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Abstract 

In today‟s economic research there have been discussions on whether macroeconomic time 

series can be characterized by a trend-stationary property or not. It is common that applicants 

confuse the trend-stationary model with the difference-stationary model; statistically they are 

quite similar but the economic interpretation is very different. The growth component, i.e. 

trend-component in a time series is usually assumed to be a deterministic process in empirical 

work when analyzing macroeconomic data. 

In this paper we analyze and discuss whether there is enough evidence to conclude if one can 

model macroeconomic variables with a deterministic model or a stochastic model. Two 

hypotheses are constructed in a two-model fashion, that is, we build two models where one 

represents the null hypothesis and the other represents the alternative hypothesis. The null 

hypothesis states the difference-stationary model and the alternative states the trend-statonary 

model. The parameters to include in the models are determined via the ARIMA procedure. 

Various statistical tests are performed in this study with the purpose of maximizing the 

confidence of our results. 

The results attained are that we cannot discriminate the different approaches of characterizing 

a macroeconomic time series. However, a unit root was detected for both the difference-

stationary model and the trend-stationary model, implying that the series can be modeled in a 

stochastic fashion. 
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1. Background 

It has long been discussed whether macroeconomic time series can be characterized by the 

trend-stationary property. That is, if the variable of interest follow a long-run deterministic 

trend. Alternatively, economic time series can be modeled by a difference-stationary approach 

where we assume that the model does not follow a deterministic trend. The two different 

models are 

                                 

                                                    

where   is time,   the slope and    is assumed to be identically and independently normally 

distributed with mean 0 and variance   , henceforth abbreviated,          
  . We will 

continue to specify the residuals throughout the paper with this specification unless otherwise 

stated. We will also denote difference-stationary by “DS” and trend-stationary by “TS”.  

The equations [1.1] and [1.2] differ vastly in terms of economic theory; if the series is 

assumed to be a TS model, it has a long-run equilibrium of constant growth. This is a strong 

assumption when analyzing economic time series. However, in the DS model, we have the 

implicit assumption of a stochastic process which appears more suitable when researching 

about economic variables as they usually are stochastic. 

Taylor (1979), Kydland and Prescott (1980) and Bodkin (1969) are some authors that remove 

the trend component of their applied models when they research about business cycle theory. 

They later regard the residuals, attained from the fitted trend, as appropriate data for their 

target research question. This is also where the TS hypothesis shows its strength.  

The probably most discussed paper when analyzing properties of macroeconomic time series 

is written by Nelson and Plosser (1982). They concluded that there was no evidence of a non-

stationary deterministic process of the economic series analyzed. The methodology used was 

to include two models that represent a hypothesis for each possible modeling procedure where 

one is the alternative of the other. The null hypothesis was: the macroeconomic variable,   , 
follows a DS model. The alternative hypothesis was: the variable follows a TS model. The 

conclusions from Nelson and Plosser were that macroeconomic variables are more consistent 

with the DS model than the TS model. We will re-examine this conclusion brought by the 

authors and see whether the results can be extended to Swedish macroeconomic data. 

Other approaches have also been used to characterize economic variables: Harvey (1985) 

modeled economic times series by their cyclical component, trend component and random 

error component. He then estimated the components via the Kalman filter. The conclusions 

drawn on the research was very similar to Nelson and Plosser‟s technique even though the 

methodology between the two papers was different.  A re-examination of Nelson and Plosser 

has been made by Rudebrusch (1992) where he used the same data but the methodology was 

slightly different.  

  

[1.1]    

[1.2]    
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The aim of this report is to investigate if the following Swedish time series – Inflation, lnGDP 

and lnWage follow the same pattern as found in Nelson and Plosser (1982). A full description 

of the variables is found in appendix 1. 

In Section 2 we give the theoretical framework used in our analysis. In Section 3 we perform 

our analysis of the three series. In Section 4 we bring the conclusions and discussions of this 

research and a brief overview of some extensions that can be applied for future research. 

 

1.1 Description of the applied time series 

The data have been collected from Worldbank. A brief review is made below. 

Inflation: The GDP deflator reflects the prices of goods and services produced within Sweden 

between the years 1961-2010, with the base year 2000. The variable is defined as 

              
                              

                              
 

The total number of data points for this variable is 50. The definition of the variable is taken 

from Worldbank, see the reference labeled “Worldbank(Inflation)”.  

lnGDP: This variable is measured annually in (current) US dollars with the base year 1961 

for the period 1961-2010 in Sweden. These data give us 50 data points.  The definition of the 

variable is taken from Worldbank, see the reference labeled “Worldbank(lnGDP)”. The GDP 

variable will be transformed into its natural logarithm as is usually done with economic data. 

The reason for this transformation is that it is easier to interpret the results and also that GDP 

data are generally characterized by an exponentially increasing function.  

lnWage: This variable is measured in (current) US dollars with the base year 1970 for the 

period 1970-2010 in Sweden. Thus we have 41 data points. The definition of the variable is 

taken from Worldbank, see the reference labeled “Worldbank(lnWage)”. This variable will 

also be transformed into its natural logarithm for convenience in interpretation and 

visualization.  

We will apply univariate time series analysis for each of the macroeconomic variables above 

and see if we can detect any indication of either the DS property or the TS property. The 

applied modeling technique is the ARIMA technique. The tests used in this research are the 

augmented Dickey Fuller test, Phillips Perron test and the normalized bias test. 
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2. Theoretical framework 

In this section we explain the difference between a TS and DS model. Then we derive the 

models in the ARIMA class, explain how to find the proper model and lastly how to evaluate 

the goodness of fit for found model. We end this section with a discussion of tools for testing 

the null and alternative hypothesis below, 

                                                           

 

2.1 Two kinds of stationarity 

In this report we will allow our time series, {  }, to be weakly stationary (henceforth we use 

the term stationary), with this we mean 

            [  ]   , i.e. a constant mean 

                            , that is, the covariance only depends on the time difference. 

A consequence of (II) is that the variance is constant for all t 

                                      

2.1.1 Trend-stationary 

If the mean of a time series is constantly growing around a deterministic trend, we 

characterize the series as a TS model. This implies that stationarity would be attained if we 

remove the trend component from the model. Consider equation [1.1], the TS model 

           

where          
  . 

This model is not stationary as the mean depends on  . Thus, if we were to remove the trend, 

     from this series, then stationarity would be attained. 

By estimating the trend and replace the true value with the estimated value,   
 , we can 

rearrange [1.1] as 

     
                    

and taking the expected value we find 

 [     
 ]   [                      ]   , 

because   and    are unbiased estimates. 

It may be shown that the covariance  

   [     
           

 ] 

is a function of the time difference, k. Proving this statement is beyond the scope of this 

paper. 
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2.1.2 Difference-stationary 

Consider equation [1.2], the DS model 

              

The expected value is attained as 

                               [  ]   [         ]                                                                    

                                                         [                  ]     

                                                         [      ∑     
 
   ]      [  ]    

Hence the series is not weak stationary. However, the first difference,              of 

equation [1.2] is  

         

which is obviously stationary since we only have the residual and the constant left. 

 

2.2 ARIMA models 

Since we will use the ARIMA methodology we here give a short introduction. A hypothetical 

ARIMA model can be written as 

                            

                                      

               
      is a weight parameter for the i:th component, i = 1, 2, 3 … p and    

is a weight parameter for the j:th component, j = 1, 2, 3 … q, where 0 ≤ p < ∞ and 0 ≤ q < ∞. 

This model is extensive as seen by its display. To simplify the model descriptions we 

introduce B, the backshift operator, defined as           then model [2.2], can be expressed 

in terms of this operator, B. We get 

     (∑    
  

   )   (  ∑    
  

   )     

If we introduce the functions   and    

     (  ∑    
  

   )  and      (  ∑    
  

   ) 

 then further simplification can be applied  

                 

which is much more simplified than [2.2] but of course we pay a price for higher abstraction. 

 

 

 

t = 1, 2, 3 … i and 0 < i < ∞ 

[2.2]    

[2.1]    
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2.2.1 Statistical dependence measures 

During the identification process of the ARIMA model we use the auto-correlation function 

and the partial auto-correlation function. 

Auto-correlation function: The auto-correlation is a correlation within the time series itself. 

E.g. the auto-correlation at lag k is defined by 

   
   (        )

        
 

Here we estimate    by    

   
∑      ̅        ̅    
   

∑      ̅ 
     

 

Note that the variance in the denominator is for    and not √                   as generally 

used when estimating a correlation between two phenomena. The reason is the assumption of 

weak stationarity from which follows constant variance, i.e.                    . 

Partial auto-correlation function: The auto-correlation measures the connection between 

   and       without filtering out the influence that lays between these two data points. 

However, the partial auto-correlation filters out the influence carried by the data points that lie 

between the two elements of interest. The mathematics for the partial auto-correlation is 

complex, and will not be derived in our application. The formula is given as 

    {

                                  
   ∑           

   
   

  ∑         
   
   

             
 

where                                         

In order to detect whether the two functions follows certain patterns such as “cut-offs” (more 

on this in the coming sub-sections), one needs to address the standard deviation of the 

measure as to obtain the significance bounds. This is discussed in Box et al. (1994) at page 

188 for both the auto-correlation function and the partial auto-correlation function. 

Hereafter we denote the auto-correlation function as “ACF” and the partial auto-correlation 

function as “PACF”. 

2.2.2 The Moving Average (MA) process 

A moving average process of order   is defined as 

                        

where          
  ,    is the weight for      and   is an arbitrary constant. One can express 

equation [2.3] as 

            

 

[2.3] 
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To better understand the MA(q) we calculate the ACF for MA(1) at lags 1 and 2.  

The MA(1) model can be defined by  

              , 

with the variance 
   [  ]     [           ] 

                                       [ ]     [  ]     [      ] 

                                           
        (    

 )     

The auto-covariance for this process for lag     is given by 

                                              [       ] 

                                                                [                         ]              

                                                [(                      
    

         )] 

                                                              [      ]   [        ]   [      
 ]   [  

         ] 

                                                         [      
 ]      

 
                     

since  [  ]         [     ]             . Thus the ACF for lag 1 is 

   
    

 
 

        
  
  

   

     
  

 

The auto-covariance for this process at lag     is given by 

              [                        ]    

as we have different time indices, hence, the numerator for the ACF formula is zero. The 

result for     is similarly the same. 

The conclusion from these calculations is that the ACF “cuts-off” after lag 1 since a 

calculation for    for an       process becomes 0 as the time indices of the residuals are 

different. Consequently, if we observe the sample ACF that “cuts-off” after lag 1 it indicates 

that the data is fit for an MA(1) model. However we must also observe the PACF to see the 

other dimension that may indicate an MA(1) process. It can be shown that the PACF for an 

MA(1) process decays exponentially, for a proof of this statement see Box et al. (1994) page 

73.  

It can also be shown that the theoretical ACF for an MA(q) process is significant up to lag   

and insignificant otherwise, see Montgomery et al. (2008) page 236. The PACF for the MA(q) 

process is exponentially decaying in absolute value as proven in Box et al. (1994). 
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2.2.3 The Autoregressive (AR) process 

The general autoregressive process, AR(p), is given by the following equation 

                               , or 

             

where          
   and    are weights 

To better understand the AR(p) process we calculate the ACF for AR(1) at lag 1. 

An AR(1) process is said to be stationary if  |  |   . The proof for this statement can be 

found in Montgomery et al. (2008) page 241. We assume that the condition holds. We have 

already derived the case when |  |   , see equation [2.1]. 

The AR(1) process is written as 

               

The expected value of the process is calculated as 

 [  ]   [           ]        , 

further rearrangements implies 

  
 

      
 

The variance for    is 

   [  ]     [           ]     [ ]     [      ]     [  ] 

                    
    [    ]       

    [  ]     

                                         

    [  ]  
  

(    
 )
  

where    is the variance for the error term.  

We can use equation [2.5] to solve for   and attain 

          

substituting equation [2.7] into equation [2.4], the model can be expressed as  

                       

simplification implies 

                    

Rearranging and multiplying both sides with          gives 

                                               

[2.5] 

[2.7] 

[2.6] 

[2.4] 

http://www.wiley.com/WileyCDA/Section/id-302475.html?query=Douglas+C.+Montgomery
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Taking the expected value we get the auto-covariance function 

 [              ]     [                ]   [          ] 

                                                                  [                ] 

dividing [2.8] by [2.6] we get for     

             

             
        

      

           
               

    
   

since      

Hence the ACF for the AR(1) model decays exponentially as |  |   . Thus when we 

identify an ARIMA model we can observe the ACF to see whether the data resembles an 

exponentially decaying pattern. This would indicate that the data is suitable for an AR(1) 

model given the PACF. The PACF for the process is significant at lag 1 and insignificant 

otherwise. The derivation of this statement can be found in Box et al. (1994) page 66. 

The theoretical ACF for an AR(p) model is a combination of exponential decay and damped 

sinusoid visualizations, see Box et al. (1994) page 56. The PACF for the AR(p) process is also 

shown in the same literature at page 66; it is significant at lag   and insignificant otherwise.  

2.2.4 Mixed Autoregressive-Moving Average (ARMA) processes 

The general autoregressive-moving average process, ARMA(p,q), is given as 

                             

                                                                                    

or alternatively 

                  

This special case of ARIMA models is a mixture of components that puts weight on past 

errors and past data points.  

The derivation of the ACF and PACF for this type of process is complex and left to 

references; see Box et al. (1994) page 80.  

It is shown that both the ACF and PACF exhibit exponentially decay and/or dampened 

sinusoid patterns. Thus if the data follows these types of patterns we can try fit an 

ARMA(p,q) model. 

 

[2.8] 
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As both the ACF and PACF follow the same pattern it is difficult to assess on how many lags 

to include. We can however consider different evaluation criteria between the models. The 

criteria‟s are the Akaike‟s and Schwarz‟s information criteria (details on these criteria are 

discussed in the next sub-section). 

2.2.5 Autoregressive Integrated Moving Average (ARIMA) processes 

It is common that time series are not stationary. The ARIMA process includes another 

component, d, which is the number of differences needed to make the time series stationary.  

The general ARIMA(p,d,q) process is  

                        

where        is the differencing argument.  

2.2.6 ARIMA identification for the DS and TS models 

The DS model will be expressed as an ARIMA(p,1,q) processes where   and q are unknown. 

The reason for this is the hypothesis of attaining a stationary model by differencing the time 

series. Formally, 

                       

The TS model will be represented as an ARIMA(p,0,q) process with a trend component since 

stationarity will be attained by removing the trend component from series. Formally, 

                    

 

2.3 Model evaluation 

In order to evaluate the “goodness” of the applied models we rely on different indicators. 

Ljung-Box test: The Ljung-Box statistic test whether the estimated residuals are correlated or 

not. If this test fails to reject the hypothesis that all auto-correlations are zero and if the 

residuals are found to be normally distributed, then the residuals can be regarded as 

independent. The hypotheses are  

                                                     

As test statistic we have 

          ∑
 

   
  
   

              , 

         (∑  ̂  
  

   )
  
 ∑  ̂   ̂    

 
        

The  ̂ „s are estimated residuals for the fitted ARIMA model,    is the lag between the 

residuals, K is the number of lags being tested, and   is the number of observations subtracted 

by the number of differences applied for the model. The test statistic follows a Chi-square 

distribution under the null hypothesis with       degrees of freedom, where p is the 

number of auto regressive lags and q is the number of moving average lags for the applied 

ARIMA model. For further details, see Ljung and Box (1978).  
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The normality assumption: To see if the residuals are normally distributed we observe the 

QQ-plot of the residuals and the histogram for the distribution of the residuals. 

The QQ-plot is graphed by the normal quantiles on one axis and the normalized residuals on 

the other axis with a 45 degree line going through the origin. If the residuals have a normal 

distribution then the QQ-plot will have the estimated residuals very close to the 45 degree 

line.  

The histogram is graphed by the residual estimate on the horizontal axis and the percentage of 

residuals on the vertical axis. If the residuals have a normal distribution the histogram will 

have a bell shaped curve, but the main benefit is to understand the tails. 

Two information criteria: When choosing between competing models, we observe Akaike‟s 

(AIC) and Schwarz‟s (SIC) information criteria 

       (
∑   

  
   

 
)  

  

 
                                         (

∑   
  

   

 
)  

      

 
 

These two statistics differ since           when the sample size         , hence we 

have that AIC gives lesser penalty than SIC. Another remark is that SIC is consistent whereas 

AIC is not. For further details, see Akaike (1974) and Schwartz (1978). 

 

2.4 Testing for unit root 

In this sub-section we discuss tests that can discriminate between the DS model and the TS 

model. The tests are the augmented Dickey Fuller (ADF) test, the normalized bias (NB) test 

and the Phillips Perron (PP) test. 

The ADF test is an extension of the Dickey Fuller test. The difference between these two is 

that in the Dickey Fuller test we ignore any of the underlying auto-correlation existing in the 

data, while in the ADF test we allow for this interaction to occur. Nelson and Plosser (1982) 

used the ADF test and since we wish to re-examine their conclusions on Swedish economic 

data we follow their example and use the same test. 

The ADF test assumes a pure autoregressive process, i.e. an AR(p) process. Hence it may 

cause complications when the ARIMA modeling dimension is applied. Fortunately it has been 

shown that testing for unit roots can be done conventionally by the general AR(p) process 

even if the fitted model is an ARIMA(p,d,q) under the condition that as long as the sample 

size gets large, so will the number of lags in the unit root regression, see Dickey (Stationarity 

Issues in Time Series Model) and Said and Dickey (1984). Also, Phillips and Perron (1988) 

writes at page 336: “…Dickey-Fuller regression t test for a unit root may still be used in an 

ARIMA(p,1,q) model provided the lag length in the autoregression increases with the sample 

size, T, at a controlled rate less than  
 

 ”, where T is the sample size of the data.  

The next test is called the NB test which also has been created by Dickey and Fuller. It has 

been noted that this test has more power than the ADF test if we are evaluating an AR(1) 

model, see Dickey and Fuller (1979).  

The last test that we will use in this paper is the PP test. The test accommodates models with 

fitted drift (constant) and time trend (deterministic trend) such that the models can be 

discriminated between the DS model and TS model.  
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The null and alternative hypotheses are identical for each of the three tests 

                    ,                    

If we fail to reject   , we conclude that the DS model is appropriate and if we reject   , we 

conclude that the TS model is appropriate. 

2.4.1 The augmented Dickey Fuller (ADF) test 

For the DS model we have a special case of testing the hypothesis of a unit root. Consider the 

general AR(p) model expressed in first differences 

      ∑        
   
       

Rudebusch (1992) argues that a trend coefficient should be included in the ADF regression 

when we test the DS null while having the TS alternative hypothesis. Also, West (1987) 

shows that the null hypothesis has low power against trend alternatives if we do not include a 

time trend in the regression. Hence we include a time trend and estimate the equation 

              ∑        
   
       

If we find that       the model is not stationary. The test statistic is 

  
     

     
 

where       is the standard error of the estimate,  . 

We can obtain the p-value simply by estimating model [2.10] by a least squares regression; 

see Ismail E. Mohamed (The Augmented Dickey-Fuller (ADF) Test).  However, it has been 

shown that the statistic does not follow the usual t-distribution but is skewed towards negative 

values; see Dickey and Fuller (1979). For the DS models we will manually regress [2.10] and 

attain a t-value for the parameter of interest, namely,  , which we then manipulate for the 

purpose of obtaining a true p-value by a macro in SAS. The reason for this is that SAS will 

automatically test [2.9], not [2.10] which give us misleading values. For the TS models we 

will not manually estimate regressions and convert them to the true p-value since our TS 

model is not defined in differences. 

2.4.2 The normalized bias (NB) test 

It has been shown that the NB test possesses more power than the ADF test for autoregressive 

models of order 1, but this is not true for higher orders. SAS provides the output of the 

normalized bias test together with the ADF test. Consequently, we will emphasize the 

normalized bias test if we have a model that consists of one autoregressive component and if 

the model of interest is a TS model. 

The test statistic is 

         

This statistic also suffers from the non-normal property; see Dickey (1979) for further details. 

The true p-value of the test statistic will be reported in SAS. 

 

[2.9] 

[2.10] 



15 
 

2.4.3 The Phillips Perron (PP) test 

The difference between the PP test and the ADF test is that the ADF test includes additional 

lagged terms of an AR(p) process to countermeasure the possibility that the true model is 

more complicated than the applied model. The PP test solution for this possible 

misspecification is to use nonparametric techniques to make a correction of the standard error 

that provides a consistent estimator of the variance. 

There is problem with this test; it only has power in autoregressive models; see Phillips and 

Perron (1988). The authors argue that (page 345) “…For models with moving average errors 

and negative serial correlation the Z tests suffer appreciable size distortions and are not 

recommended. In such cases the Said-Dickey procedure of using a long autoregression seems 

preferable.” Thus I will only apply this test in the cases when we have a pure autoregressive 

model of the applied series. The regression that is applied is defined as an ARIMA(p,0,0) 

model with a trend coefficient. 

2.4.4 Power 

When applying testing procedures it is important to recognize the test‟s ability to reject a false 

null, specifically; the power of the tests needs to be addressed. See Park, Hun Myoung (2008) 

for further details regarding power.  

The powers of the tests applied in this problem have been criticized by Dejong et al. (1989) 

where they write (page 432) “…inferences based exclusively on tests for integration may be 

fragile”. Also, Schwert (1987) and Blough (1988) have shown that testing for unit roots can 

have low power. Cochrane (1991) warns that (page 283) “…application of unit root tests 

without consideration for their low power and for the restrictions that they inevitably impose 

in a finite sample can be misleading”.  

However, the tests we apply were already chosen prior to the research. Also, Nelson and 

Plosser (1982) only introduced one formal test for unit root in order to test whether the null 

model could be rejected, namely, the ADF test. As the purpose of this paper is to extend their 

work and see whether the same behavior can be detected in Swedish data, we stick to the tests 

presented.   
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3. Results 

The estimation technique for the applied models is the conditional least squares method. This 

estimation differs from ordinary least squares by assuming that the past unobserved 

observations have a residual equal to zero. For more information regarding this topic, see the 

reference labeled “SAS(CLS)”. 

 

3.1 Overview of the data 

We start off by observing the structure of our data for the relevant variables which is done by 

plotting the variable against time. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.1 

Figure 3.1.2 

As seen in figure Inflation, the series 
has a clear trend but we also see that 
the exponential growth is broken at 
1990. After this year the trend is linear. 
This implies that the series is not 
stationary. From 1990 and forward the 
series seem to change its pattern. One 
reason could be because of the Swedish 
crisis that occurred at that time. 

 

The next variable of interest is lnGDP. 
From the plot we can see a clear trend. 
The mean of this series is not constant; 
it changes with respect to the dependent 
variable. The Swedish crisis that 
occurred in the 90‟s seems to react 
rather slowly with respect to lnGDP. 
We also see a clear intervention at 1980. 
This could be because of the recession 
in the US that spread across the world. 

Figure 3.1.3 

The final variable is lnWage. A clear 
trend is detected. Observing the series 
more closely we see in the year 1990 an 
intervention occurs. The reason could be 
because of the Swedish crisis in the 
90‟s. We also see that the effect of the 
crisis takes effect immediately. 
However in the lnGDP series there seem 
to be a lag of two years before we see 
the effect. 

 

lnGDP 

lnWage 

Inflation 
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We alert the reader that Inflation and lnWage are not linear as seen by the figures. This causes 

problems to our research as we need to introduce transformation techniques which would take 

us beyond the scope of this paper. We will however continue working with the report as 

intended. 

 

3.2 Model identifications 

We will now find ARIMA models for the three different economic time series.  

The procedure we follow is 

1) Calculate the ACF and PACF to decide the order of p,d and q. 

2) Estimate the ARIMA(p,d,q) model to obtain the residual serie. 

3) Observe whether the Ljung-box test statistic is significant or not. If significant, then go 

back to 1. If insignificant, then move on to 4. 

4) Observe the normal probability plot and histograms to see if the residuals follow a 

normal distribution. 

We create two models for each variable where one represents the null hypothesis and the 

other represents the alternative hypothesis. The null model will always be a DS model and the 

alternative model will always be a TS model. There will be a total of six models to include in 

this research as we have three variables that will be represented by two models each. 

The general DS model is written as 

                       

see page 12. Also, the order of p and q are chosen given the sample ACF and PACF of the 

data. The SAS code for identifying this model is 

proc arima data=(data set); 

identify var=(variable)(1); 

run; 

 

As the data is defined in first differences, we write (1) after the (variable). 

The general TS model is written as 

                      

see page 12. Also, the order of p and q are chosen given the sample ACF and PACF of the 

data. The SAS code for identifying this model is 

proc arima data=(data set); 

identify var=(variable); 

run; 

 

As the data is not defined in first differences, we ignore the (1) after the (variable). Observe 

that we simply identify the raw data by applying this code. 

On the following pages we present the procedure on how to identify the order of p and q for 

the DS and TS models for our variables. 
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3.2.1 Identifying Inflation 

DS model: The DS model is identified as  

 

 

 

 

 

The ACF decays somewhat exponentially. The PACF is significant at lag 1 and insignificant 

otherwise, suggesting an              model. Hence we choose the model  

(Inflation 1):                       

The evaluation statistics show that the auto-correlation for the residuals can be regarded as 

zero. The normality assumption in the residuals is not reasonable with respect to the QQ plot 

see figure 2.1 in appendix 2. This might be a consequence of the fact that our data needs 

transformation techniques as discussed on the previous page. 

TS model: Now we identify the TS model for Inflation, we get the ACF and PACF as 

 

 

 

 

 

We see that the ACF is decaying exponentially and the PACF is significant at lag 1, 

suggesting an             . 

Hence we fit the TS model below to our Inflation time series: 

(Inflation 2):                     

We retained poor evaluation statistics; see table 2.2 in appendix 2 where the auto-correlation 

check for residuals are all significant at the conventional levels. To solve this problem, I will 

follow the Nelson and Plosser (1982) model where they identify all of their macroeconomic 

variables with an AR(2) model. The evaluation statistics from this model is much better, see 

table 2.3 in appendix 2 where we have a table for the auto-correlation check on the residuals; 

there are no significant autocorrelation of the residuals at any lag. The normality check for 

residuals can be seen in figure 2.2 in appendix 2; the residuals do not seem to follow a normal 

distribution in strict sense which violates the assumption of normality in the residuals.   

The same procedure is be made for the remaining variables. A summary of the identifications 

and estimations are shown on the next page. 

 

Figure 3.2.1.1 

Figure 3.2.1.2 
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3.2.2 Summary of the identifications and estimations 

A summary for the conclusions are presented in the tables below.  

 

 

 

 

 

 

 

In the tables 3.2.2.1 and 3.2.2.2 we have all the prescribed ARIMA models given the ACF 

and PACF for each time series. We indicate the shaded rows as the chosen DS and TS 

models. The “Significant(Yes/No)” column tells us whether the estimated model had 

significant auto-correlation between the residuals. See figures 2.1-2.6 in appendix 2 for the 

normal probability plots and histograms attained.  

 

 

 

 

 

Moving on to tables 3.2.2.3 and 3.2.2.4 we show the six estimated models. The column 

“Cons.” refers to the value of the constant in the applied model,    accounts for the dependent 

variable which is Inflation, lnGDP or lnWage.    is the error term for the dependent variable 

and t is the estimation of the trend.  Some cells are left empty as the number of   and   differ 

between them. Also, * indicates that the p-value is <0.05 or close to 0.05, ** means that the p-

value is <0.01 or close to 0.01.  

We see almost all estimated parameters have p-values that are less than 0.01 indicating that 

the models have predictive power with respect to the components.  

 

3.3 Unit root tests 

Here we construct the ADF test, PP test and the NB test. Tables are found in appendix 4.      

Table 3.2.2.3: The estimated time series for the DS models 

3.2.

Table 3.2.2.4: The estimated time series for the TS models 

3.2.2 

Table 3.2.2.1: Evaluation statistics for the DS models Table 3.2.2.2: Evaluation statistics for the TS models 
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3.3.1 ADF test 

For (Inflation 1) we attained the estimated parameter “deflator_1st_LAG” and used it in the 

test statistic for the ADF unit root test, 

  
         

     
        

see output 4.1 for the p-value obtained and table 4.1 for the regression. 

The same procedure is made for the remaining DS models. However we have special case for 

the (lnGDP 1) model. Recall that the model chosen for (lnGDP 1) was an ARIMA(3,1,3), thus 

we get the lags (see page 13), 

 
 
    

 
       

The tables below summarize the results for the ADF test on the DS and TS models. 

 

 

 

 

 

From the tables above it is clear that we fail to reject any of the null hypotheses that the series 
has a unit root for every variable for both the DS and the TS definition. All the p-values are 
high which indicates that there exists a unit root in these models.  

3.3.2 PP test  

The table below summarizes the results for the PP test on the DS and TS models. 

 

 

 

 

The findings are that we fail to reject all variables null hypothesis of an existence of a unit 

root for both the DS and the TS definition. These p-values are high considering the 

conventional significance levels. 

We also constructed a NB test. This test was only appropriate for the (lnWage 2) model as no 
differencing is applied and that it has one autoregressive lag. The p-value of the test-statistic 
is 0.58 which further strengthens the evidence of a unit root, see table 4.9 in appendix 4.  

Final comments are that we cannot distinguish the DS model from the TS alternative since 

both models show similar results. 

See tables 4.1, 4.5 and 4.7 and outputs 4.1, 4.2 and 4.3 in 

appendix 4 for the regression tables and the attained p-values. 

Table 3.3.1.1: ADF test for the DS models Table 3.3.1.2: ADF test for the TS models 

Table 3.3.2.1: PP test for the DS models Table 3.3.2.2: PP test for the TS models 
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4) Conclusions and discussions 

The aim of this report is to see if three Swedish economic time series are best described as 

difference-stationary or trend-stationary in the spirit of Nelson and Plosser (1982). 

In addition to the ADF unit root test, we also used the PP test and the NB test (when 

appropriate) which Nelson and Plosser did not use. The ARIMA procedure was discussed in 

including evaluation statistics and tests for adequacy. When modifications were necessary, we 

made adjustments in a way to build more reliable models.  

The results obtained from the analysis are that we failed to reject the assumption of a DS 

model. We attained similar results in the TS model, which makes the two different approaches 

indistinguishable. We also found evidence that the TS models provided very similar results in 

terms of the unit root tests which implies that the TS model can be modeled as a DS process 

since the existence of a unit root could not be denied within that specification. 

In terms of assumptions, a DS model should be considered the more appropriate model. It is 

too artificial to believe that the growth of macroeconomic variables is to be linearly presumed. 

Also, it would seem more suitable to have a stochastic model than a deterministic model since 

the natures of the series are stochastic. Even if there are obvious arguments that the power of 

the tests used in this analysis are generally low, we cannot ignore the results that were shown 

in the previous section; all the p-values were very high when testing the different unit root 

tests. 

We should also take into account that the scope of this paper was to re-examine Nelson and 

Plosser‟s work and see if their conclusions could be generalized into the Swedish 

macroeconomic data, for certain specified variables. The point is: the power of the test can be 

argued to be weak without invalidating our work with respect to the research questions made 

prior to the analysis, but to warn the readers of the fact that the tests applied are fragile.  

As discussed at the beginning of section 3, the structure of Inflation and lnWage do not seem 

to have a linear trend (see figures 3.1.1 and 3.1.3) which is problematic as this research has an 

underlying assumption of a linear trend. However, the variables were chosen prior to the 

research. Also, if we make transformations of the data we take this report out of scope and 

ignoring its purpose. 

This analysis has shown similar results as Rudebrusch (1992). However, in this study we also 

considered the modeling dimension of ARMA models, not only AR models as displayed by 

Rudebrusch. He concluded that macroeconomic data should be characterized by a DS model, 

not TS model. We agree with this conclusion as of the belief that macroeconomic variables 

are more stochastic in their features than deterministic. But our results show otherwise.  

Further extensions of this paper can be employed. One can for instance analyze quarterly data 

and see whether results obtained changes versus the case when we have yearly data. This 

would however complicate the analysis severely as the cyclical variations would be clearer 

and seasons would surely be detected in the series. The models applied to quarterly data 

would be more complex as seasonal ARIMA models would probably be of use and the 

interpretations would be harder to assess.  
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Appendix 1: Definitions of the applied variables 

 

GDP deflator (Inflation): “The GDP implicit deflator is the ratio of GDP in current local 

currency to GDP in constant local currency. The base year varies by country”, see 

Worldbank(Inflation). 

 

Nominal GDP (lnGDP): “GDP at purchaser's prices is the sum of gross value added by all 

resident producers in the economy plus any product taxes and minus any subsidies not 

included in the value of the products. It is calculated without making deductions for 

depreciation of fabricated assets or for depletion and degradation of natural resources. Data 

are in current U.S. dollars. Dollar figures for GDP are converted from domestic currencies 

using single year official exchange rates. For a few countries where the official exchange rate 

does not reflect the rate effectively applied to actual foreign exchange transactions, an 

alternative conversion factor is used”, see Worldbank(lnGDP). 

 

Workers' remittances and compensation of employees, paid (lnWage): “Workers' 

remittances and compensation of employees comprise current transfers by migrant workers 

and wages and salaries earned by nonresident workers. Remittances are classified as current 

private transfers from migrant workers resident in the host country for more than a year, 

irrespective of their immigration status, to recipients in their country of origin. Migrants' 

transfers are defined as the net worth of migrants who are expected to remain in the host 

country for more than one year that is transferred from one country to another at the time of 

migration. Compensation of employees is the income of migrants who have lived in the host 

country for less than a year. Data are in current U.S. dollars”, see Worldbank(lnWage). 
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Appendix 2: Diagnostic outputs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 2.1 

(Inflation 1) – ARIMA(1,1,0)  

Table 2.2 

(Inflation 2) – ARIMA(1,0,0)  

Table 2.3 

(Inflation 2) – ARIMA(2,0,0) 

Table 2.4 

(lnGDP 1) – ARIMA(1,1,0) 

Table 2.5 

 (lnGDP 1) – ARIMA(1,1,1) 

Table 2.6 

(lnGDP 1) – ARIMA(2,1,2) 

Table 2.7 

(lnGDP 1) – ARIMA(3,1,3) 

Table 2.8 

(lnGDP 2) – ARIMA(1,0,0) 

Table 2.9 

(lnGDP 2) – ARIMA(1,0,1) 

Table 2.10 

(lnWage 1) – ARIMA(1,1,0) 

Table 2.11 

(lnWage 1) – ARIMA(1,1,1)    W       –               

Table 2.12 

   W       –               

Table 2.13 



26 
 

Figure 2.6 

(lnWage 2) – ARIMA(1,0,0) 

 

                –               

Figure 2.1 

              –               

Figure 2.2 

Figure 2.3 

(lnGDP 1) – ARIMA(3,1,3) 

Figure 2.4 

(lnGDP 2) – ARIMA(1,0,1) 

Figure 2.5 

(lnWage 1) – ARIMA(1,1,0) 
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Appendix 3: Estimation for the preferred models  

 

 

 

 

 

 

 

 

 

  

  

(Inflation 1) – ARIMA(1,1,0) 

 

(Inflation 2) – ARIMA(2,0,0) 

 

Note: the NUM1 is the deterministic trend parameter. 

This is true for all the following outputs.  

 

 (lnGDP 1) – ARIMA(3,1,3) 

 

 

 (lnGDP 2) – ARIMA(1, 0,1) 

 

 Table 3.5 

(lnWage 1) – ARIMA(1,1,0) 

 

 Table 3.6 

(lnWage 2) – ARIMA(1, 0,0) 

Table 3.1 

      

Table 3.2 

      

Table 3.3 

      

Table 3.4 

      

Note: MU is the estimate for the constant in the model. 
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Appendix 4: Unit root test outputs and tables 

 

       

 

 

 

 

 

 

 

Table 4.10: (lnWage 2) Table 4.9: (lnWage 2) 

Table 4.8: (lnWage 1) 

 

Table 4.7: (lnWage 1) 

 

Table 4.6: (lnGDP 2) 

 

Table 4.5: (lnGDP 1) 

 

Table 4.4: (Inflation 2) 

 

Table 4.1: (Inflation 1) 

 

 

Table 4.2: (Inflation 1) 

Table 4.3: (Inflation 2) 

Output 4.1 (Inflation)

      

Output 4.2 (lnGDP)    Output 4.3(lnWage) 

Table 4.3: (Inflation 2) 

      “        ”             ,         _   _L            which is the 

parameter of interest,         _   _  FF_   _L            and t is the trend 

coefficient. The same notations hold for the remaining regression tables. 

Note: “   ”                        

Note: “   ”                                        


