Lec 1: An Introduction to ANOVA

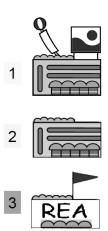
Ying Li Stockholm University

October 31, 2011

Ying Li Stockholm University Lec 1: An Introduction to ANOVA

∢ ≣ ≯

- Three end-aisle displays
- Which is the best?



< 🗗 🕨

- Identify the stores of the similar size and type.
- The displays are randomly assigned to use.

- Identify the stores of the similar size and type.
- The displays are randomly assigned to use.

First Principle

RANDOMIZATION

Ying Li Stockholm University Lec 1: An Introduction to ANOVA

A ₽

Observations

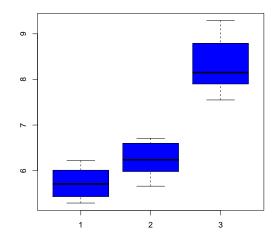
TABLE 3.12

The End-Aisle Display Experimental Design

Display Design		Sample Observat	tions, Percent Inc	rease in Sales	
1	5.43	5.71	6.22	6.01	5.29
2	6.24	6.71	5.98	5.66	6.60
3	8.79	9.20	7.90	8.15	7.55

- 3 levels
- 5 replicates

イロン 不同と 不同と 不同と



Ying Li Stockholm University Lec 1: An Introduction to ANOVA

(ロ) (四) (E) (E) (E)

The Analysis of Variance

	T/	٩B	LE	3.3	2
The second	and a	.11	Data	fam.	Cingle Reat

Typical Data for a Single-Factor Experiment

Treatment (Level)		Observations			Totals	Averages
1	y11	y12		y _{1n}	y ₁ ,	\overline{y}_{1} .
2	y21	y ₂₂		y_{2n}	<i>y</i> ₂ .	\overline{y}_2 .
:	:	:	:::	:	:	:
а	y_{a1}	y_{a2}		Yan	$\frac{y_a}{y_a}$	$\frac{\overline{y}_{a.}}{\overline{y}_{a.}}$

- a level of the factors (a treatments)
- *n* replicates
- $N = a \times n$ runs
- Completely randomized design

(4回) (1日) (日)

Statistical Model

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

 $i = 1, \cdots a$
 $j = 1, \cdots n$

- μ : overall mean
- τ_i : the effect of *i*th treatment
- $\varepsilon_{ij} \sim N(0, \sigma^2), i.i.d.$

•
$$\sum_{i}^{a} \tau_{i} = 0$$

個 と く ヨ と く ヨ と …

We are interested in testing the equality of treatment means

$$E(\bar{y}_{i.}) = \mu + \tau_i = \mu_i$$

 $i = 1, \cdots a$ The appropriate hypothesis are

$$H_0: \mu_1 = \mu_2 = \dots = \mu_a$$

 $H_1: \mu_i \neq \mu_j$

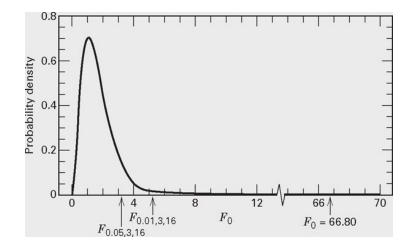
for at least one pair (i, j)

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
	SS _{Treatments}			designed of
Between treatments	$= n \sum_{i=1}^{a} (\overline{y}_{i.} - \overline{y}_{})^2$	a-1	MS _{Treatments}	$F_0 = \frac{MS_{\text{Treatments}}}{MS_E}$
Error (within treatments)	$SS_E = SS_T - SS_{\text{Treatments}}$	N-a	MS_E	Ľ
Total	$SS_{\mathrm{T}} = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{})^2$	N-1		

TABLE 3.3 The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

- If H_0 is true, the distribution of F_0 is $F_{a-1,a(n-1)}$
- Reject H_0 if $F_0 > F_{\alpha,a-1,a(n-1)}$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ



< 🗗 >

12

く注→

Balanced Data:

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}^2 - \frac{y_{..}^2}{N}$$

$$SS_{Treatment} = \frac{1}{n} \sum_{i=1}^{a} y_{i.}^2 - \frac{y_{..}^2}{N}$$

$$SS_E = SS_T - SS_{Treatment}$$

Unbalanced Data

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{n_i} y_{ij}^2 - \frac{y_{..}^2}{N}$$

$$SS_{Treatment} = \sum_{i=1}^{a} \frac{y_{i.}^2}{n_i} - \frac{y_{..}^2}{N}$$

 $SS_E = SS_T - SS_{Treatment}$

(1日) (日) (日)

3

Example

TABLE 3.12 The End-Aisle Display Experimental Design

Display Design		Sample Observat	ions, Percent Inc	rease in Sales	
1	5.43	5.71	6.22	6.01	5.29
2	6.24	6.71	5.98	5.66	6.60
3	8.79	9.20	7.90	8.15	7.55

$$ar{y}_{1.} = 5.73, ar{y}_{2.} = 6.24, \ ar{y}_{3.} = 8.32, ar{y}_{..} = 6.76$$

 $SS_T = 21.93$
 $SS_{Treatment} = 18.78$
 $SS_E = SS_T - SS_{Treatment} = 3.15$

・ロン ・回 と ・ ヨン ・ ヨン

	DF	SS	MS	F	Р
Treatment	2	18.78	9.39	35.77	< 0.001
Error	12	3.15	0.26		
Total	14	21.93			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

	DF	SS	MS	F	Р
Treatment	2	18.78	9.39	35.77	< 0.001
Error	12	3.15	0.26		
Total	14	21.93			

Which ones cause the differ?

or,

We know the end-aisle display different than others. We might suspect the first and the second are different. Thus one reasonable test hypothesis would be

> $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$ $H_0: \mu_1 - \mu_2 = 0$

$$H_1:\mu_1-\mu_2\neq 0$$

Image: A image: A

Contrasts

In general, a contrast is a linear combination of the parameters of the form a

$$\Gamma = \sum_{i=1}^{d} c_i \mu_i$$

where c_i are the contrast constants, and $\sum_{i=1}^{a} c_i = 0$. For unbalance design $\sum_{i=1}^{a} c_i n_i = 0$.

周▶ ▲ 臣▶

The hypothesis can be expressed in the terms of contrasts

$$H_0:\sum_{i=1}^a c_i\mu_i=0$$

$$H_1:\sum_{i=1}^{a}c_i\mu_i\neq 0$$

In our example, $c_1 = 1, c_2 = -1, c_3 = 0$.

(《圖》 《문》 《문》 - 문

Contrast Tests

Testing hypothesis involving contrast can be done in two basic ways

t-test:

$$t_0 = \frac{\sum_{i=1}^{a} c_i \bar{y}_{i.}}{\sqrt{\frac{MS_E}{n} \sum_{i=1}^{a} c_i^2}}$$

Ø F-test:

$$F_0 = \frac{MS_c}{MS_E} = \frac{SS_c/1}{MS_E}$$

where

$$SS_c = rac{(\sum_{i=1}^{a} c_i \bar{y}_{i.})^2}{rac{1}{n} \sum_{i=1}^{a} c_i^2}$$

・日・ ・ ヨ・ ・ ヨ・

Orthogonal Contrasts

Two contrasts $\sum_{i=1}^{a} = c_i \mu_i = 0$ and $\sum_{i=1}^{a} = d_i \mu_i = 0$ are orthogonal if

$$\sum_{i=1}^{a} c_i d_i = 0$$

or in unbalanced case if

$$\sum_{i=1}^{a} n_i c_i d_i = 0$$

We can specify a - 1 orthogonal contrasts. Tests performed on orthogonal contrasts are independent.

伺 と く き と く き と

Example

Treatment	Coefficients for Orthogonal Contrasts			
1 (control)	-2	0		
2 (level 1)	1	-1		
3 (level 2)	1	1		

ヘロン 人間 とくほど 人間と

Pairwise Comparison

The null hypothesis are

$$H_0: \mu_i = \mu_j, i \neq j$$

< 17 b

< ≣⇒

Pairwise Comparison

The null hypothesis are

$$H_0: \mu_i = \mu_j, i \neq j$$

Tukey's test

Make use of the distribution of studentized range statistics

$$q=rac{ar{y}_{max}-ar{y}_{min}}{\sqrt{rac{MS_E}{2}ig(rac{1}{n_i}+rac{1}{n_j}ig)}}$$

Appendix Table 7 contains upper percentiles for q. The difference d between two averages is significant if

$$|d| > \frac{q_{\alpha}(a,f)}{\sqrt{2}} \sqrt{MS_E(\frac{1}{n_i} + \frac{1}{n_j})}$$

Ying Li Stockholm University Lec 1: An

Lec 1: An Introduction to ANOVA

The fisher least significant difference method (LSD)

The fisher least significant difference method procedure use T test for testing

$$H_0: \mu_i = \mu_j, i \neq j$$

The test statistics is:

$$t_0 = \frac{\bar{y}_{i.} - \bar{y}_{j.}}{\sqrt{MS_E(\frac{1}{n_i} + \frac{1}{n_j})}}$$

The quantity: least significant difference (LSD)

$$LSD = t_{\alpha/2, N-a} \sqrt{MS_E(\frac{1}{n_i} + \frac{1}{n_j})}$$

lf

$$|\bar{y}_{i.}-\bar{y}_{j.}|>LSD$$

we conclude that the population means μ_i and μ_j differ.

Questions:1

Why in some situation overall F test of ANOVA is significant, but the pairwise comparison fails to reveal the differences?

→ ∃ >

Many tests available:

Duncan, Student-Newman-Keuls, REGWQ, Bonferroni, Sidak, Scheff, \cdot

Which pairwise comparison method do I use?

- ∢ ≣ ▶

Many tests available:

Duncan, Student-Newman-Keuls, REGWQ, Bonferroni, Sidak, Scheff, \cdot

Which pairwise comparison method do I use?

- unfortunately, no-clear cut answer.
- Fisher's LSD procedure, only apply if F test is significant
- Tukey's method control overall error rate, many statisticians prefer.

Often one of the treatments is a control treatment, and we want to compare the other treatments with the control treatment. We want to test a - 1 hypotheses:

$$H_0: \mu_j = \mu_1$$

where

$$i=2,\cdots,a$$

For the ith treatment, H_0 is rejected if

$$|\bar{y}_i - \bar{y}_1| > d_{\alpha}(a - 1, f) \sqrt{MS_E(\frac{1}{n_i} + \frac{1}{n_j})}$$

Appendix 8 gives upper percentiles for $d_{\alpha}(a-1, f)$

・日本 ・ モン・ ・ モン

One Example

■ TABLE 3.1 Etch Rate Data (in Å/min) from the Plasma Etching Experiment

Power (W)		Observations					
	1	2	3	4	5	Totals	Averages
160	575	542	530	539	570	2756	551.2
180	565	593	590	579	610	2937	587.4
200	600	651	610	637	629	3127	625.4
220	725	700	715	685	710	3535	707.0

One Example

TABLE 3.4 ANOVA for the Plasma Etching Experiment								
Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	<i>P</i> -Value			
RF Power	66,870.55	3	22,290.18	$F_0 = 66.80$	< 0.01			
Error	5339.20	16	333.70					
Total	72,209.75	19						

・ロン ・回 と ・ ヨン ・ ヨン

One Example

TABLE 3.11

Analysis of Variance for the Plasma Etching Experiment

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-Value
Power setting Orthogonal contrasts	66,870.55	3	22,290.18	66.80	< 0.001
$C_1: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2$	(3276.10)	1	3276.10	9.82	< 0.01
$C_2: \mu_1 + \mu_3 = \mu_3 + \mu_4$	(46,948.05)	1	46,948.05	140.69	< 0.001
C_3 : $\mu_3 = \mu_4$	(16,646.40)	1	16,646.40	49.88	< 0.001
Error	5,339.20	16	333.70		
Total	72,209.75	19			

▲□→ ▲圖→ ▲厘→ ▲厘→