Lec 5: Factorial Experiment

Ying Li

November 21, 2011

Ying Li Lec 5: Factorial Experiment

Example

- Study of the battery life vs the factors temperatures and types of material.
- A: Types of material, 3 levels.
- B: Temperatures, 3 levels.

Example

- Study of the battery life vs the factors temperatures and types of material.
- A: Types of material, 3 levels.
- B: Temperatures, 3 levels.

In general, factorial designs are most efficient for the study of the effects of two or more factors.

Factorial Design

In each complete trial or replication of the experiment all possible combinations of the levels of the factors are investigated.

Factorial Design

In each complete trial or replication of the experiment all possible combinations of the levels of the factors are investigated.

Question

What's the advantage of the factorial design comparing with two-single factor experient?

• The two-factor factorial gives estimates with higher precision (given the same number of experimental units).

- The two-factor factorial gives estimates with higher precision (given the same number of experimental units).
- The two-factor factorial experiment makes it possible to detect interactions.

Example

■ TABLE 5.1 Life (in hours) Data for the Battery Design Example

Material			Tempera	ture (°F)		
Туре	1	5	7	0	1	25
1	130	155	34	40	20	70
	74	180	80	75	82	58
2	150	188	136	122	25	70
	159	126	106	115	58	45
3	138	110	174	120	96	104
	168	160	150	139	82	60

・ロン ・回 と ・ ヨン ・ モン

....

			Fact	or B	
		1	2		b
	1	$y_{111}, y_{112}, \dots, y_{11n}$	$y_{121}, y_{122}, \dots, y_{12n}$		$\begin{array}{c} y_{1b1}, y_{1b2}, \\ \dots, y_{1bn} \end{array}$
Factor A	2	$y_{211}, y_{212}, \dots, y_{21n}$	<i>Y</i> ₂₂₁ , <i>Y</i> ₂₂₂ , , <i>Y</i> _{22n}		$\begin{array}{c} y_{2b1}, y_{2b2}, \\ \dots, y_{2bn} \end{array}$
	:				
	a	y _{a11} , y _{a12} , , y _{a1n}	<i>Ya</i> 21, <i>Ya</i> 22,, <i>Ya</i> 2n		Yab1+ Yab2+

・ロト・(四)・(日)・(日)・(日)・

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
A treatments	SS_A	a-1	$MS_A = \frac{SS_A}{a-1}$	$F_0 = \frac{MS_A}{MS_E}$
B treatments	SS_B	b-1	$MS_B = \frac{SS_B}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$
Interaction	SS _{AB}	(a - 1)(b - 1)	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F_0 = \frac{MS_{AI}}{MS_E}$
Error	SS_E	ab(n-1)	$MS_E = \frac{SS_E}{ab(n-1)}$	
Total	SST	abn - 1		

TABLE 5.3 The Analysis of Variance Table for the Two-Factor Factorial, Fixed Effects Model

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Manual Calculation

$$SS_{A} = \frac{1}{bn} \sum_{i=1}^{a} y_{i}^{2} - \frac{y^{2}}{abn}$$

$$SS_{B} = \frac{1}{an} \sum_{j=1}^{b} y_{j}^{2} - \frac{y^{2}}{abn}$$

$$SS_{Sabouals} = \frac{1}{n} \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij}^{2} - \frac{y^{2}}{abn}$$

$$SS_{AB} = SS_{Sabouals} - SS_{A} - SS_{B}$$

$$SS_{E} = SS_{T} - SS_{AB} - SS_{A} - SS_{B}$$

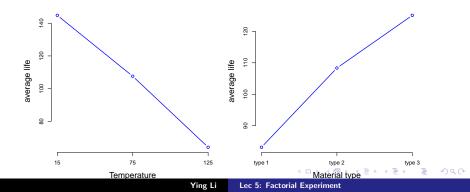
・ロト ・回ト ・ヨト ・ヨト

Results for the example

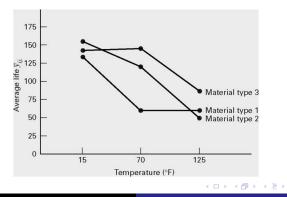
Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-Value
Material types	10,683.72	2	5,341.86	7.91	0.0020
Temperature	39,118.72	2	19,559.36	28.97	0.0001
Interaction	9,613.78	4	2,403.44	3.56	0.0186
Error	18,230.75	27	675.21		
Total	77,646.97	35			

・ロト ・回ト ・ヨト ・ヨト

	15° F	70° F	125° F	
Type 1	134.75	57.25	57.5	83.16667
Type 2	155.75	119.75	49.5	108.33333
Type 3	144	145.75	85.5	125.08333
	144.83333	107.58333	64.16667	



	15° F	70° F	125° F	
Type 1	134.75	57.25	57.5	83.16667
Type 2	155.75	119.75	49.5	108.33333
Type 3	144	145.75	85.5	125.08333
	144.83333	107.58333	64.16667	



Ying Li Lec 5: Factorial Experiment

< ≣⇒

- When interaction is significant, comparisons between the means of one factor (A) may be obscured by the interaction (AB).
- One approach to this situation is to fix factor B at a specific level and apply Tukey's test to the means of factor A at that level.

- When interaction is significant, comparisons between the means of one factor (A) may be obscured by the interaction (AB).
- One approach to this situation is to fix factor B at a specific level and apply Tukey's test to the means of factor A at that level.

Example

$$T_{0.05} = q_{0.05}(a, f) \sqrt{\frac{MS_E}{n}} = q_{0.05}(3, 27) \sqrt{\frac{MS_E}{4}} = 45.71$$

$$\bar{y}_{13.} - \bar{y}_{23.} = 8 \quad \bar{y}_{33.} - \bar{y}_{23.} = 36 \quad \bar{y}_{33.} - \bar{y}_{13.} = 28$$

No interaction in a two-factor model

Ying Li Lec 5: Factorial Experiment

No interaction in a two-factor model

TABLE 5.5

Analysis of Variance for Battery Life Dat

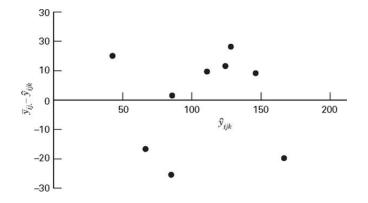
Source of	Sum of	Degrees of	Mean		
Variation	Squares	Freedom	Square	F_0	P-Value
Material types	10,683.72	2	5,341.86	7.91	0.0020
Temperature	39,118.72	2	19,559.36	28.97	0.0001
Interaction	9,613.78	4	2,403.44	3.56	0.0186
Error	18,230.75	27	675.21		
Total	77,646.97	35			

TABLE 5.8

Analysis of Variance for Battery Life Data Assuming No Interaction

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-value
Material types	10,683.72	2	5,341.86	5.95	0.0065
Temperature	39,118.72	2	19,559.36	21.78	0.0001
Error	27,844.52	31	898.21		
Total	77,646.96	35			

Model adequacy checking



* 臣

< ∃→

Model 1

$$y_{ij} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ij}$$
$$i = 1, 2, \dots, a, \quad j = 1, 2, \dots, b$$

・ロト ・回ト ・ヨト

문 문 문

Model 1

$$y_{ij} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ij}$$

$$i = 1, 2, \dots, a, \quad j = 1, 2, \dots, b$$

TABLE 5.3

The Analysis of Vari	ance Table for the	Two-Factor Factorial ,	Fixed Effects Model

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
A treatments	SS_A	a-1	$MS_A = \frac{SS_A}{a-1}$	$F_0 = \frac{MS_A}{MS_E}$
B treatments	SS_B	b-1	$MS_B = \frac{SS_B}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$
Interaction	SSAB	(a-1)(b-1)	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F_0 = \frac{MS_A}{MS_E}$
Error	SS_E	ab(n-1)	$MS_E = \frac{SS_E}{ab(n-1)}$	
Total	SS_T	abn - 1		

イロン 不同と 不同と 不同と

Model 1

$$y_{ij} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ij}$$

$$i = 1, 2, \dots, a, \quad j = 1, 2, \dots, b$$

イロン イヨン イヨン イヨン

Model 1

$$y_{ij} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ij}$$

$$i = 1, 2, \dots, a, \quad j = 1, 2, \dots, b$$

Model 2

$$y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}$$

$$i = 1, 2, \dots, a, \quad j = 1, 2, \dots, b$$

・ロト ・回ト ・ヨト ・ヨト

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Expected Mean Square		
Rows (A)	$\sum_{i=1}^a \frac{y_{i.}^2}{b} - \frac{y_{}^2}{ab}$	a-1	MS _A	$\sigma^2 + rac{b\sum au_i^2}{a-1}$		
Columns (B)	$\sum_{j=1}^b \frac{y_j^2}{a} - \frac{y_z^2}{ab}$	b-1	MS_B	$\sigma^2 + \frac{a\sum \beta_j^2}{b-1}$		
Residual or AB	Subtraction	(a-1)(b-1)	MS _{Residual}	$\sigma^2 + \frac{\sum\sum{(\tau\beta)_{ij}^2}}{(a-1)(b-1)}$		
Total	$\sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij}^{2} - \frac{y_{}^{2}}{ab}$	ab-1				

TABLE 5.9 Analysis of Variance for a Two-Factor Model, One Observation per Cell

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Tukey single-degree-of-freedom test

It is helpful in determining whether interaction is present or not. The procedure assumes $(\tau\beta)_{ij} = \gamma \tau_i \beta_j$. Then the test partitions the residual sum of squares into two part. One is

$$SS_{N} = \frac{\left[\sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij} y_{i.} y_{.j} - y_{..} (SS_{A} + SS_{B} + \frac{y_{.}^{2}}{ab})\right]^{2}}{abSS_{A}SS_{B}},$$

with 1 degree of freedom, and

$$SS_{Error} = SS_{residual} - SS_N,$$

with (a-1)(b-1)-1 degrees of freedom. To test the present of interaction, we compute

$$F_0 = \frac{SS_N}{SS_{Error}/[(a-1)(b-1)-1]}$$

If $F_0 > F_{\alpha,1,(a-1)(b-1)-1}$, the hypothesis of no interaction must be rejected.

Question

Is the two-factor factorial model with one observation per cell identical to the randomized complete block model?

Blocking in a Factorial Design

Example

- Study of the battery life vs the factors temperatures and types of material.
- A: Types of material, 3 levels.
- B: Temperatures, 3 levels.
- 9 combinations of A and B.
- 4 observations per combination.
- In total 36 observations.

Example

- Study of the battery life vs the factors temperatures and types of material.
- A: Types of material, 3 levels.
- B: Temperatures, 3 levels.
- 9 combinations of A and B.
- 4 observations per combination.
- In total 36 observations.
- 4 blocks.

Source of Variation	Sum of Squares	Degrees of Freedom	Expected Mean Square	F_0
Blocks	$\frac{1}{ab}\sum_{k}y_{k}^{2}-\frac{y_{}^{2}}{abn}$	n-1	$\sigma^2 + ab\sigma_\delta^2$	
A	$\frac{1}{bn}\sum_{i}y_{i}^{2}-\frac{y_{}^{2}}{abn}$	<i>a</i> – 1	$\sigma^2 + \frac{bn\sum \tau_i^2}{a-1}$	$\frac{MS_A}{MS_E}$
В	$\frac{1}{an}\sum_{j}y_{j,}^{2}=\frac{y_{\perp}^{2}}{abn}$	b-1	$\sigma^2 + \frac{an\sum \beta_j^2}{b-1}$	$\frac{MS_B}{MS_E}$
AB	$\frac{1}{n}\sum_{i}\sum_{j}y_{ij}^{2}-\frac{y_{ij}^{2}}{abn}-SS_{A}-SS_{B}$	(a-1)(b-1)	$\sigma^2 + \frac{n\sum\sum{(\tau\beta)_{ij}^2}}{(a-1)(b-1)}$	$\frac{MS_{AB}}{MS_E}$
Error	Subtraction	(ab-1)(n-1)	σ^2	
Total	$\sum_{i} \sum_{j} \sum_{k} y_{ijk}^2 - \frac{y_{ijk}^2}{abn}$	abn - 1		

■ TABLE 5.20

Analysis of Variance for a Two-Factor Factorial in a Randomized Complete Block

◆□ > ◆□ > ◆ 目 > ◆目 > ● 目 ● ● ●

Source	DF	Anova SS	MeanSquare	F Value	Pr > F
temperature	2	39118.722	19559.361	26.26	<.0001
material	2	10683.722	5341.861	7.17	0.0036
Interaction	4	9613.778	2403.444	3.23	0.0297
block	3	354.972	118.324		
Error	24	17875.778	744.824		
Total	35	77646.972			

・ロト・(四)・(日)・(日)・(日)・

$$y_{ijkl} = \mu + \tau_i + \beta_j + \gamma_r + (\tau\beta)_{ij} + (\tau\gamma)_{ik} + (\beta\gamma)_{jk} + (\tau\beta\gamma)_{ijk} + \epsilon_{ijkl}$$

 $i = 1, 2, \cdot, a$ $j = 1, 2, \cdot, b$ $k = 1, 2, \cdot, c$ $l = 1, 2, \cdot, n$

- 4 回 🕨 - 4 国 🕨 - 4 国 🕨

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Expected Mean Square	F ₀
А	SSA	a – 1	MS_A	$\sigma^2 + \frac{bcn\sum \tau_i^2}{a-1}$	$F_0 = \frac{MS_A}{MS_E}$
В	SS_B	b-1	MS _B	$\sigma^2 + \frac{acn \sum \beta_j^2}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$
С	SS _c	c - 1	MS _C	$\sigma^2 + \frac{abn\sum \gamma_k^2}{c-1}$	$F_0 = \frac{MS_C}{MS_E}$
AB	SSAB	(a - 1)(b - 1)	MS _{AB}	$\sigma^{2} + \frac{cn\sum\sum(\tau\beta)_{ij}^{2}}{(a-1)(b-1)}$	$F_0 = \frac{MS_{AB}}{MS_E}$
AC	SSAC	(a - 1)(c - 1)	MS _{AC}	$\sigma^2 + \frac{bn\sum\sum(\tau\gamma)_{lk}^2}{(a-1)(c-1)}$	$F_0 = \frac{MS_{AC}}{MS_E}$
BC	SS_{BC}	(b-1)(c-1)	MS _{BC}	$\sigma^2 + \frac{an\sum\sum(\beta\gamma)_{jk}^2}{(b-1)(c-1)}$	$F_0 = \frac{MS_{BC}}{MS_E}$
ABC	SSABC	(a-1)(b-1)(c-1)	MSABC	$\sigma^{2} + \frac{n \sum \sum \sum (\tau \beta \gamma)_{ijk}^{2}}{(a-1)(b-1)(c-1)}$	$F_0 = \frac{MS_{ABC}}{MS_E}$
Error	SS_E	abc(n-1)	MSE	σ^2	
Total	SST	abcn - 1			

TABLE 5.12 The Analysis of Variance Table for the Three-Factor Fixed Effects Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Example

- Soft drink bottling
- Fill correct volume
- Response variable: difference from correct volume
- Carbonation (10%, 12%, 14%)
- Pressure (25psi, 30psi)
- Line speed (200bpm, 250bpm)

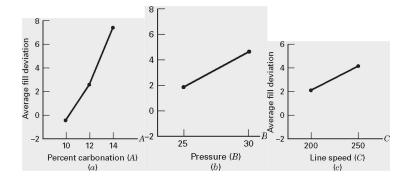
TABLE 5.13

Fill Height Deviation Data for Example 5.3

	Operating Pressure (B)								
-	25 psi Line Speed (C)			30 psi Line Speed (C)					
Percent _ Carbonation (4)									
	200		4	250		200		250	
	$-3 \\ -1$	4	-1 0 2	0	-1 0	0	1 1	2	-4
12	0 1	1	1	3	2 3	5	6 5	(1)	20
14	5 4	9	7 6	(13)	7 9	(16)	10 11	(21)	59
$B \times C$ Totals $y_{,ik}$	6	5	1	5	2	:0	3	4	$75 = y_{}$
У.ј.,		2	21			54	3		
(c	A >	K B Totals				$A \times C$	fotals		
		y _{ij} " B				y _{is}	с		
Α		25	30		Α	200		250	
10)	-5	1		10	-5		1	
12	2	4	16		12	6		14	
14	4 I	22	37		14	25		34	

Ying Li Lec 5: Factorial Experiment

E 990

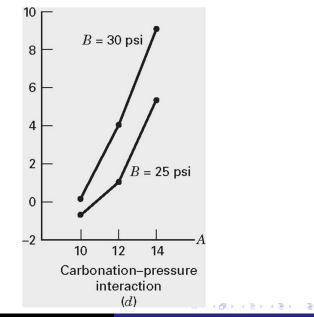


・ロ・・ (日・・ (日・・ (日・)

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-Value
Percentage of carbonation (A)	252.750	2	126.375	178.412	< 0.0001
Operating pressure (B)	45.375	1	45.375	64.059	< 0.0001
Line speed (C)	22.042	1	22.042	31.118	0.0001
AB	5.250	2	2.625	3.706	0.0558
AC	0.583	2	0.292	0.412	0.6713
BC	1.042	1	1.042	1.471	0.2485
ABC	1.083	2	0.542	0.765	0.4867
Error	8.500	12	0.708		
Total	336.625	23			

■ TABLE 5.14 Analysis of Vanianas for Example 5.2

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @



Ying Li Lec 5: Factorial Experiment