Statistics Sweden Statistiska centralbyrån

PRICE INDEX THEORY

Course lectures at Stockholm University

Part 5

Martin Ribe, Statistics Sweden

Autumn 2012

<u>t = 1</u>			t = 2			Price
Price	Size	Trait_A	Price	Size	Trait_A	relative
390	23	0	29	0 23	0	74,36
480	39	0	51	9 39	0	108,13
700	51	1	70	0 51	1	100,00
550	39	0	55	0 39	0	100,00
520	35	1	52	0 35	1	100,00
490	43	0	69	<u>8 53</u>	1	142,45

A replacement

► Regression equation (fitted for t = 1)

$$\ln Price = 5.604 + \\ + 0.0155 \times \text{Size} + 0.1331 \times \text{Trait_A} + \varepsilon$$

▶ Hedonic function

$$Price = h \text{ (Size, Trait_A)} + r$$

$$= e^{5.604 + 0.0155 \times \text{Size} + 0.1331 \times \text{Trait_A}} + r$$

▶ Quality change factor for replacement:

$$= e^{0.0155 \times (53-43) + 0.1331 \times (1-0)} = 1.3339$$

► Index computation with hedonic quality adjustment:

$$g = e^{0.0155 \times (53-43) + 0.1331 \times (1-0)} = 1.3339$$

$$I =$$

$$\left(\frac{290}{390} \times \frac{519}{480} \times \frac{700}{700} \times \frac{550}{550} \times \frac{520}{520} \times \frac{698}{490 \times 1.3339}\right)^{1/6} \times 100$$

$$= 97.49$$

Topics for consideration in applying hedonic methods

- ► Topic 1: Data needed
- Topic 2: Data editing/preparation
- **▶** Topic 3: Creating hedonic function
- **►** Topic 4: Index calculation
- ➤ Topic 5: Refreshing hedonic function

Reference:

Handbook on the application of quality adjustment methods in the Harmonised Index of Consumer Prices, Destatis, 2009

https://www.destatis.de/DE/Publikationen/StatistikWissenschaft/Band13_Handbook1030813099004.pdf?__blob=publicationFile

Hedonic equation ("model")

► Example – "semi-logarithmic" form:

$$\ln P = b_0 + b_1 z_1 + b_2 z_2 + ... + b_k z_k + \varepsilon$$

- ► Alternative "double-logarithmic" form uses logs also for regressors
- ► The regressor variables z are selected product characteristics reflecting quality perceived by consumers, but not fasion or production cost as such

Hedonic Regression # obs. (n), # regressors (p)

Heuristics

$$\operatorname{var} \hat{y}_i = \sigma^2 h_i$$

where
$$h_i = x_i^T (X^T X)^{-1} x_i$$

Fact:
$$\frac{1}{n} \sum_{i=1}^{n} h_i = p/n$$

Demand ≥20 obs. / regressor (or so, effectively)

Variants of hedonics

- **▶** Price imputation method
- ► Hedonic re-pricing method
 - Main method in official indices; works as in the preceding example

A further use of hedonics

- ► Hedonic re-pricing method is applicable also when replacements are not one-to-one
 - Then all prices are modified to the same standard characteristics values
 - They are thus multiplied by a quality adjustment factor

$$g = \frac{h(\text{Standard set of characteristics})}{h(\text{Characteristics of actual model})}$$

SCB

Insurance: Adjustment for excess

► Actuarial risk premium at excess b is

$$r(0) \int_{b}^{\infty} (x-b) dF(x)$$

Rate of damages > 0

Damage distribution

If the excess is raised from b to c then the risk premium falls by

$$r(b')(c-b), \qquad b \leq b' \leq c$$

Insurance: Gross vs net principle 1

- Gross premium
- + Premium supplements (yield on reserves)
- Claims
- Changes in actuarial provisions
- = Service charge (Net premium)

Insurance: Gross vs net principle 2

Adequate for compensation index

▶ Service charge (Net premium)

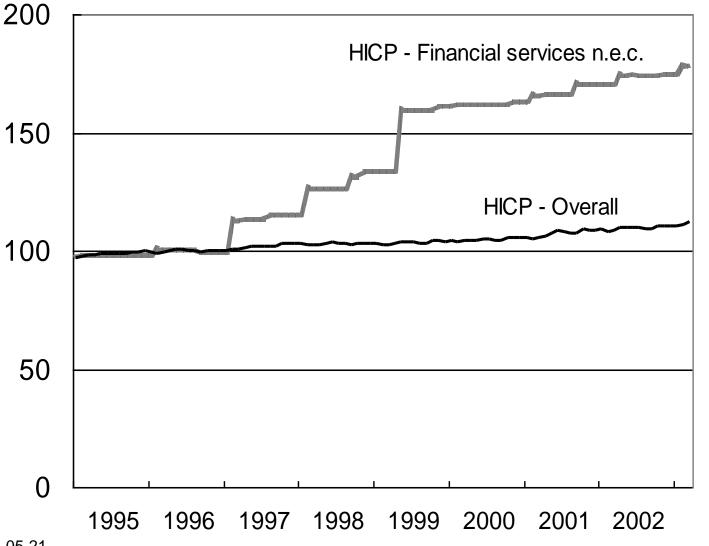
Prescribed for NA & HICP

Can be used only for weights

Then acceptable proxy also for compensation index

Banking services: Delineation of coverage

Exclusion of FISIM (Financial Intermediation Services Indirectly Measured)


Only part of price is seen

♥ Could give artificial index changes

Currency exchange is implicitly charged
 Is FISIM by HICP rules

Banking services: HICP outcome

Owner Occupied Housing: Alternative approaches

- (Net) Aquisition Approach
 - "Houses like potatoes"
- Rental Equivalent Approach
 - Appealing, but depends on rents
- User Cost Approach
 - ♥ Variants: partial cost
- Payment Approach

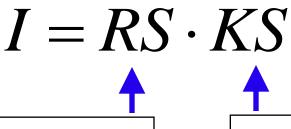
Owner Occupied Housing

- ◆ Swedish CPI:
 - O Depreciation
 - O Interest cost
 - Real estate tax
 - O Site rent
 - O Repairs
 - O Insurance
 - O Water, etc.
 - Oil, Electricity

- ◆ HICP plan:
 - Purchase of new houses

- Repairs
- Insurance
- Water, etc.
- Oil, Electricity

Interest cost


► Interest on mortgage + equity

♦ On mortgage = Interest payment
On equity = Opportunity cost

- ► Rates of interest on mortgages of different types
- ► Based on a capital equal to present owner's purchase price
- ► Interest cost deducted in underlying inflation

Interest cost index

Interest rate index

Capital stock index

$$RS_{01} = \frac{\sum_{i} w_{i}^{RS} \overline{R}_{i}^{1}}{\sum_{i} w_{i}^{RS} \overline{R}_{i}^{0}}$$

Average rate, mortgage type i

