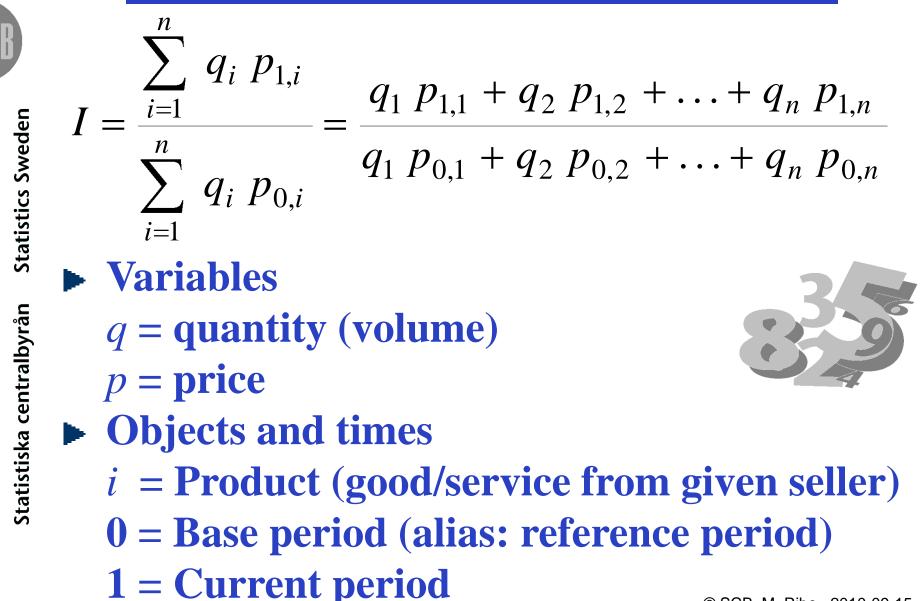


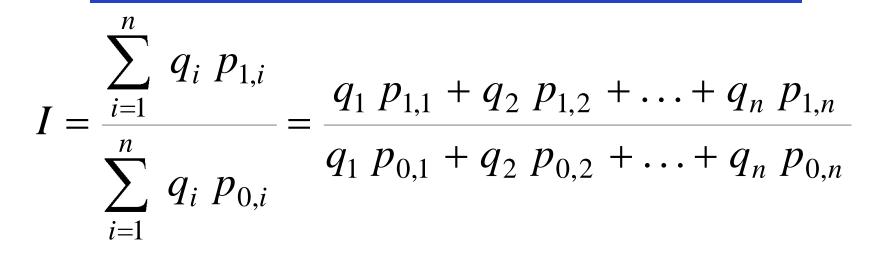
PRICE INDEX THEORY


Course lectures within Economic Statistics at Stockholm University [Partial set of slides]

Martin Ribe, Statistics Sweden

Autumn 2010

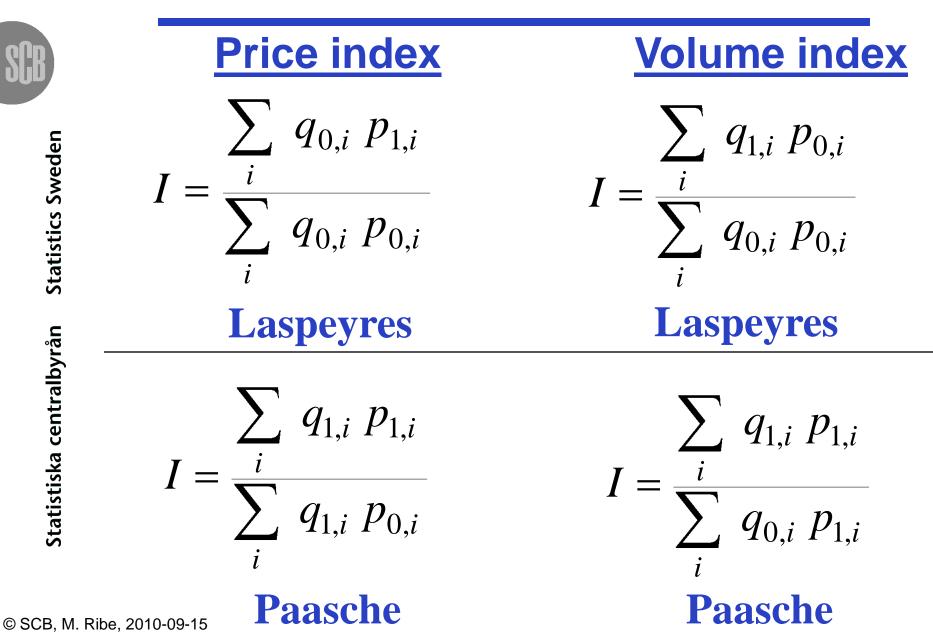
Fixed basket price index 1



© SCB, M. Ribe, 2010-09-15

Fixed basket price index 2

Statistics Sweden Statistiska centralbyrån



Exempel

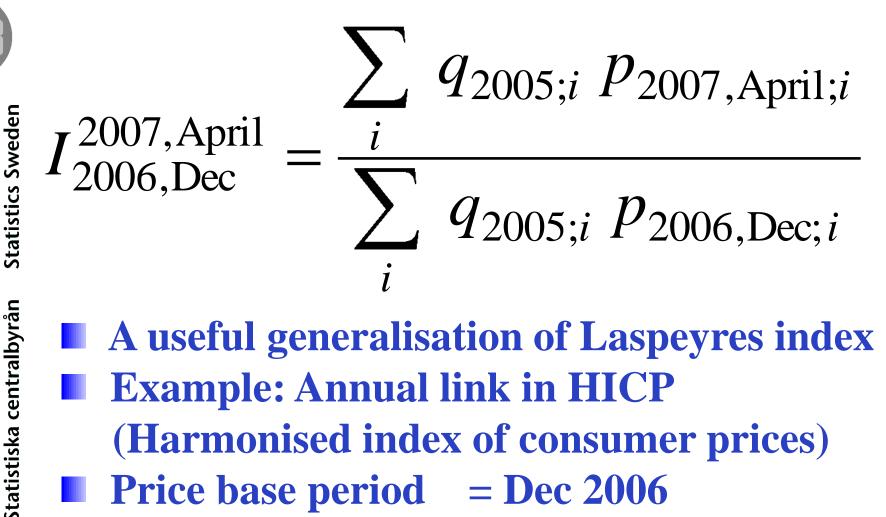
$$I = \frac{50 \times 98 + 100 \times 49 + 20 \times 195}{50 \times 88 + 100 \times 48 + 20 \times 195} \times 100 = 104.6$$

© SCB, M. Ribe, 2010-09-15

Price and volume indices

Factors of a value index

$$\frac{\sum_{i} q_{1,i} p_{0,i}}{\sum_{i} q_{0,i} p_{0,i}} \cdot \frac{\sum_{i} q_{1,i} p_{1,i}}{\sum_{i} q_{1,i} p_{0,i}} = \frac{\sum_{i} q_{1,i} p_{1,i}}{\sum_{i} q_{0,i} p_{0,i}} = \frac{\text{Total value (1)}}{\text{Total value (0)}}$$
Volume index × Price index = Value index
Laspeyres Paasche
$$\frac{\sum_{i} q_{1,i} p_{1,i}}{\sum_{i} q_{0,i} p_{1,i}} \cdot \frac{\sum_{i} q_{0,i} p_{1,i}}{\sum_{i} q_{0,i} p_{0,i}} = \frac{\sum_{i} q_{1,i} p_{1,i}}{\sum_{i} q_{0,i} p_{0,i}} = \frac{\text{Total value (1)}}{\text{Total value (1)}}$$
Paasche Laspeyres


© SCB, M. Ribe, 2010-09-15

Practical uses

Deflating is to compute Value index Volume index Price index *Eliminates price change* Implicit price index is computed as Value index Price index Volume index

'Laspeyres type' (Lowe-index)

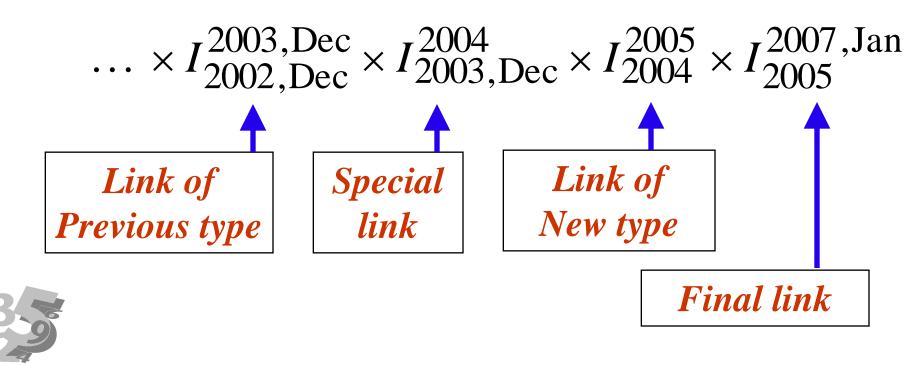
A useful generalisation of Laspeyres index **Example: Annual link in HICP** (Harmonised index of consumer prices) **Price base period** = **Dec 2006** Weight base period = entire year 2005

Laspeyres in another form

$$I = \frac{\sum_{i}^{i} q_{0,i} p_{1,i}}{\sum_{i}^{i} q_{0,i} p_{0,i}} = \sum_{i}^{i} \frac{q_{0,i} p_{0,i}}{\sum_{k}^{i} q_{0,k} p_{0,k}} \cdot \frac{p_{1,i}}{p_{0,i}} = \sum_{i}^{i} w_{i} \cdot \frac{p_{1,i}}{p_{0,i}}$$

with weights
$$w_i = \frac{q_{0,i} p_{0,i}}{\sum_k q_{0,k} p_{0,k}}$$
, satisfying $\sum_i w_i = 1$

© SCB, M. Ribe, 2010-09-15


Statistics Sweden Statistiska centralbyrån Laspeyres > Paasches price index
True almost always
- due to altered consumption pattern

Fixed basket gets out of date – at new prices, new choices give better value for money

 Products with larger price rises are "substituted away" by buyers
 Ex.: Petrol price up -> car use down

Chaining in Swedish CPI

$I_{1980}^{2007,\text{Jan}} = I_{1980}^{1980,\text{Dec}} \times I_{1980,\text{Dec}}^{1981,\text{Dec}} \times I_{1981,\text{Dec}}^{1982,\text{Dec}} \times \dots$

© SCB, M. Ribe, 2010-09-15

Price indices (in Sweden) 1

CPI – Consumer Price Index KPI – Konsumentprisindex

- HICP Harmonised Index for
 HIKP Consumer Prices
- ► NPI Net Price Index
- KPIX Underlying Inflation (Core Inflation)

Price indices (in Sweden) 2

Statistics Sweden

Statistiska centralbyrån

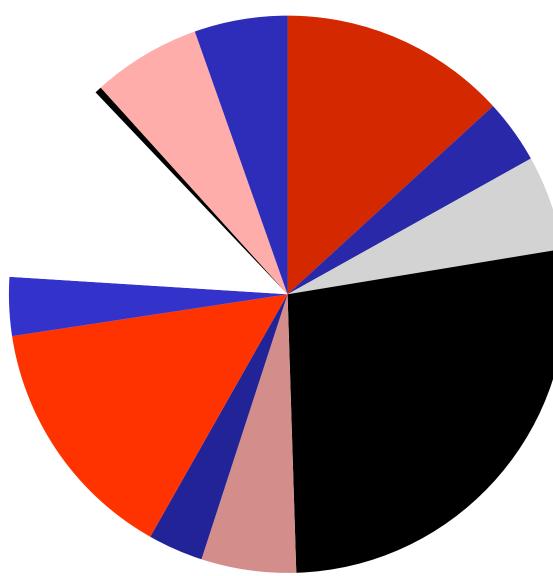
- PPI Producer Price Index (goods)
 SPDI Droducer Price Index for Service
- SPPI Producer Price Index for Services
 - **TPI Tjänsteprisindex**
- ► BPI Building Price Index
- Real Estate Price Index
- CCI Construction Cost Index for
 E84 Buildings (building materials, labour)

International classification standards for breakdown

- COICOP Classification of Individual Consumption by Purpose – in CPI
- NACE Industry classification standard / Nomenclature statistique des Activités économiques dans la Communauté Européenne – in PPI, SPPI

Classification levels in CPI

- > 00 CPI overall (all items index)
- > 01 Food and non-alcoholic beverages
- > 01.1 Food
- > 01.1.8 Sugar, jam, chocolate etc.
- > 1819 Ice cream


> 1819-80 Ice cream brand X, type Y

Swedish CPI basket in 2010

Statistics Sweden

Statistiska centralbyrån

Food etc.

- Alkohol, tobacco
- Clothing etc.
- Housing
- Furnishings
- Health
- Transport
- Communication

Recreation, culture

- Education
- Restaurants, hotels

Misc.

Producer and Import Price Indices (PPI)

- PPI Producer Price Index
- ITPI Price Index for Domestic Supply
- **EXPI** Export Price Index
- IMPI Import Price Index
- HMPI Producer Price Index of Home Sales

PPI		
ITPI		
EXPI		
IMPI		
HMPI		

Actual prices: CPI

CPI follows:

- Price on price tag (shown to consumer)
- > After any sales deduction
- > After deduction of general discounts
- But before deduction of individual discounts, loyalty rebates etc.
 Not quite ideal, e.g. for cars

> Inluding VAT and other indirect taxes

> After deduction of subventions

PPI, SPPI follow:

- Invoiced price transaction (ideally)
- > After deduction of any discounts
- **Excluding taxes, VAT**
- List price rather not, maybe as "proxy"
- Ex. chargeout rate (charged hour rate) for consultant services in SPPI – not ideal but practically feasible solution

Indices – aims – targets

- CPI Main aim is compensation
 Target is coli
 - HICP Main aim is monetary politics Aim is Laspeyres type (?)
- TPI Main aim is deflating
 Ideal target is Paasche
 Show Deflating with Paasche price
 index yields volyme index
 series i base period prices
 But take Laspeyres i practice

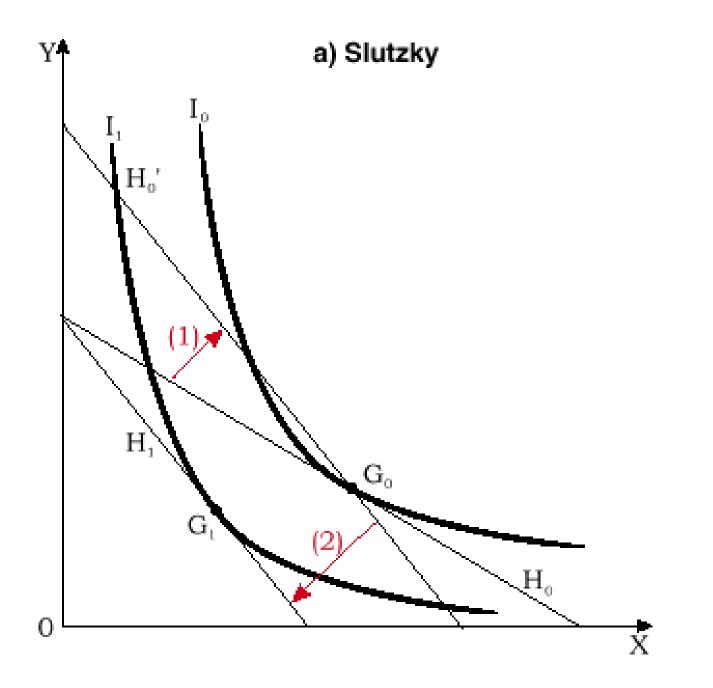
Cost Of Living Index (COLI)

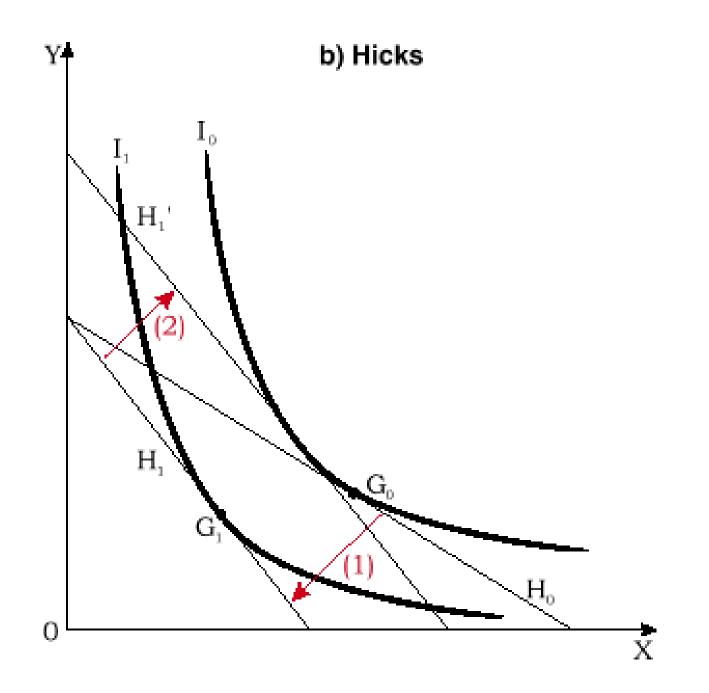
- Pertains to unchanged standard of living
- *Ideal solution:* Konüs index compares two baskets
- Both baskets yield the same utility at minimal cost
 Substitutions alter the basket
- Praktical solution:
 A fixed basket of a "compromise" kind
 § Yields index that approximates coli!

Target and accuracy of CPI

Target of CPI is coli

Practical computation is based on a suitable fixed basket

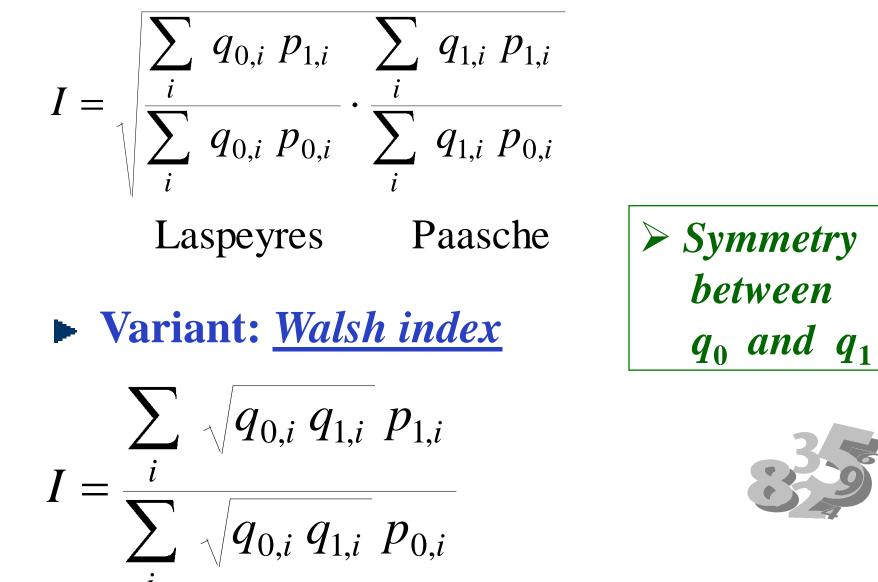

• Statistical accuracy: How closely the computation hits the target



Theory of COLI

- Simplified assumption: 1 consumer
- In each period the consumer maximises her/his utility within a budget constraint
 Theoretical utility function U(q₁,..., q_G) = max!
- Index should reflect the development of cost for retaining a constant utility in the most cost-efficient way

Superlative indices


- Superlative index is exact for a "flexible" class of utility functions (Erwin Diewert's teori)
- **Examples:**

Fisher, Walsh, Törnqvist indices

"Fisher's ideal index"

Walsh link over full year

$$I_{2004}^{2005} = \frac{\sum_{i} P_i^{2005} \times \sqrt{Q_i^{2004} \times Q_i^{2005}}}{\sum_{i} P_i^{2004} \times \sqrt{Q_i^{2004} \times Q_i^{2005}}} = \sum_{g} W_g \times I_{2004;g}^{2005}$$

where
$$W_g = \frac{\sqrt{U_g^{2004} \times U_g^{2005} / I_{2004;g}^{2005}}}{\sum_{g'} \sqrt{U_{g'}^{2004} \times U_{g'}^{2005} / I_{2004;g'}^{2005}}}$$

Final Laspeyres link

$$I_{2005}^{2007, \text{ Jan}} = \frac{\sum_{i}^{i} P_{i}^{2007, \text{ Jan}} \times Q_{i}^{2005}}{\sum_{i}^{i} P_{i}^{2005} \times Q_{i}^{2005}} = \sum_{g}^{i} W'_{g} \times I_{2005;g}^{2007, \text{ Jan}}$$

During 2007 weighting with expenditures of 2005. More time for weight preparation \Rightarrow Improved accuracy, smoother process

Alternative annual links 1

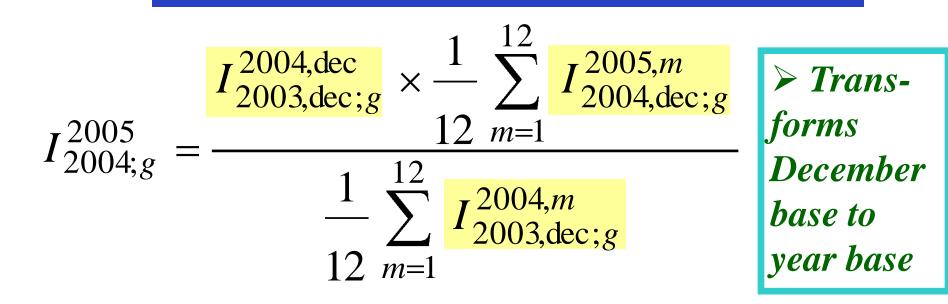
Year			ltix	Walsh
	Lasperes	Paasche	dec	approx.
1993	104,483	104,141	103,911	104,312
1994	102,177	102,006	102,291	102,088
1995	102,470	102,194	102,168	102,329
1996	100,945	100,579	99,823	100,757
1997	100,673	100,333	101,269	100,505
1998	100,129	99,844	99,555	99,989
1999	100,480	100,286	100,785	100,329
2000	100,942	100,731	101,152	100,848
2001	102,524	102,479	102,658	102,505
2002	102,245	101,987	102,168	102,124
Mean	101,707	101,458	101,578	101,579

Alternative annual links 2

	Walsh	Walsh	Edge-	Törn-
Year	approx.	alt.	worth	qvist
1993	104,312	104,312	104,316	104,313
1994	102,088	102,089	102,093	102,088
1995	102,329	102,329	102,334	102,330
1996	100,757	100,755	100,764	100,754
1997	100,505	100,505	100,503	100,505
1998	99,989	99,988	99,988	99,989
1999	100,329	100,328	100,383	100,392
2000	100,848	100,847	100,837	100,843
2001	102,505	102,504	102,502	102,501
2002	102,124	102,123	102,118	102,127
Mean	101,579	101,578	101,584	101,584

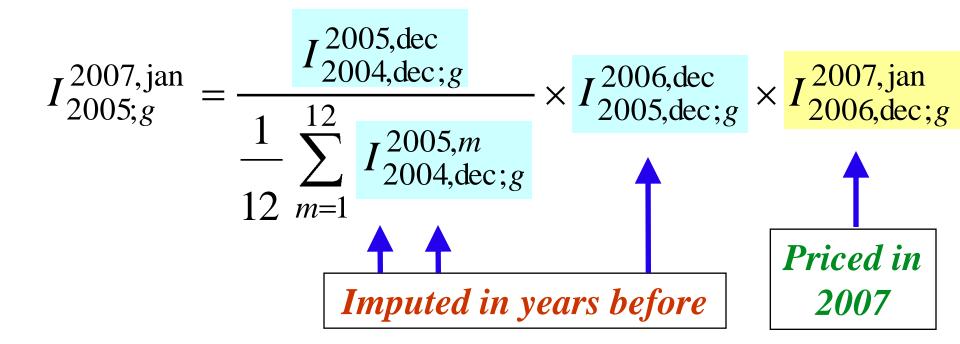
Levels of aggregation in the Swedish CPI

Statistics Sweden Full-year base, Walsh index tatistiska centralbyrån December base, Jevons index **Overall index**


Coicop classes

350 Product groups

Elementary aggregates


Sub-indices by product group

$$I_{2005;g}^{2007,jan} = \frac{I_{2004,dec;g}^{2005,dec}}{\frac{1}{2004,dec;g}} \times I_{2005,dec;g}^{2006,dec} \times I_{2006,dec;g}^{2007,jan} \times I_{2006,dec;g}^{2006,dec;g}$$

New products come in soon

Treatment of group g that is new in2007:

© SCB, M. Ribe, 2010-09-15

Index construction change for Swedish CPI from 2005

Previous construction – before 2005: • Lower level: 'RA-formula' O <u>Upper level</u>: 'Updated basket' +Laspeyres type • Annual chaining: By December

New construction – from 2005: • Lower level: Geometric mean O <u>Upper level</u>: Walsh + Laspeyres • Annual chaining: By full year

Elementary aggregates 0

- Weithting data are available on higher levels of aggregation
- Overall index is practically computed by weighting together of subindices
- Elementary aggregates are on lowest level of aggregation – weights usally not available
 - Solution Index formulas "without q" needed

