Lec 4: Experiment with Blocking Factors

Ying Li

November 18, 2011

Ying Li Lec 4: Experiment with Blocking Factors

- Three end-aisle displays
- Which is the best?

A B > A
 A
 B > A
 A

-

nuisance factor

A design factor that probably has an effect on the response, but we are not interested in that effect.

- unknown & uncontrolled \leftarrow Randomization
- known but uncontrolled \Leftarrow Analysis of covariance
- known & controlled \Leftarrow Blocking

個 と く ヨ と く ヨ と …

- unknown & uncontrolled <= Randomization
- known but uncontrolled \longleftarrow Analysis of covariance
- known & controlled \Leftarrow Blocking

General rule

"Block what you can, randomize what you cannot."

向下 イヨト イヨト

The randomized complete block design (RCBD)

・ 回 ト ・ ヨ ト ・ ヨ ト

Э

Statistical model for RCBD

$$y_{ij} = \mu + au_i + eta_j + arepsilon_{ij}$$

 $i = 1, 2, \cdots, a$
 $j = 1, 2, \cdots, b$

Ying Li Lec 4: Experiment with Blocking Factors

・ロン ・回と ・ヨン・

Source	Sum of Sevene	Degrees of Encodom	Moon Samana	F
of variation	Sum of Squares	of Freedom	Mean Square	r _o
Treatments	SSTreatments	a-1	$rac{SS_{\mathrm{Treatments}}}{a-1}$	$\frac{MS_{\text{Treatments}}}{MS_E}$
Blocks	SSBlocks	b-1	$rac{SS_{ m Blocks}}{b-1}$	
Error	SS_E	(a-1)(b-1)	$\frac{SS_E}{(a-1)(b-1)}$	
Total	SS_T	N-1		

TABLE 4.2 Analysis of Variance for a Randomized Complete Block Design

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A medical device manufacturer produces vascular grafts (artificial veins).

The extrusion pressure (PSE) affect the quality of the artificial veins.

However, batch to batch variation may also be significant.

Extrusion Pressure (PSI)	1	2	3	4	5	6	Treatment Total
8500	90.3	89.2	98.2	93.9	87.4	97.9	556.9
8700	92.5	89.5	90.6	94.7	87.0	95.8	550.1
8900	85.5	90.8	89.6	86.2	88.0	93.4	533.5
9100	82.5	89.5	85.6	87.4	78.9	90.7	514.6
Block Totals	350.8	359.0	364.0	362.2	341.3	377.8	$y_{=} = 2155.1$

Example 4.1

TABLE 4.4

Analysis of Variance for the Vascular Graft Experiment

Source of	Sum of	Degrees of	Mean	P	P-Value	
variation	Squares	Freedom	Square	r ₀	P-value	
Treatments (extrusion pressure)	178.17	3	59.39	8.11	0.0019	
Blocks (batches)	192.25	5	38.45			
Error	109.89	15	7.33			
Total	480.31	23				

Example 4.1

TABLE 4.4

Analysis of Variance for the Vascular Graft Experiment

Source of	Sum of	Degrees of	Mean		
Variation	Squares	Freedom	Square	F_0	P-Value
Treatments (extrusion pressure)	178.17	3	59.39	8.11	0.0019
Blocks (batches)	192.25	5	38.45		
Error	109.89	15	7.33		
Total	480.31	23			

TABLE 4.5

Incorrect Analysis of the Vascular Graft Experiment as a Completely Randomized Design

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-Value
Extrusion pressure	178.17	3	59.39	3.95	0.0235
Error	302.14	20	15.11		
Total	480.31	23			
					≪ 豊き 一 豊
		Ving Li Lec 4	Experiment with	Blocking Fact	ors

RCBD vs CRD

Disadvantage of RCBD

- Error df is smaller than that for the CRD (problem with a small number of treatments).
- If there are missing data, a RCBD experiment may be less efficient than a CRD.
- Difficult to make inferences about blocking variable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Model Adequacy Checking

Ying Li Lec 4: Experiment with Blocking Factors

Э

Model Adequacy Checking

Ying Li Lec 4: Experiment with Blocking Factors

Э

Example

A Study of different formulation of a rocket propellants used in aircrew escape systems on the burning rate.

- 5 different formulations.
- batch of raw material
- Operators

/⊒ > < ≣ >

Latin Squares

TABLE 4.8

Latin Square Design for the Rocket Propellant Problem

	Operators										
Batches of Raw Material	1	2	3	4	5						
1	<i>A</i> = 24	B = 20	C = 19	<i>D</i> = 24	E = 24						
2	B = 17	C = 24	D = 30	E = 27	<i>A</i> = 36						
3	C = 18	D = 38	E = 26	<i>A</i> = 27	B = 21						
4	D = 26	E = 31	A = 26	B = 23	C = 22						
5	<i>E</i> = 22	A = 30	B = 20	C = 29	D = 31						

・ロト ・回ト ・ヨト ・ヨト

Size	3×3	4 × 4	5 X 5	6 × 6	7 × 7	$p \times p$
Examples of	ABC	ABCD	ABCDE	ABCDEF	ABCDEFG	ABC P
standard squares	BCA	BCDA	BAECD	BCFADE	BCDEFGA	BCD A
	CAB	CDAB	CDAEB	CFBEAD	CDEFGAB	CDE B
		DABC	DEBAC	DEABFC	DEFGABC	5.43
			ECDBA	EADFCB	EFGABCD	:
				FDECBA	FGABCDE	$PAB \ldots (P-1)$
					GABCDEF	
Number of standard squares	1	4	56	9408	16,942,080	-
Total number of Latin squares	12	576	161,280	818,851,200	61,479,419,904,000	$p!(p-1)! \times$ (number of standard squares)

TABLE 4.12 Standard Latin Squares and Number of Latin Squares of Various Sizes^d

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

ANOVA for Latin Squares

■ TABLE 4.9

Analysis of Variance for the Latin Square Design

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0			
Treatments	$SS_{\text{Treatments}} = \frac{1}{p} \sum_{j=1}^{p} y_{j.}^2 - \frac{y_{}^2}{N}$	p-1	$rac{SS_{ ext{Treatments}}}{p-1}$	$F_0 = \frac{MS_{\text{Treatments}}}{MS_E}$			
Rows	$SS_{Rows} = \frac{1}{P} \sum_{i=1}^{P} y_{i}^2 - \frac{y_{}^2}{N}$	p-1	$rac{SS_{ m Rows}}{p-1}$				
Columns	$SS_{Columns} = \frac{1}{P} \sum_{k=1}^{P} y_{k}^2 - \frac{y_{k}^2}{N}$	p-1	$\frac{SS_{\text{Columns}}}{p-1}$				
Error	SS_E (by subtraction)	(p-2)(p-1)	$\frac{SS_E}{(p-2)(p-1)}$				
Total	$SS_T = \sum_i \sum_j \sum_k y_{ijk}^2 - \frac{y_{ijk}^2}{N}$	$p^{2} - 1$					

イロン イヨン イヨン イヨン

Four batches and four operators

・日・ ・ ヨ・ ・ ヨ・

TABLE 4.13

Analysis of Variance for a Replicated Latin Square, Case 1

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
Treatments	$\frac{1}{np}\sum_{j=1}^{p}y_{j=1}^{2}-\frac{y_{j=1}^{2}}{N}$	p = 1	$rac{SS_{ ext{Treatments}}}{p-1}$	$\frac{MS_{\text{Treatments}}}{MS_E}$
Rows	$\frac{1}{np}\sum_{i=1}^{p} y_{i-i}^2 - \frac{y_{-i}^2}{N}$	p = 1	$\frac{SS_{\text{Rown}}}{p-1}$	
Columns	$\frac{1}{np}\sum_{k=1}^{p}y_{ak}^{2}-\frac{y_{ak}^{2}}{N}$	p = 1	$rac{SS_{ m Columns}}{p-1}$	
Replicates	$\frac{1}{p^2} \sum_{l=1}^{n} y_{\perp l}^2 - \frac{y_{\perp}^2}{N}$	n-1	$\frac{SS_{\text{Replicates}}}{n-1}$	
Error	Subtraction	(p-1)[n(p+1)-3]	$\frac{SS_E}{(p-1)[n(p+1)-3]}$	
Total	$\sum \sum \sum \sum y_{ijkl}^2 - \frac{y_{ijkl}^2}{N}$	$np^2 = 1$	TENE - LEEDING OF THE BASE SEC.	

・ロン ・回と ・ヨン・

.

Case 2, P. 143

● ▶ < ミ ▶

★ E ▶ E

Eight batches and four operators

.

Four batches and eight operators

個 と く ヨ と く ヨ と …

TABLE 4.14

Analysis of Variance for a Replicated Latin Square, Case 2

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
Treatments	$\frac{1}{np} \sum_{j=1}^{p} y_{j}^2 - \frac{y_{}^2}{N}$	p-1	$rac{SS_{ ext{Treatments}}}{p-1}$	$\frac{MS_{\rm Treatments}}{MS_E}$
Rows	$\frac{1}{p}\sum_{l=1}^{n}\sum_{i=1}^{p}y_{i,l}^{2}-\sum_{l=1}^{n}\frac{y_{i,l}^{2}}{p^{2}}$	n(p-1)	$\frac{SS_{Rows}}{n(p-1)}$	
Columns	$\frac{1}{np} \sum_{k=1}^{p} y_{k}^2 - \frac{y_{}^2}{N}$	p-1	$rac{SS_{ m Columns}}{p-1}$	
Replicates	$\frac{1}{p^2} \sum_{l=1}^n y_{l}^2 - \frac{y_{l}^2}{N}$	n-1	$\frac{SS_{\text{Replicates}}}{n-1}$	
Error	Subtraction	(p-1)(np-1)	$\frac{SS_E}{(p-1)(np-1)}$	
Total	$\sum_{l} \sum_{j} \sum_{k} \sum_{l} y_{ijkl}^2 - \frac{y_{\perp}^2}{N}$	$np^{2} - 1$		

- - 4 回 ト - 4 回 ト

Eight batches and eight operators

回 と く ヨ と く ヨ と …

Э

TABLE 4.15

Analysis of Variance for a Replicated Latin Square, Case 3

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F ₀
Treatments	$\frac{1}{np}\sum_{j=1}^{p}y_{j-}^{2}-\frac{y_{j-}^{2}}{N}$	p-1	$rac{SS_{ ext{Treatments}}}{p-1}$	$\frac{MS_{\text{Treatments}}}{MS_E}$
Rows	$rac{1}{p}\sum_{l=1}^{s}\sum_{l=1}^{p}y_{l,l}^{2}=\sum_{l=1}^{s}rac{y_{-l}^{2}}{p^{2}}$	n(p-1)	$\frac{SS_{Rows}}{n(p-1)}$	
Columns	$\frac{1}{p}\sum_{l=1}^{n}\sum_{k=1}^{p}y_{-k}^{2} = \sum_{l=1}^{n}\frac{y_{-l}^{2}}{p^{2}}$	n(p - 1)	$\frac{SS_{\text{Columns}}}{n(p-1)}$	
Replicates	$rac{1}{p^2}\sum_{l=1}^n y_{\perp l}^2 - rac{y_{\perp l}^2}{N}$	n-1	$rac{SS_{ m Replicates}}{n-1}$	
Error	Subtraction	(p-1)[n(p-1)-1]	$\frac{SS_E}{(p-1)[n(p-1)-1]}$	
Total	$\sum_{i} \sum_{j} \sum_{k} \sum_{l} y_{ijkl}^2 = \frac{y_{\perp}^2}{N}$	$np^2 - 1$		

イロト イヨト イヨト イヨト

Crossover Design

								1	Lati	n Sq	uare	s								
		I]	Ι	I	п	Г	v		v	١	Ν	V	п	V	Ш	I	Х	2	ĸ
Subject	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Period 1	A	B	B	A	B	A	A	B	A	B	B	A	A	B	A	B	A	B	A	B
Period 2	B	Α	A	B	A	B	B	A	B	A	A	B	B	A	B	A	B	Α	B	A

< □ > < □ > < □ > < □ > < □ > .

	TABLE 4.16
A	nalysis of Variance for the Crossover
D	esign in Figure 4.7

Source of Variation	Degrees of Freedom	
Subjects (columns)	19	
Periods (rows)	1	
Fluids (letters)	1	
Error	18	
Total	39	

・ロト・(四)・(日)・(日)・(日)・

■ TABLE 4.17

4×4 Graeco-Latin Square Design

		Colu	Column	
Row	1	2	3	4
1	Αα	Bβ	$C\gamma$	Dδ
2	Βδ	$A\gamma$	$D\beta$	$C\alpha$
3	$C\beta$	$D \alpha$	Αδ	$B\gamma$
4	$D\gamma$	Сδ	Blpha	Αβ

同 と く ヨ と く ヨ と