581
Operator(Layout)	6	71.917	11.986	5.14	0.002
Fixture	2	82.792	41.396	7.55	0.008
Layout*Fixture	2	19.042	9.521	1.74	0.218
Fixture*Operator(Layout)	12	65.833	5.486	2.35	0.036
Error	24	56.000	2.333		
2 3 3 3					

ELLOL	24	30.000
Total	47	299.667

			Expected Mean Square
	Variance	Error	for Each Term (using
Source	component	term	restricted model)
1 Layout		2	(6) + 6(2) + 24Q[1]
2 Operator(Layout)	1.609	6	(6) + 6(2)
3 Fixture		5	(6) + 2(5) + 16QE33
4 Layout*Fixture		5	(6) + 2(5) + 80[4]
5 Fixture*Operator(Layout)	1.576	6	(6) + 2(5)
6 Error	2.333		(6)

Split-Plot design

In some multifactor factorial experiments, we may be unable to completely randomize the order of the runs.

Why is this a split-plot design?

Example

- A paper manufacturer wish to study the effect of two factors on the tensile strength of the paper.
- 3 pulp preparation methods; 4 temperatures; 3 replicates

■ TABLE 14.14

The Experiment on the Tensile Strength of Paper

	Replicate (or Block) 1		Replicate (or Block) 2			Replicate (or Block) 3			
Pulp Preparation Method	1	2	3	1	2	3	1	2	3
Temperature (°F)									
200	30	34	29	28	31	31	31	35	32
225	35	41	26	32	36	30	37	40	34
250	37	38	33	40	42	32	41	39	39
275	36	42	36	41	40	40	40	44	45

■ TABLE 14.15

Expected Mean Squares for Split-Plot Design

	Model Term	Expected Mean Square
	$ au_i$	$\sigma^2 + ab\sigma_{\tau}^2$
Whole plot β_j	$oldsymbol{eta}_j$	$\sigma^2 + b\sigma_{ aueta}^2 + rac{rb\sumeta_j^2}{a-1}$
	$(aueta)_{ij}$	$\sigma^2 + b\sigma_{ aueta}^2$
	γ_k	$\sigma^2 + a\sigma_{ au\gamma}^2 + rac{ra\sum \gamma_k^2}{(b-1)}$
	$(au\gamma)_{ik}$	$\sigma^2 + a\sigma_{ au\gamma}^2$
Subplot	$(eta\gamma)_{jk}$	$\sigma^2 + \sigma_{ aueta\gamma}^2 + rac{r\sum\sum(eta\gamma)_{jk}^2}{(a-1)(b-1)}$
	$(aueta\gamma)_{ijk}$	$\sigma^2 + \sigma_{ aueta\gamma}^2$
	$\epsilon_{(ijk)h}$	σ^2 (not estimable)

■ TABLE 14.16

Analysis of Variance for the Split-Plot Design Using the Tensile Strength Data from Table 14.14

Sum of Mean Degrees of Source of Variation P-Value Squares Freedom Square F_{o} Replicates (or blocks) 77.55 2 38.78 Preparation method (A) 128.39 64.20 7.08 0.05 Whole plot error (replicates (or blocks) $\times A$) 36.28 4 9.07 Temperature (B) 434.08 3 144.69 < 0.01 41.94 Replicates (or blocks) $\times B$ 20.67 6 3.45 AB75.17 6 12.53 2.96 0.05 Subplot error (replicates (or blocks) $\times AB$) 50.83 12 4.24 822.97 35 Total

Nested Designs Split-plot Designs

Split-split-plot design

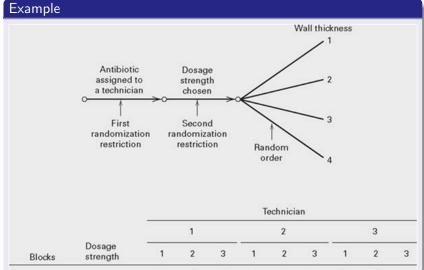
Split-split-plot design

Example

- A researcher is studying the absorbtion times of a particular type of antibiotic capsule.
- 3 technicians.
- 3 dosage strengths.
- 4 capsule wall thicknesses.
- 4 replicates (4 days).

Nested Designs Split-plot Designs

Split-split-plot design



The strip-split-plot design

