Lec 10: Fractions of 2^k Factorial Design

Ying Li

December 5, 2011

Ying Li Lec 10: Fractions of 2^k Factorial Design

- **Screening**: Some of the factors may influence the results. We want to figure out which.
- The number of combinations, 2^k, is too large for a complete investigation.

A ► 4

- **Screening**: Some of the factors may influence the results. We want to figure out which.
- The number of combinations, 2^k, is too large for a complete investigation.
- We can only investigate a **fraction** (subset) of the 2^k combinations.
- One-Half fraction of the 2^k design: 2^{k-1} .
- One-Quarter fraction of the 2^k design: 2^{k-2} .

TABLE 8.1

Plus and Minus Signs for the 2³ Factorial Design

Treatment				Fac	torial Effec	:t		
Combination	I	A	B	С	AB	AC	BC	ABC
а	+	+	-	-		-	+	+
b	+	_	+	-	-	+	-	+
с	+	-	-	+	+			+
abc	+	+	+	+	+	+	+	+
ab	+	+	+		+	-		
ac	+	+		+	-	+	-	-
bc	+	—	+	+	—	-	+	—
(1)	+	-	-	-	+	+	+	-

・ロン ・雪と ・雨と

Э

Treatment				Fac	torial Effec	t		
Combination	I	A	В	С	AB	AC	BC	ABC
a	+	+		-		-	+	+
b	+	_	+	-	-	+	-	+
с	+	-		+	+	\rightarrow	-	+
abc	+	+	+	+	+	+	+	+

- Notice that the 2³⁻¹ design is formed by selecting only those treatment combination that has a "+" in ABC column.
- ABC is called a **generator** or a **word**.

・ロト ・ 日 ・ ・ ヨ ・ ・

Treatment				Fac	torial Effec	:t		
Combination	I	A	В	С	AB	AC	BC	ABC
a	+	+		-			+	+
b	+	-	+	-	-	+	-	+
с	+	$\sim - \sim$	(-)	+	+		-	+
abc	+	+	+	+	+	+	+	+

•
$$[A] = \frac{1}{2}(a - b - c + abc) = [BC]$$

• $[B] = \frac{1}{2}(-a + b - c + abc) = [AC]$
• $[C] = \frac{1}{2}(-a - b + c + abc) = [AB]$

A and BC, B and AC, C and AB are aliases.

・ロ・ ・ 日・ ・ 田・ ・

문 🛌 문

- Use the **defining relation**: I = ABC.
- The one-half fraction with *I* = +*ABC* is called the **principal fraction**.
- Multiplying any column by defining relation yields the aliases for the column.

$$A \cdot I = A \cdot ABC = A^{2}BC = BC$$
$$B \cdot I = B \cdot ABC = AB^{2}C = AC$$
$$C \cdot I = C \cdot ABC = ABC^{2} = AB$$

・ 同・ ・ ヨ・

- Defining relation: I = ABC
- A = BC, $[A] \longrightarrow A + BC$
- B = AC, $[B] \longrightarrow B + AC$
- C = AB, $[C] \longrightarrow C + AB$

Alternative Fraction

Treatment				Fac	torial Effec	t		
Combination	I	A	B	С	AB	AC	BC	ABC
ab	+	+	+		+	-		-
ac	+	+	-	+	-	+	-	-
bc	+	-	+	+	-	-	+	-
(1)	+	-	-	-	+	+	+	-

Plus and Minus Signs for the 23 Factorial Design

- The defining relation I = -ABC
- The aliases relationship: A = -BC, B = -AC, C = -AB
- ۲

$$[A]' \longrightarrow A - BC$$

$$[B]' \longrightarrow B - AC$$

$$[C]' \longrightarrow C - AB_{(B)} \oplus (B) \oplus (B)$$

Design of Resolution

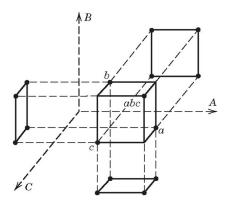
Resolution

A design is of resolution R is no p-factors effect is aliased with another effect containing less than R - p factors.

Example

- 2³⁻¹ experiment.
- Main effects (1-factor effect) are aliased with 2-factor (3-1 factors) interactions.
- The one-half fraction of the 2^3 design with the defining relation I = ABC is a 2_{III}^{3-1} .

- 4 回 と 4 回 と 4


No main effects are aliased with any other main effect, but main effects are aliased with two-factor interactions and some two-factor interactions may be aliased with each other. No main effect is aliased with any other main effect or with any two-factor interaction, but two-factor interactions are aliased with each other.

For example: A 2^{4-1} design with I = ABCD

No main effect or two-factor interaction is aliased with any other main effect or two-factor interaction, but two-factor interactions are aliased with three-factor interaction. For example: A 2^{5-1} design with I = ABCDE In general, the resolution of a two-level fractional factorial design is equal to the smallest number of letters in the shortest word in the defining relation.

- A 2^{3-1} design with I = ABC is a resolution III designs.
- A 2^{4-1} design with I = ABCD is a resolution *IV* designs.
- A 2^{5-1} design with I = ABCDE is a resolution V designs.

Any fractional factorial design of resolution R contains complete factorial design in any subset of R - 1 factors.

General construction of one-quarter fraction

- Write down a basic design consisting of the runs associated with a full factorial in k - 2 factors
- Add two additional columns with interactions involving the first k 2 factors. Thus a one-quarter fraction of the 2^k design has two generators (P, Q).
- **③** The complete defining relation is I = P = Q = PQ

		Basic	Design			
Run	A	В	С	D	E = ABC	F = BCD
1	-			-	-	
2	+	-	-	1	+	
3	-	+	-	-	+	+
4	+	+	-			+
5	-	-	+	-	+	+
6	+		+		-	+
7	-	+	+	-	-	-
8	+	+	+	-	+	-
9	-	-	-	+	-	+
10	+	2		+	+	+
11	-	+		+	+	-
12	+	+	57-1	+	-	100
13	-	27	+	+	+	227
14	+		+	+		-
15		+	+	+	-	+
16	+	+	+	+	+	+

TABLE 8.9 Construction of the 2^{6-2} Design with the Generators I = ABCE and I = BCDF

Ying Li Lec 10: Fractions of 2^k Factorial Design

(ロ) (四) (E) (E) (E)

Choosing a Design

- In former example, *E* and *F* were constructed through *E* = *ABC F* = *BCD*
- Would it be better to construct *E* and *F* through *E* = *ACB F* = *ABCD*?

イロト イポト イヨト イヨト

Choosing a Design

- In former example, *E* and *F* were constructed through *E* = *ABC F* = *BCD*
- Would it be better to construct *E* and *F* through *E* = *ACB F* = *ABCD*?

A reasonable criterion is to select the generator has the highest possible resolution.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Minimal abberation

TABLE 8.13

Three Choices of Generators for the 27-2 Design

Design A Generators: F = ABC, $G = BCDI = ABCF = BCDG = ADFG$	Design B Generators: F = ABC, $G = ADEI = ABCF = ADEG = BCDEFG$	Design C Generators: F = ABCD, $G = ABDEI = ABCDF = ABDEG = CEFG$		
Aliases (two-factor interactions)	Aliases (two-factor interactions)	Aliases (two-factor interactions)		
AB = CF	AB = CF	CE = FG		
AC = BF	AC = BF	CF = EG		
AD = FG	AD = EG	CG = EF		
AG = DF	AE = DG			
BD = CG	AF = BC			
BG = CD	AG = DE			
AF = BC = DG				

・ロト ・回ト ・ヨト ・ヨト

æ

Minimal abberation

TABLE 8.13

Three Choices of	Generators for	the 21	Design
------------------	----------------	--------	--------

Design A Generators: F = ABC, $G = BCDI = ABCF = BCDG = ADFG$	Design B Generators: F = ABC, $G = ADEI = ABCF = ADEG = BCDEFG$	Design C Generators: F = ABCD, $G = ABDEI = ABCDF = ABDEG = CEFG$		
Aliases (two-factor interactions)	Aliases (two-factor interactions)	Aliases (two-factor interactions)		
AB = CF	AB = CF	CE = FG		
AC = BF	AC = BF	CF = EG		
AD = FG	AD = EG	CG = EF		
AG = DF	AE = DG			
BD = CG	AF = BC			
BG = CD	AG = DE			
AF = BC = DG				

Design C minimizes the number of words in the defining relation that are of minimum length. We call such a design a **minimum aberration design**.

・ロト ・日本 ・モート ・モート

TABLE 8.14

Selected 2k-p Fractional Factorial Designs

Number of Factors, <i>k</i>	Fraction	Number of Runs	Design Generators	Number of Factors, k	Fraction	Number of Runs	Design Generators	Number of Factors, k	Fraction	Number of Runs	Design Generators
3	$\begin{array}{c}2_{m}^{3-1}\\2_{W}^{4-1}\\2_{V}^{5-1}\\2_{V}^{5-2}\end{array}$	4	$C = \pm AB$		2 ⁹⁻⁵	16	$E = \pm ABC$		10000		$L = \pm AC$
4	2^{4-1}_{W}	8	$D = \pm ABC$				$F = \pm BCD$	12	212-8	16	$E = \pm ABC$
5	2_V^{5-1}	16	$E = \pm ABCD$				$G = \pm ACD$	100			$F = \pm ABD$
	2^{5-2}_{m}	8	$D = \pm AB$				$H= \pm ABD$				$G = \pm ACD$
			$E = \pm AC$				$J = \pm ABCD$				$H = \pm BCD$
6	2_{V1}^{6-1}	32	$F = \pm ABCDE$	10	2V10-3	128	$H = \pm ABCG$				$J = \pm ABCD$
	2^{6-2}_{IV}	16	$E = \pm ABC$				$J = \pm BCDE$				$K = \pm AB$
			$F = \pm BCD$				$K = \pm ACDF$				$L = \pm AC$
	2 ⁶⁻³	8	$D = \pm AB$		210-4	64	$G = \pm BCDF$				$M = \pm AD$
			$E = \pm AC$				$H= \pm ACDF$	13	213-9	16	$E = \pm ABC$
			$F = \pm BC$				$J = \pm ABDE$				$F = \pm ABD$
7	$2_{\rm VII}^{7-1}$ $2_{\rm IV}^{7-2}$	64	$G = \pm ABCDEF$				$K = \pm ABCE$				$G = \pm ACD$
	2_{W}^{7-2}	32	$F = \pm ABCD$		210-5 IV	32	$F = \pm ABCD$				$H = \pm BCD$
			$G = \pm ABDE$		1000		$G = \pm ABCE$				$J = \pm ABCE$
	2_{IV}^{7-3}	16	$E = \pm ABC$				$H = \pm ABDE$				$K = \pm AB$
			$F = \pm BCD$				$J = \pm ACDE$				$L = \pm AC$
			$G = \pm ACD$				$K = \pm BCDE$				$M = \pm AD$
	2_{111}^{7-4}	8	$D = \pm AB$		$2_{\rm m}^{10-6}$	16	$E = \pm ABC$				$N = \pm BC$
			$E = \pm AC$				$F = \pm BCD$	14	214-10	16	$E = \pm ABC$
			$F = \pm BC$				$G = \pm ACD$				$F = \pm ABD$
			$G = \pm ABC$				$H = \pm ABD$				$G = \pm ACD$
8	2_V^{3-2}	64	$G = \pm ABCD$				$J = \pm ABCD$				$H = \pm BCD$
			$H = \pm ABEF$				$K = \pm AB$				$J = \pm ABCD$
	210-3	32	$F = \pm ABC$	11	2 ¹¹⁻⁵	64	$G = \pm CDE$				$K = \pm AB$
			$G = \pm ABD$		-11		$H = \pm ABCD$				$L = \pm AC$
			$H = \pm BCDE$				$J = \pm ABF$				$M = \pm AD$
	2^{3-4}_{1V}	16	$E = \pm BCD$				$K = \pm BDEF$				$N = \pm BC$
			$F = \pm ACD$				$L = \pm ADEF$				$O = \pm BD$
			$G = \pm ABC$		211-6	32	$F = \pm ABC$	15	215-11	16	$E = \pm ABC$
			$H = \pm ABD$		-14		$G = \pm BCD$		- 30		$F = \pm ABD$
9	2%-2	128	$H = \pm ACDFG$				$H = \pm CDE$				$G = \pm ACD$
			$J = \pm BCEFG$				$J = \pm ACD$				$H = \pm BCD$
	2_{IV}^{9-3}	64	$G = \pm ABCD$				$K = \pm ADE$				$J = \pm ABCD$
	22515		$H = \pm ACEF$				$L = \pm BDE$				$K = \pm AB$
			$J = \pm CDEF$		2^{11-7}_{III}	16	$E = \pm ABC$				$L = \pm AC$
	2 ⁹⁻⁴	32	$F = \pm BCDE$		- ad		$F = \pm BCD$				$M = \pm AD$
			$G = \pm ACDE$				$G = \pm ACD$				$N = \pm BC$
			$H = \pm ABDE$				$H = \pm ABD$				$O = \pm BD$
			$J = \pm ABCE$				$J = \pm ABCD$				$P = \pm CD$
			12010-000000000				$K = \pm AB$	1			· _ co

Ying Li Lec 10: Fractions of 2^k Factorial Design

e) 4 (1

This design is a one-sixteenth fraction of the 2^7 . 8 runs have 7 degree of freedom to estimate the 7 main effects.

	Basic Design						
Run	A	В	C	D = AB	E = AC	F = BC	G = ABC
1	-		-	+	+	+	
2	+	-	-	-	-	+	+
3	-	+	-		+	-	+
4	+	+	-	+	-	-	-
5	-		+	+	-	-	+
6	+		+	-	+	-	-
7	-	+	+	-	-	+	-
8	+	+	+	+	+	+	+

 $[A] \rightarrow A + BD + CE + FG$ $[B] \rightarrow B + AD + CF + EG$

. . .

Suppose along with the principal fraction a second frational design with the signs reversed in the column for factor D is also run. The column for D in the second fraction is - + + - - + + + - Then

$$[A]' \rightarrow A - BD + CE + FG$$

 $[B]' \rightarrow B - AD + CF + EG$

. . .

マロト マヨト マヨト

From the two linear combination of effects $\frac{1}{2}([i] + [i]')$ and $\frac{1}{2}([i] - [i]')$ we have:

i	From $\frac{1}{2}([i] + [i]')$	From $\frac{1}{2}([i] - [i]')$
A	A + CE + FG	BD
В	B + CF + EG	AD
С	C + AE + BF	DG
D	D	AB + CG + EF
E	E + AC + BG	DF
F	F + BC + AG	DE
G	G + BE + AF	CD

・日・ ・ ヨ・・

Full fold over

	Basic Design						
Run	A	B	С	D = AB	E = AC	F = BC	G = ABC
1			-	+	+	+	-
2	+	-	-	-	-	+	+
3	-	+	-		+	-	+
4	+	+	-	+	-		-
5	-	-	+	+	-	-	+
6	+		+	-	+	-	-
7		+	+	-	-	+	-
8	+	+	+	+	+	+	+

	Basic Design						
Run	A	В	С	D = -AB	E = -AC	F = -BC	G = ABC
1	+	+	+	~			+
2	-	+	+	+	+		
3	+	-	+	+	-	+	-
4	20	-	+	100	+	+	+
5	+	+	-	-	+	+	-
6	-	+	100	+	-	+	+
7	+	1.000		+	+	-	+
8	+= C	-	-	-	-	-	-

(ロ) (四) (注) (注) (注) [

Full fold over

$[A] \rightarrow A + BD + CE + FG$ $[B] \rightarrow B + AD + CF + EG$

. . .

And

$$[A]' \rightarrow A - BD - CE - FG$$
$$[B]' \rightarrow B - AD - CF - EG$$

. . .

・ロン ・回 と ・ ヨン ・ ヨン

æ

By combining this second fraction with the original one, we obtain the following

i	From $\frac{1}{2}([i] + [i]')$	From $\frac{1}{2}([i] - [i]')$
Α	A	BD+CE+FG
В	В	AD+CF+EG
C	С	AE+BF+DG
D	D	AB+CG+EF
Е	E	AC+BG+DF
F	F	BC+AG+DE
G	G	CD+BE+AF

Fold over

Resolution III:

- Full fold over: Provides estimates of all main effects.
- Single-factor fold over: Provides estimates of the selected factors and its two-factor interaction.

(4月) (4日) (4日)

For a 2^{3-1} design with defining relation I = ABC.

Reduced Model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

$$\beta_{1} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{pmatrix}$$
$$\mathbf{X}_{1} = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\mathsf{Full} \; \mathsf{Model}: y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \varepsilon$

$$\beta_{1} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{pmatrix} \beta_{2} = \begin{pmatrix} \beta_{12} \\ \beta_{13} \\ \beta_{23} \end{pmatrix}$$
$$\mathbf{X}_{1} = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \mathbf{X}_{2} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

個 と く ヨ と く ヨ と …

$$E(\hat{\beta}_{1}) = \beta_{1} + (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\mathbf{X}_{2}\beta_{2} = \beta_{1} + \mathbf{A}\beta_{2}$$
$$E\begin{pmatrix}\hat{\beta}_{0}\\\hat{\beta}_{1}\\\hat{\beta}_{2}\\\hat{\beta}_{3}\end{pmatrix} = \begin{pmatrix}\beta_{0}\\\beta_{1}+\beta_{23}\\\beta_{2}+\beta_{13}\\\beta_{3}+\beta_{12}\end{pmatrix}$$

Ying Li Lec 10: Fractions of 2^k Factorial Design

◆□ → ◆□ → ◆ ≧ → ◆ ≧ → ○ ◆ ○ ◆ ○ ◆