

PRICE INDEX THEORY

Course lectures at Stockholm University

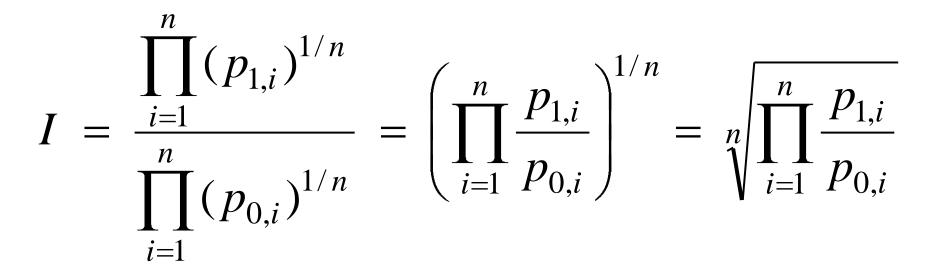
Part 2

Martin Ribe, Statistics Sweden

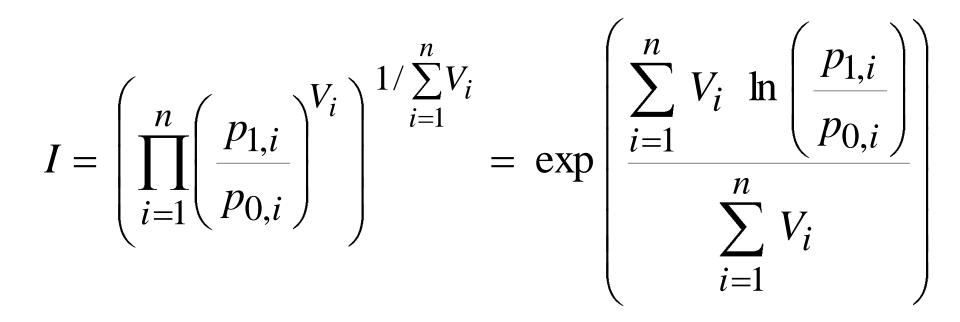
Autumn 2012

- Weithting data are available on higher levels of aggregation
- Overall index is practically computed by weighting together of subindices
- Elementary aggregates are on lowest
 level of aggregation weights usally not
 available

Solution Index formulas "without q" needed



 $\frac{\frac{1}{n}\sum_{i=1}^{n}p_{1,i}}{n} = \frac{\sum_{i=1}^{n}p_{1,i}}{n}$ $\frac{1}{n} \sum_{i=1}^{n} p_{0,i} \qquad \sum_{i=1}^{n} p_{0,i}$


Ratio of mean prices [Dutot]

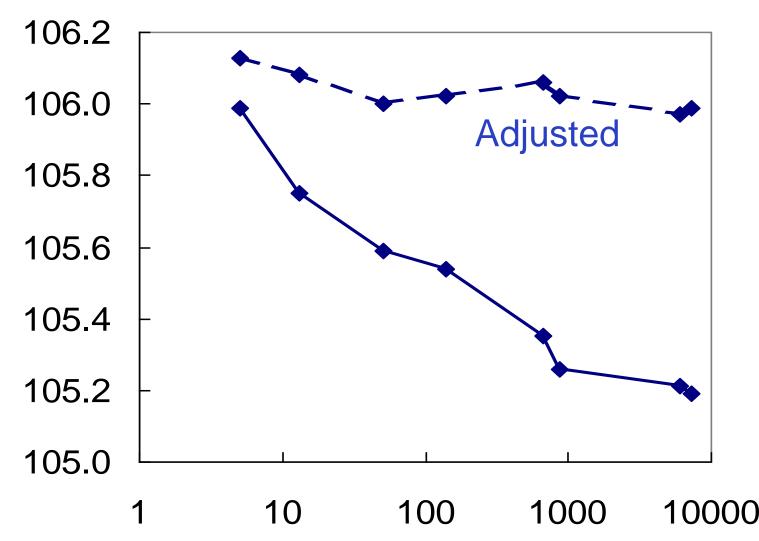
 $I = \frac{1}{n} \sum_{i=1}^{n} \frac{p_{1,i}}{p_{0,i}}$

Mean of price relatives [Carli] **Beware – bias!**

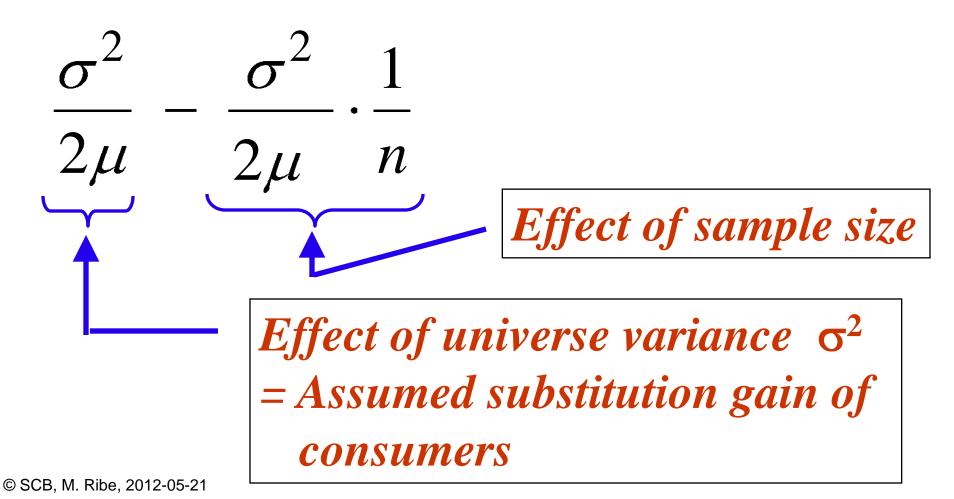
Geometric mean [Jevons]
 Handles disparate price levels adequately
 Partially accounts for substitution

Weighted geometric mean Weighted by value (turnover) V_i

Features of the Jevons index



- ③ Not disturbed by spread in price level
- Accounts for consumer substitution to some extent – suitable for Cost-Of-Living Index (coli)
- Index sensitive to EA level choice
- Breaks down for zero prices
 Special fix required



Index by EA size Coicop 01 – December 2001

Theoretical effects (by Dalén)

Math. expectation of Jevons index falls below true mean μ by the amount:

Sources of errors in CPI

- > Sampling error in weights
- Uncertainty in Quality Adjustment (QA)
- > Measurement error in price observations
- Some undercoverage
- > Proxies for hard-to-measure prices
- Errors by mistakes

Urgent matter to avoid these!

Statistics Sweden

Statistiska centralbyrån

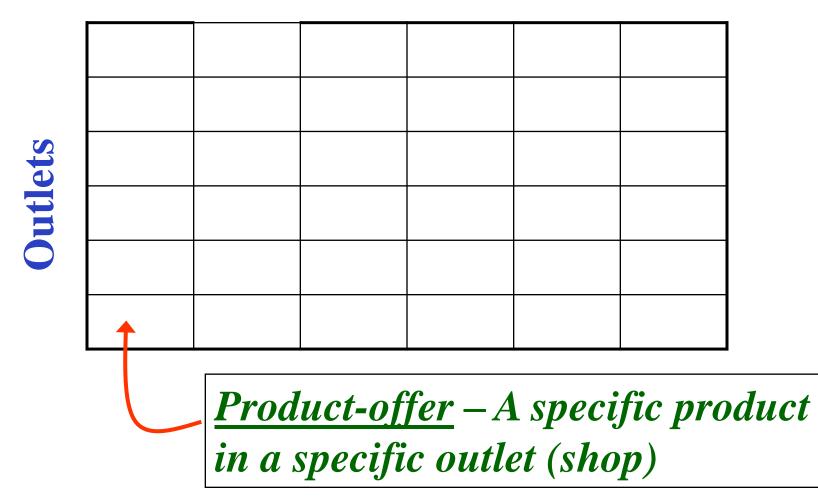
Quality Assurance of work

SCB

Statistics Sweden

Statistiska centralbyrån

- Management commitment to quality
- > Staff competence
- > Knowledge of markets
- > Documentation of procedures
- > Work instructions
- Safe procedures
- Price data validation and editing
- > Output validation
- > Debriefing


Sampling error

Standard _error(I)
$$\approx \frac{\sigma\left(\frac{p_{1,i}}{p_{0,i}}\right)}{\sqrt{n}}$$
 [×(deft)]

$$\approx \frac{\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{p_{1,i}}{p_{0,i}} - \frac{1}{N} \sum_{i=1}^{N} \frac{p_{1,i}}{p_{0,i}} \right)^{2}}}{\sqrt{n}} \times (\text{deft})$$

Two sampling dimensions

Products/Services/Categories

Statistics Sweden Statistiska centralbyrån

Sampling principles

Sampling of outlets (shops etc.):

- Sampling with pps from business register (used in Swedish practice)
- Cluster sampling of regions

Sampling of products:

- Sampling with pps from product register (if available)
- Judgmental sampling of product specifications

> Judgmental sampling of models in shops

Aggregation examples (SPPI)

Architects:

Prices for 3 categories (differ between firms) 2 steps: 1) Mean price for firm 2) Index = ratio of mean prices

Technical consultants:

Prices for 5 work areas – weights available
 2 steps: 1) Sub-index for work area
 = ratio of mean prices
 2) Index = weithting of sub-indices

Survey design weights

$$I = \frac{\sum_{i} q_{0,i} p_{1,i}}{\sum_{i} q_{0,i} p_{0,i}} = \sum_{i} w_i \cdot \frac{p_{1,i}}{p_{0,i}}$$

• Estimation with design weights: $I = \sum_{i} \frac{w_i}{\pi_i} \cdot \frac{p_{1,i}}{p_{0,i}}$

where π_i = sampling probabilit y \Rightarrow *For pps sampling:*

$$\pi_i = n w_i$$

More problems of baskets

Problem:

- Product models vanish, new ones appear
 <u>Remedies:</u>
- Annual re-sampling of products for price observation
- *Replacement* of products in sample

Quality Adjustment at replacement
Various methods

Replacement is restricted by product specifications

Statistics Sweden

Statistiska centralbyrån

1) Tight product specifications Ex. "Biscuits brand X, 300 g" + Strong theory, simple practice - May miss price changes 2) Loose product specifications Ex. "Rye loaf 300-750 g, in slices" + Adapts to real world – Weak theory, hard practice

Consumption segment by purpose [HICP concept]

- is a set of transactions relating to product-offers which
- ► are for use in similar situations
- have largely a common specification
- may be considered by consumers as equivalent

Section Segment Shall be chosen within consumption segment (HICP rule)

Statistics Sweden

Statistiska centralbyrån

Radically new products

How soon are they to be included in the index?

Main alternatives:

As soon as the product first appears
 ⇒ Initial price drop will be shown

Later, as soon as the product is well established in the market

Solution May be more relevant, as consumer use has then stabilised more

A basic dilemma

- Index has to follow basket sample
 Representative sample Laspeyres principle: Basket is fixed
- But also, index should reflect the current market

A firm in SPPI sample joins another by merger

<u>Solution</u> <u>– guided by Laspeyres principle</u>

- > Continue with prices from the new firm
- If both firms were in the sample, take the new firm's prices for both

Re-sampling frequency

Statistics Sweden Statistiska centralbyrån

- Pros of frequent re-sampling
 Sample reflects current market
 Adaptive to dynamic markets
 Statistically scientifically correct
- Pros of infrequent re-sampling
 Respondents get experience: easier for them + better response quality
 (Controversial linking avoided)

Statistics Sweden

Statistiska centralbyrån

Cost Of Living Index (COLI)

- Pertains to unchanged standard of living
- *Ideal solution:* Konüs index compares two baskets
- Both baskets yield the same utility at minimal cost
 Substitutions alter the basket
 - Substitutions alter the basket
- Practical solution:
 A fixed basket of a "compromise" kind
 § Yields index that approximates coli!

Target and accuracy of CPI

Target of CPI is coli

Practical computation is based on a suitable fixed basket

• Statistical accuracy: How closely the computation hits the target

