Lesson: Turning Data Into Information 

Introduction

???

Learning objectives for this lesson 

Upon completion of this lesson, you should be able to understand: 

· the importance of graphing your data

· how to interpret the shape of a distribution

· what is a five-number summary and its interpretation

· the meaning of descriptive statistics

· what "average" means in statistics-speak

· the relationship between mean and median of a distribution

· some basic Minitab statistics and graphing methods

Four features to consider for quantitative variables are:

1. Shape

2. Center or Location

3. Spread (variability) 

4. Outliers 



Displaying Distributions of Data with Graphs 

The distribution of a variable shows its pattern of variation, as given by the values of the variables and their frequencies. The following Minitab data set, SAT_DATA.MTW, (data from College Board) contains the mean SAT scores for each of the 50 US states and Washington D.C., as well the participation rates and geographic region of each state. The data patterns however are not yet clear. To get an idea of the pattern of variation of a categorical variable such as region, we can display the information with a bar graph or pie chart. 

To do this: 

1. Open the data set 

2. From the menu bar select Graph > Pie Chart 

3. Click inside the window under Categorical Variables. This will bring up the list of categorical variables in the data set. 

4. From the list of variables click on Region and then click the Select button. This should place the variable Region in the Categorical Variables window. 

5. Click OK 

This should result in the following pie chart: 
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In Minitab, if you place your mouse over any slice of the pie you will get the value of the overall percentage of the pie that region covers. For example, place your mouse over the blue colored slice (again this has to be done in Minitab not on the notes!) and you will see that for the Region MA (Mid Atlantic) 5.9% of the 50 states plus Washington D.C. fall into this category. 

To produce a bar graph or bar chart, return to the menu bar in Minitab and from the Graph options select Bar Chart then Simple. The steps will proceed similar from Step 3 above. In the Minitab Bar Chart, however, placing your mouse over a bar produces the number within that category. For example, if you place your mouse over the region labeled MA (again this has to be done in Minitab not on the notes!) you will see that three (3) of the 50 states plus Washington D.C. are classified as Mid Atlantic. Note that 3/51 equals the 5.9% from the pie chart:

[image: image2.jpg]Count

Chart of Region

ENC.

ESC

Ma

MIN NE PAC
Region

Sh

WAC

WSC





But what of variables that are quantitative such as math SAT or percentage taking the SAT? For these variables we should use histograms, boxplots, or stem-and-leaf plots. Stem-and-leaf plots are sometimes referred to as stemplots. Histograms differ from bar graphs in that the represent frequencies by area and not height. A good display will help to summarize a distribution by reporting the center, spread, and shape for that variable. 

For now the goal is to summarize the distribution or pattern of variation of a single quantitative variable. To draw a histogram by hand we would: 

1. Divide the range of data (range is from the smallest to largest value within the data for the variable of interest) into classes of equal width. For the math SAT scores the range is from 478 to 608. This range of 130 when divided by 10 comes to 13. For ease, Minitab goes to widths of 15. 

2. Count the number of observations in each class. That is, count the number from 473 to 488, 489 to 504, etc. 

3. Draw the histogram using the horizontal axis as the range of the data values and the vertical axis for the counts within class.

Minitab can also produce a histogram by: 

1. Open the data set (Use this link data set if you do not have the data set open) 

2. From the menu bar select Graph > Histogram 

3. Select Simple and click OK 

4. Click inside the window under Graph Variables. This will bring up the list of quantitative variables in the data set. 

5. From the list of variables click on Math SAT(2005) and then click the Select button. This should place the variable Math SAT(2005) in the Graph Variables window.

6. Click OK 

[image: image3.jpg]Frequency

14

12

Histogram of Math SAT(2005)

480

s10

540 s70
Math SAT(2005)

600





Again, when in Minitab, you can place your mouse over one of the bars and the number of observations (value) for that class and the length of that class (bin) will be displayed. For example, if you place your mouse over the bar for 510 Minitab will display a value of 14 and bin of 502.5, 517.5 meaning that 14 of the reported average SAT math scores for the 50 states plus Washington D.C. were between 502.5 and 517.5. The heights of the bars in the histogram also give you the count (frequency) for each class. Notice that the height for the class centered at 510 is also 14. 

The distribution appears to be centered near 530, meaning that of the 51 observations half would be at or below 530 and the other half would be at or above 530. The values are spread from 478 to 608 giving a range of 130. The shape appears to be somewhat skewed right or positively skewed meaning that a bulk of the data gathers on the left of the graph with the remainder of the data filling in, or trailing, to the right. 

The advantage of a histogram is that the construction is easy for a large data set. A disadvantage is that individual observations are not specified. For example, from the histogram you cannot tell what the mean Math SAT(2005) score is for Alabama. For a relatively small or medium size data sets, a quick graphical display that includes each observation we can construct a stem-and-leaf plot. The stem-and-leaf plot consists of a vertical list of stems after which are recorded a horizontal list of one-digit leafs. 

Example: We can construct a stem-and-leaf plot for the mean Math SAT(2005) scores. 

1. First we would need to rank the data from minimum observation (478) to the maximum (608). 

2. Next, we would create vertical stems based on the first two digits;

47|
48|
49|
50|
. . . 
60| 

3. Note that even though some stems may not have an observation, for example there are not observations of scores from 480 to 489, we still need to create a stem for this group if we already created a stem prior to this level (where we did with the stem 47). 

Now we fill in the leafs by entering the single last digit horizontally for its respective stem: 

47| 8
48|
49|689
50|223558
. . . 
60|568 

From this plot we can now see each individual observation such as 478, 502 (of which there are two such observations since there are two leafs of “2”) and 608. 

We can also create this stem-and-leaf plot using Minitab: 

1. Open the data set (see link at beginning of notes if you do not have the set open) 

2. From the menu bar select Graph > Stem-and-Leaf

3. Click inside the window under Graph Variables. This will bring up the list of quantitative variables in the data set. 

4. From the list of variables click on Math SAT(2005) and then click the Select button. This should place the variable Math SAT(2005) in the Graph Variables window. 

5. Click OK 
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As you can see, Minitab produces a bit more information; the left-hand column. When we construct these graphs by hand this column is not required, but Minitab has the machinery capability to do this quickly. The interpretation of this left-hand column is quite simple. The row with the parentheses indicates the row that contains the median observation for this data set and the number in the parentheses is the number of leafs (i.e. observations) in this row. Preceding this point, the numbers indicate how many observations are in that row and prior. For instance, the first “1” indicates that there is one observation in that row (478). The second “1” indicates that there is a total of one observation in that row plus any preceding rows (no observations in this row plus the 478 observation in the first row). The next number “4” says that there are a total of four observations in this row plus any preceding rows (the three observations in this row: 496, 498, and 499 plus the observation of 478). This continues to the row containing the median observation. After the median, the interpretation continues except the number indicates how many observations are in that row and any rows following that row. 

Again from this graph we can get the range (478 to 608 = 130), the center (the median is around 530 to 534), and the shape (which shows that many of the observations are gathering near the top and tailing off to the bottom. If you could flip this graph so the stems are place horizontally you would see that the tail goes off to the right with the bulk of the data based to the left symbolizing a distribution shape that is skewed to the right or positively skewed). 

Stem-and-leaf plots can be constructed using what is called split stems. In split stems, the stems are either divided into groups of two or groups of five. For instance, if your data consisted of 50 observations ranging from 10 to 30 you could split the stems in two (creating two stems each of “1”, “2”, and 3”) and then for the leafs place any observations of 0 to 4 on the first stem and 5 to 9 on the second stem. The stems could also be split by creating 5 of each stem and then placing in leafs and observations of 0,1: 2,3: 4,5; 6,7; 8,9. Minitab will automatically create split stems if the data warrant a splitting. 

Shape 

The shape of a dataset is usually described as either symmetric, meaning that it is similar on both sides of the center, or skewed, meaning that the values are more spread out on one side of the center than on the other. If it is skewed to the right, the higher values (toward the right on a number line) are more spread out than the lower values. If it is skewed to the left, the lower values (toward the left on a number line) are more spread out than the higher values. A symmetric dataset may be bell-shaped or another symmetric shape. The shape is called unimodal if there is one prominent peak in the distribution, and is called bimodal if there are two prominent peaks. Figures 1, 2 and 3 show examples of three different shapes.

Figure 1: A symmetric shape. 
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Figure 2: Data skewed to the right. 
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Figure 3: Data skewed to the left. 
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Describing Distributions with Numbers

Location 

The word location is used as a synonym for the “middle” or “center” of a dataset. There are two common ways to describe this feature. 

1. The mean is the usual numerical average, calculated as the sum of the data values divided by the number of values. It is nearly universal to represent the mean of a sample with the symbol [image: image8.png]


, read as “x-bar.” 

2. The median of a sample is the middle data value for an odd number of observations, after the sample has been ordered from smallest to largest. It is the average of the middle two values, in an ordered sample, for an even number of observations. 

So far we have mentioned center in a vague manner. Spread is inadequately described by range which only provides information based on the minimum and maximum values of a set of data. With center and spread being the two most important features of a data distribution they should be carefully defined. 

One measure of center is the median or middle value. When the total number of observations is an odd number, then the median is described by a single middle value. If the total number of observations is even, then the median is described by the average of the two middle values. 

A second measure of the center is the mean or arithmetic average. To find the mean we simply sum the values of all the observations and then divide this sum by the total number of observations that were summed. 

Example: From the SAT data set we can show that the participation rates for the nine South Atlantic states (Region is SA) are as follows: 74, 79, 65, 75, 71, 74, 64, 73, and 20. In order to find the median we must first rank the data from smallest to largest: 20, 64, 65, 71, 73, 74, 74, 75, and 79. To find the middle point we take the number of observations plus one and divide by two. Mathematically this looks like this where n is the number of total observations: 
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Returning to the ordered string of data, the fifth observation is 73. Thus the median of this distribution is 73. The interpretation of the median is that 50% of the observations fall at or below this value and 50% fall at or above this value. In this example, this would mean that 50% of the observations are at or below 73 and 50% are at or above 73. If another value was observed, say 88, this would bring the number of observations to ten. Using the formula above to find the middle point the middle point would be at 5.5 (10 plus 1 divided by 2). Here we would find the median by taking the average of the fifth and sixth observations which would be the average of 73 and 74. The new median for these ten observations would be 73.5. As you can see, the median value is not always an observed value of the data set. 

To find the mean, we simply add all of the numbers and then divide this total by total numbers summed. Mathematically this looks like this where again n is the number of observations: 
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	APPLET

Let's play around with what these concepts related to location involve using the following applet from Rice University:
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Spread (Variability) 

The word spread is used as a synonym for variability. Three simple measure of variability are:

Example of Calculating Range and Interquartile Range (IQR) 

1. The range is found by subtracting the minimum value from the largest value. From the example used above to calculate the mean and median the range for PAC states would be: Range = 79 – 20 = 59 

2. To find the IQR we must first find the quartiles. The first quartile (Q1) is middle of the values below the median and the third quartile (Q3) is the middle of the values above the median. Using the PAC example, we have 9 observations with the median being the fifth observation. Q1 would be the middle of the four values of below the median and Q3 would be the middle of the four values above the median: 
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The IQR is found by taking Q3 minus Q1. In this example the IQR = 74.5 – 64.5 = 10.

This five number summary, consisting of the minimum and maximum values, Q1 and Q3, and the median, is an excellent method to use when describing a quantitative data set. 

3. Standard deviation = roughly, the average difference between individual data and the mean. This is the most common measure of variation. 

The example given below shows the steps for calculating standard deviation by hand:

Example of Calculating Standard Deviation

Five students are asked how many times they talked on the phone yesterday. Responses are 4, 10, 1, 12, 3. 

Step 1: Calculate the sample mean. = (4+10+1+12+3)/ 5 = 30/5 = 6. 

Step 2: For each value, find the difference between it and the mean. 

	Data Value 
	Deviation from mean 

	4 
	-2 (4 – 6) 

	10 
	4 (10 - 6) 

	1 
	-5 (1- 6) 

	12 
	6 (12- 6) 

	3 
	-3 (3 - 6) 


Step 3: Square each deviation found in step 2 

	Data Value 
	Deviation from mean 
	Squared Deviation 

	4 
	-2 
	4 

	10 
	4 
	16 

	1 
	-5 
	25 

	12 
	6 
	36 

	3 
	-3 
	9 


Step 4: Add the squared deviations found in step 3 and divide by (n – 1) 

(4 + 16 + 25 + 36 + 9 ) / (5 – 1) = 90 / 4 = 22.5. 

This value is called the variance.

Step 5: Take square root of value found in step 4. This is the standard deviation, and is denoted by s. 

s = √22.5 = 4.74

Very roughly, the standard deviation is the average absolute size of the deviations from the mean (numbers found in Step 2).

Standard Deviation and Bell-Shaped Data

For any reasonably large sample of bell-shaped data, these facts are approximately true: 

· About 68% of the data will be in the interval mean ± s. 

· About 95% of the data will be in the interval mean ± (2 × s). 

· About 99.7% of the data will be in the interval mean ± (3 × s). 

This is called the Empirical Rule.
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Example of Empirical Rule

Suppose the pulse rates of n = 200 college men are more or less bell-shaped with a sample mean of = 72 and a standard deviation s = 6. 

· About 68% of the men have pulse rates in the interval 72 ± 6, which is 66 to 78. 

· About 95% of the men have pulse rates in the interval 72 ± (2 ×6), which is 60 to 84. 

· About 99.7% of the men have pulse rates in the interval 72 ± (3 ×6), which is 54 to 90



Finding Outliers Using IQR 

Some observations within our data set may fall outside the general scope of the remaining observations. Such observations are called outliers. To aid in determining whether any values in the data set can be considered outliers we can employ the IQR.

Example: From the participation rates of the 9 South Atlantic states given above, we found an IQR of 10. Using this we can determine if any of the 9 observations can be considered outliers. We do this by setting up a “fence” around Q1 and Q3. Any values that fall outside this fence are considered outliers. To build this fence we take 1.5 times the IQR and then subtract this value from Q1 and add this value to Q3. This gives us minimum and maximum fence posts in which to compare the values of the data set. 

Q1 – 1.5*IQR = 64.5 – 1.5*10 = 64.5 – 15 = 49.5 
Q3 + 1.5*IQR = 74.5 + 1.5*10 = 74.5 + 15 = 89.5 

Comparing the 9 observations we see that the only data set value outside these fence points is 20 indicating that the observation value of 20 would be considered an outlier for this set of data. 

Graphing the Five-Number Summary

The five-number summary (minimum, maximum, median, Q1, and Q3) are used to create a boxplot. A boxplot is very useful for displaying a single quantitative variable or side-by-side boxplots can be used to compare more than one quantitative variable. Using Minitab on the SAT data set we can create the side-by-side boxplots of the Participation Rates by the different Regions: 

1. Open the data set (Use this link to the data set, SAT_DATA.MTW, if you do not have the data set open) 

2. From the menu bar select Graph > Boxplot 

3. Select One Y With Groups 

4. Click inside the window under Graph Variables and from the list of variables click on Participation% and then click the Select button. This should place the variable Participation% in the Graph Variables window. 

5. Click inside the window under Categorical Variables For Grouping and from the list of variables click on Region and then click the Select button. This should place the variable Region in the Categorical Variables For Grouping window. 

6. Click OK 
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From this boxplot you can compare the distributions of Participation Rates across the nine levels of Region. In Minitab, if you place your mouse cursor over one of the boxplots, for example the boxplot for SA, a pop-up will appear that gives the values of Q1, Median, Q3, IQR, and the sample size. For SA these values are 64.5, 73, 74.5, 10, and 9 respectively. See how these values match those we found when we calculated the five-number summary for SA? If you place your mouse cursor on the “*” for SA the pop-up gives the value of this observation (20) and the row within the data set where this value resides (Row = 49). As we calculated by hand above, Minitab also identified the Participation% of 20 as an outlier for the South Atlantic region.

How is the boxplot created by the five-number summary? The box portion of the plot is made up of Q1 (the bottom of the box); Q3 (the top of the box); and the Median (the line in the box). The whiskers of the boxplot, those lines extending out of the box, are determined by 1.5*IQR. The length of these whiskers depends on the values of the data set. If you return to the boxplot you will notice that for any given boxplot the lengths of these whiskers are not necessarily identical (see the boxplot for the region ENC). These whisker lengths extend to the value of the data set for that region which is closest to the fence posts without extending past them. Using ENC to illustrate this concept, the lower fence post (8 – 1.5*39.5 = – 51.25) is less than 0 (obviously a participation rate of less than zero cannot exist since the lowest possible participation rate would be if no one took the SAT in that state, or 0%). The closest observed participation rate for ENC is 6% so the bottom whisker extends to 6. 

Using the boxplot to interpret the shape of the data is fairly straightforward. We consider the whiskers and the location of the median compared to Q1 and Q3. If the data were bell-shaped the median would very near the middle of the box and the whiskers would be of equal length. A data set that was skewed to the right, positively skewed, would be represented by a boxplot where the median was closer to Q1 and the upper whisker was longer than the lower whisker. The opposite would be true for a data set that was skewed to the left, negatively skewed: the median would be closer to Q3 and the lower whisker would be longer than the upper whisker. 

The figures 4, 5 and 6 show examples of the three different shapes based on a boxplot.

Figure 6: Skewed to the left.
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Figure 5: Skewed to the right. 
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Figure 4: Symmetric. 
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Summary

In this lesson we learned the following: 

· the importance of graphing your data

· how to interpret the shape of a distribution 

· what is a five-number summary and its interpretation 

· the meaning of descriptive statistics 

· what "average" means in statistics-speak 

· the relationship between mean and median of a distribution 

· some basic Minitab statistics and graphing methods 

Next, let's take a look at the homework problems for this lesson. This will give you a chance to put what you have learned to use...

 

Lesson: Relationships Between Two Variables 

Introduction

Let's get started! Here is what you will learn in this lesson.

Learning objectives for this lesson 

Upon completion of this lesson, you should be able to do the following: 

· Understand the relationship between the slope of the regression line and correlation,

· Comprehend the meaning of the Coefficient of Determination, R2,
· Now how to determine which variable is a response and which is an explanatory in a regression equation,

· Understand that correlation measures the strength of a linear relationship between two variables,

· Realize how outliers can influence a regression equation, and 

· Determine if variables are categorical or quantitative. 

Examining Relationships Between Two Variables 

Previously we considered the distribution of a single quantitative variable. Now we will study the relationship between two variables where both variables are qualitative, i.e. categorical, or quantitative. When we consider the relationship between two variables, there are three possibilities: 

1. Both variables are categorical. We analyze an association through a comparison of conditional probabilities and graphically represent the data using contingency tables. Examples of categorical variables are gender and class standing. 

2. Both variables are quantitative. To analyze this situation we consider how one variable, called a response variable, changes in relation to changes in the other variable called an explanatory variable. Graphically we use scatterplots to display two quantitative variables. Examples are age, height, weight (i.e. things that are measured). 

3. One variable is categorical and the other is quantitative, for instance height and gender. These are best compared by using side-by-side boxplots to display any differences or similarities in the center and variability of the quantitative variable (e.g. height) across the categories (e.g. Male and Female). 



Comparing Two Categorical Variables 

Understand that categorical variables either exist naturally (e.g. a person’s race, political party affiliation, or class standing), while others are created by grouping a quantitative variable (e.g. taking height and creating groups Short, Medium, and Tall). We analyze categorical data by recording counts or percents of cases occurring in each category. Although you can compare several categorical variables we are only going to consider the relationship between two such variables. 

Example

The Class Survey data set, (CLASS_SURVEY.MTW), consists of student responses to survey given last semester in a Stat200 course. We construct a two-way table showing the relationship between Smoke Cigarettes (row variable) and Gender (column variable). We create this table in Minitab by:

1. Opening the Class Survey data set. 

2. From the menu bar select Stat > Tables > Cross Tabulation and Chi-Square 

3. In the text box For Rows enter the variable Smoke Cigarettes and in the text box For Columns enter the variable Gender 

4. Under Display be sure the box is checked for Counts (should be already checked as this is the default display in Minitab). 

5. Click OK 
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The marginal distribution along the bottom (the bottom row All) gives the distribution by gender only (disregarding Smoke Cigarettes). The marginal distribution on the right (the values under the column All) is for Smoke Cigarettes only (disregarding Gender). Since there were more females (127) than males (99) who participated in the survey, we should report the percentages instead of counts in order to compare cigarette smoking behavior of females and males. This tells the conditional distribution of smoke cigarettes given gender, suggesting we are considering gender as an explanatory variable (i.e. a variable that we use to explain what is happening with another variable). These conditional percentages are calculated by taking the number of observations for each level smoke cigarettes (No, Yes) within each level of gender (Female, Male). For example, the conditional percentage of No given Female is found by 120/127 = 94.5%. To calculate these marginal probabilities using Minitab: 

1. Opening the Class Survey data set. 

2. From the menu bar select Stat > Tables > Cross Tabulation and Chi-Square 

3. In the text box For Rows enter the variable Smoke Cigarettes and in the text box For Columns enter the variable Gender 

4. Under Display be sure the box is checked for Counts and also check the box for Column Percents. 

5. Click OK 
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Although you do not need the counts, having those visible aids in the understanding of how the conditional probabilities of smoking behavior within gender are calculated. We can see from this display that the 94.49% conditional probability of No Smoking given the Gender is Female is found by the number of No and Female (count of 120) divided by then number of Females (count of 127). The data under Cell Contents tells you what is being displayed in each cell: the top value is Count and the bottom value is Percent of Column. Alternatively, we could compute the conditional probabilities of Gender given Smoking by calculating the Row Percents; i.e. take for example 120 divided by 209 to get 57.42%. This would be interpreted then as for those who say they do not smoke 57.42% are Females – meaning that for those who do not smoke 42.58% are Male (found by 100% – 57.42%). 

Simpson’s Paradox 

Hypothetically, suppose sugar and hyperactivity observational studies have been conducted; first separately for boys and girls, and then the data is combined. The following tables list these hypothetical results: 
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Notice how the rates for Boys (67%) and Girls (25%) are the same regardless of sugar intake. What we observe by these percentages is exactly what we would expect if no relationship existed between sugar intake and activity level. However, when we consider the data when the two groups are combined, the hyperactivity rates do differ: 43% for Low Sugar and 59% for High Sugar. This difference appears large enough to suggest that a relationship does exist between sugar intake and activity level. This phenomenon is known as Simpson’s Paradox, which describes the apparent change in a relationship in a two-way table when groups are combined. In this hypothetical example, boys tended to consume more sugar than girls, and also tended to be more hyperactive than girls. This results in the apparent relationship in the combined table. The confounding variable, gender, should be controlled for by studying boys and girls separately instead of ignored when combining. By definition, a confounding variable is a variable that when combined with another variable produces mixed effects compared to when analyzing each separately. By contrast, a lurking variable is a variable not included in the study but has the potential to confound. Consider the previous example where the combined statistics are analyzed then a researcher considers a variable such as gender. At this point gender would be a lurking variable as gender would not have been measured and analyzed.



Comparing Two Quantitative Variables 

As we did when considering only one variable, we begin with a graphical display. A scatterplot is the most useful display technique for comparing two quantitative variables. We plot on the y-axis the variable we consider the response variable and on the x-axis we place the explanatory or predictor variable. 

How do we determine which variable is which? In general, the explanatory variable attempts to explain, or predict, the observed outcome. The response variable measures the outcome of a study. One may even consider exploring whether one variable causes the variation in another variable – for example, a popular research study is that taller people are more likely to receive higher salaries. In this case, Height would be the explanatory variable used to explain the variation in the response variable Salaries.

In summarizing the relationship between two quantitative variables, we need to consider: 

1. Association/Direction (i.e. positive or negative)

2. Form (i.e. linear or non-linear) 

3. Strength (weak, moderate, strong)

Example 

We will refer to the Exam Data set, (Final.MTW), that consists of random sample of 50 students who took Stat200 last semester. The data consists of their semester average on mastery quizzes and their score on the final exam. We construct a scatterplot showing the relationship between Quiz Average (explanatory or predictor variable) and Final (response variable). Thus, we are studying whether student performance on the mastery quizzes explains the variation in their final exam score. That is, can mastery quiz performance be considered a predictor of final exam score? We create this graph in Minitab by: 

1. Opening the Exam Data set. 

2. From the menu bar select Graph > Scatterplot > Simple 

3. In the text box under Y Variables enter Final and under X Variables enter Quiz Average 

4. Click OK 
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Association/Direction and Form

We can interpret from this graph that there is a positive association between Quiz Average and Final: low values of quiz average are accompanied by lower final scores and the same for higher quiz and final scores. If this relationship were reversed, high quizzes with low finals, then the graph would have displayed a negative association. That is, the points in the graph would have decreased going from right to left. 

The scatterplot can also be used to provide a description of the form. From this example we can see that the relationship is linear. That is, there does not appear to be a change in the direction in the relationship. 

Strength 

In order to measure the strength of a linear relationship between two quantitative variables we use correlation. Correlation is the measure of the strength of a linear relationship. We calculate correlation in Minitab by (using the Exam Data): 

1. From the menu bar select Stat > Basic Statistics > Correlation 

2. In the window box under Variables Final and Quiz Average 

3. Click OK (for now we will disregard the p-value in the output) 

The output gives us a Pearson Correlation of 0.609 

Correlation Properties (NOTE: the symbol for correlation is r) 

1. Correlation is unit free. If we changed the final exam scores from percents to decimals the correlation would remain the same. 

2. Correlation, r, is limited to – 1 ≤ r ≤ 1. 

3. For a positive association, r > 0; for a negative association r < 0. 

4. Correlation, r, measures the linear association between two quantitative variables. 

5. Correlation measures the strength of a linear relationship only. (See the following Scatterplot for display where the correlation is 0 but the two variables are obviously related.) 

6. The closer r is to 0 the weaker the relationship; the closer to 1 or – 1 the stronger the relationship. The sign of the correlation provides direction only. 

7. Correlation can be affected by outliers 

Equations of Straight Lines: Review
The equation of a straight line is given by y = a + bx. When x = 0, y = a, the intercept of the line; b is the slope of the line: it measures the change in y per unit change in x.
Two examples:

	Data 1
	 
	Data 2

	x
	y
	 
	x
	y

	0
	3
	 
	0
	13

	1
	5
	 
	1
	11

	2
	7
	 
	2
	9

	3
	9
	 
	3
	7

	4
	11
	 
	4
	5

	5
	13
	 
	5
	3


For the 'Data 1' the equation is y = 3 + 2x ; the intercept is 3 and the slope is 2. The line slopes upward, indicating a positive relationship between x and y.

For the 'Data 2' the equation is y = 13 - 2x ; the intercept is 13 and the slope is -2. The line slopes downward, indicating a negative relationship between x and y. 

	Plot for Data 1 
	Plot for Data 2 

	[image: image23.png]



y = 3 + 2 x
	[image: image24.png]



y = 13 - 2 x 


The relationship between x and y is 'perfect' for these two examples—the points fall exactly on a straight line or the value of y is determined exactly by the value of x. Our interest will be concerned with relationships between two variables which are not perfect. The 'Correlation' between x and y is r = 1.00 for the values of x and y on the left and r = -1.00 for the values of x and y on the right.

Regression analysis is concerned with finding the 'best' fitting line for predicting the average value of a response variable y using a predictor variable x. 
 

	APPLET
Here is an applet developed by the folks at Rice University called "Regression by Eye". The object here is to give you a chance to draw what you this is the 'best fitting line". 

[image: image25.png]



Click the Begin button and draw your best regression line through the data. You may repeat this procedure several times. As you draw these lines, how do you decide which line is better? Click the Draw Regression line box and the correct regression line is plotted for you. How would you quantify how close your line is to the correct answer?


 

Least Squares Regression 

The best description of many relationships between two quantitative variables can be achieved using a straight line. In statistics, this line is referred to as a regression line. Historically, this term is associated with Sir Francis Galton who in the mid 1800’s studied the phenomenon that children of tall parents tended to “regress” toward mediocrity. 

Adjusting the algebraic line expression, the regression line is written as: 

[image: image26.png]



Here, bo is the y-intercept and b1 is the slope of the regression line. 

Some questions to consider are: 

1. Is there only one “best” line? 

2. If so, how is this line found?

3. Assuming we have properly fitted a line to the data, what does this line tell us? 

By answering the third question we should gain insight into the first two questions. 

We use the regression line to predict a value of [image: image27.png]s



for any given value of X. The “best” line would make the best predictions: the observed y-values should stray as little as possible from the line. The vertical distances from the observed values to their predicted counterparts on the line are called residuals and these residuals are referred to as the errors in predicting y. As in any prediction or estimation process you want these errors to be as small as possible. To accomplish this goal of minimum error, we select the method of least squares: that is, we minimize the sum of the squared residuals. Mathematically, the residuals and sum of squared residuals appears as follows: 

Residuals: [image: image28.png]



Sum of squared residuals: [image: image29.png]



A unique solution is provided through calculus (not shown!), assuring us that there is in fact one best line. Calculus solutions result in the following calculations for bo and b1:

[image: image30.png]
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Another way of looking at the least squares regression line is that when x takes its mean value then y should also takes its mean value. That is, the regression line should always pass through the point [image: image32.png]


. As to the other expressions in the slope equation, Sy refers to the square root of the sum of squared deviations between the observed values of y and mean of y; similarly, Sx refers to the square root of the sum of squared deviations between the observed values of x and the mean of x.

Example: Exam Data 

We can use Minitab to perform a regression on the Exam Data by:

1. From the menu bar select Stat > Regression > Regression 

2. In the window box by Response enter the variable Final 

3. In the window box by Predictors enter the variable Quiz Average 

4. Click the Storage button and select Residuals and Fits (you do not have to do this in order to calculate the line in Minitab, but we are doing this here for further explanation)

5. Click OK and OK again. 

[image: image33.png]Regression Analysis: Final versus Quiz Average

The regression equation is
Final = 12.1 + 0.751 Quiz Average

Predictor Coef SE Coef T e
Constant 12.12  11.94 1.01 0.315
Quiz Average 0.7513 0.1414 5.31 0.000

§=9.71152  R-Sq = 37.0%8 R-Sqladj] = 35.7%
Analysis of Variance

Source bF 55 ns H e
Regression 1 2663.7 2663.7 28.24 0.000

Residual Error 48 4527.1  94.3
Total 48 7180.7




Plus the following is the first five rows of the data in the worksheet:
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WOW! This is quite a bit of output. We will take this data apart and you will see that these results are not too complicated. Also, if you hang your mouse over various parts of the output pop-ups will appear with explanations.

The Output From the output we see: 

1. Fitted equation is “Final = 12.1 + 0.751 Quiz Average”. 

2. A value of R-square = 37.0% which is the coefficient of determination (more on that later) which if we take the square root of 0.37 we get 0.608 which is the correlation value that we found previously for this data set. 

NOTE: Remember that the square root of a value can be positive or negative (think of the square root of 2). Thus the sign of the correlation is related to the sign of the slope. 
3. The values under “T” and “P”, as well as the data under Analysis of Variance will be discussed in a future lesson. 

4. For the values under RESI1 and FITS1, the FITS are calculated by taking substituting the corresponding x-value in that row into the regression equation to attain the corresponding fitted y-value. 

For example, if we substitute the first Quiz Average of 84.44 into the regression equation we get: Final = 12.1 + 0.751*(84.44) = 75.5598 which is the first value in the FITS column. Using this value, we can compute the first residual under RESI by taking the difference between the observed y and this fitted : 90 – 75.5598 = 14.4402. Similar calculations are continued to produce the remaining fitted values and residuals. 

5. What does the slope of 0.751 tell us? The slope tells us how y changes as x changes. That is, for this example, as x, Quiz Average, increases by one percentage point we would expect, on average, that the Final percentage would increase by 0.751 percentage points, or by approximately three-quarters of a percent. 

Coefficient of Determination, R2 

The values of the response variable vary in regression problems (think of how not all people of the same height have the same weight), in which we try to predict the value of y from the explanatory variable x. The amount of variation in the response variable that can be explained (i.e. accounted for) by the explanatory variable is denoted by R2. In our Exam Data example this value is 37% meaning that 37% of the variation in the Final averages can be explained (now you know why this is also referred to as an explanatory variable) by the Quiz Averages. Since this value is in the output and is related to the correlation we mention R2 now; we will take a further look at this statistic in a future lesson. 

Residuals or Prediction Error 

As with most predictions about anything you expect there to be some error, that is you expect the prediction to not be exactly correct (e.g. when predicting the final voting percentage you would expect the prediction to be accurate but not necessarily the exact final voting percentage). Also, in regression, usually not every X variable has the same Y variable as we mentioned earlier regarding that not every person with the same height (x-variable) would have the same weight (y-variable). These errors in regression predictions are called prediction error or residuals. The residuals are calculated by taking the observed Y-value minus its corresponding predicted Y-value or [image: image35.png]


. Therefore we would have as many residuals as we do y observations. The goal in least squares regression is to select the line that minimizes these residuals: in essence we create a best fit line that has the least amount of error. 



Cautions about Correlation and Regression 

Influence Outliers 

In most practical circumstances an outlier decreases the value of a correlation coefficient and weakens the regression relationship, but it’s also possible that in some circumstances an outlier may increase a correlation value and improve regression. Figure 1 below provides an example of an influential outlier. Influential outliers are points in a data set that influence the regression equation and improve correlation. Figure 1 represents data gather on a persons Age and Blood Pressure, with Age as the explanatory variable. [Note: the regression plots were attained in Minitab by Stat > Regression > Fitted Line Plot.] The top graph in Figure 1 represents the complete set of 10 data points. You can see that one point stands out in the upper right corner, point of (75, 220). The bottom graph is the regression with this point removed. The correlation between the original 10 data points is 0.694 found by taking the square root of 0.481 (the R-sq of 48.1%). But when this outlier is removed, the correlation drops to 0.032 from the square root of 0.1%. Also, notice how the regression equation originally has a slope greater than 0, but with the outlier removed the slope is practically 0, i.e. nearly a horizontal line. This example is somewhat exaggerated, but the point illustrates the effect of an outlier can play on the correlation and regression equation. Such points are referred to as influential outliers. As this example illustrates you can see the influence the outlier has on the regression equation and correlation. Typically these influential points are far removed from the remaining data points in at least the horizontal direction. As seen here, the age of 75 and the blood pressure of 220 are both beyond the scope of the remaining data. 

[image: image36.png]Fig 1: Influential Outlier
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Correlation and Causation 

If we conduct a study and we establish a strong correlation does this mean we also have causation? That is, if two variables are related does that imply that one variable causes the other to occur? Consider smoking cigarettes and lung cancer: does smoking cause lung cancer. Initially this was answered as yes, but this was based on a strong correlation between smoking and lung cancer. Not until scientific research verified that smoking can lead to lung cancer was causation established. If you were to review the history of cigarette warning labels, the first mandated label only mentioned that smoking was hazardous to your health. Not until 1981 did the label mention that smoking causes lung cancer. (See warning labels). To establish causation one must rule out the possibility of lurking variable(s). The best method to accomplish this is through a solid design of your experiment, preferably one that uses a control group. 



Summary

In this lesson we learned the following: 

· the relationship between the slope of the regression line and correlation,

· the meaning of the Coefficient of Determination, R2,
· how to determine which variable is a response and which is an explanatory in a regression equation,

· that correlation measures the strength of a linear relationship between two variables,

· how outliers can influence a regression equation, and 

· determine if variables are categorical or quantitative. 

Think & Ponder!

Ponder the following, then move your cursor over the graphic to display the answers.


If you are asked to estimate the weight of a STAT 200 student, what will you use as a point estimate? (Mean weight of the class or median of the class.)

Now, if I tell you that the height of the student is 70 inches, can you give a better estimate of the person's weight?  (The answer is yes if you have some idea about how height and weight are related.)

Lesson: Gathering Data

Introduction

Let's get started! Here is what you will learn in this lesson.

Learning objectives for this lesson 

Upon completion of this lesson, you should be able to do the following: 

· Recognize and distinguish between various sampling schemes 

· Understand the importance of random sampling as it applies to the study of statistics 



Designing Samples 

Then entire group of individuals about which information is wanted is called the populations. It ma be somewhat abstract. The part of the population actually examined to gather information is the sample. It is more concrete and immediate than the population. 

Example

Identify the population and the sample in the following: 

1. A survey is carried out at a university to estimate the proportion of undergraduates living at home during the current term. Population: all undergraduates at the university; Sample: those undergraduates surveyed.

2. In 2005, investigators chose 400 teachers at random from the National Science Teachers Association list and polled them as to whether or not they believed in biblical creation (hypothetical scenario). 200 hundred of the teachers sampled responded. Population: National Science Teachers Association members; Sample: the 200 respondents.

3. A balanced coin is flipped 500 times and the number of heads is recorded. Population: all coin flips; Sample: the 500 coin flips.

Any sample taken should be selected at random; otherwise it may be prone to bias. Bias is the systematic favoring of certain outcomes. For example, people who volunteer for a treatment may bias results toward conclusions that the treatment offers an improvement over a current treatment. A sample should be selected using some probability sampling design which gives each individual or participant a chance of being selected. Four common probability sampling schemes are: 

1. Simple Random Sampling (SRS) – a simple random sample of size N consists of N individuals from the population chosen in such a way that every set of N individuals has an equal chance of being selected. 

2. Stratified Random Sampling – The population is divided into important subgroups (e.g. East and West; Freshmen, Sophomore, Junior, Senior) which are groups of individuals or subjects that are similar in a way that may affect their response – think of stratifying a university’s undergraduate population by race, gender, or nationality. Then separate simple random samples are taken from each subgroup. These subgroups are called strata. This is done to be sure every important subgroup is represented properly in the overall sample which will enhance the efficiency of this design. 

3. Cluster Sampling – The population is divided into several subgroups by geographic proximity or closeness of individuals to each other on a list. These subgroups are called clusters. Then some clusters are randomly picked to be in the sample. There may be further random sampling of individuals within the selected clusters. For instance, for an on campus survey, we might randomly pick a few dorms and only include some or all of the students from those dorms in the survey. Cluster sampling differs from Stratified sampling in that: 

· Cluster sampling is not initially concerned with similarities among the individuals. However, once the clusters are created one may have to account for any possible similarities. 

· In stratified sampling we create the subgroups based on some criteria – ethnicity, geographic region, and then random sampling of individuals or subjects is done. In Cluster sampling, clusters of individuals or subjects are randomly sampled. 

4. Multistage Sampling – Selects successively smaller groups from the population, ending with clusters of individuals. Most opinion polls are done in stages. For example, you may start by splitting your home state into regions. Then stratify within each region by rural, suburban, and urban. From these strata you would randomly select some communities, from which these would be divided by some fixed area (think by city blocks) – i.e. clusters. Finally, within these clusters all individuals would then be sampled. 

Taking a SRS is sampling without replacement, meaning that once a participant is selected this subject is not returned to the population to possibly again be selected. Think of choosing sides for team. You are a captain and your friend is a captain. Once you choose a player that player is not returned to the pool of players to be selected again: they are on your team. 

We can use Minitab to select a simple random sample. Suppose we wanted to randomly select 10 names from a class list. We could place those names into a column in Minitab (open the Name_List.MTW data set) and randomly select 10 using Minitab by: 

1. From the menu bar select Calc > Random Data > Sample from Columns 

2. Type 10 into the textbox for Sample _____ rows from columns 

3. Click the window box under Sample ____, and select the column Name 

4. Type c2 in the window box under Store Samples In. 

5. Click OK 

Since we are randomly sampling, the results will vary (try these steps again and see if you get the same 10 names). 



Designing Experiments 

Example 

Suppose some group claims that drinking caffeinated coffee causes hyperactivity college students, ages 18 to 22. How would this group produce data to determine the validity of this statement? 

1. Select some subset of college students of ages 18 to 22 and find their intake of caffeinated coffee. This would not be an experiment but rather an observational study: a part of the population is sampled and examined in order to gain information about the population. This is not an experiment because no treatment was imposed. Unfortunately, lurking variables can easily lead to unreliable results (e.g. other dietary intake, stress, family history). 

2. Give caffeinated coffee to a randomly sampled group of college students over a period of time and observe their behavior. This would be an experiment because a treatment is imposed: the caffeinated coffee. This design would be an improvement over the observational study in that we can better pin down the effects of the explanatory variable, intake of caffeinated coffee. 

The subjects on which an experiment is performed are called experimental units. If they are people, we call them subjects. A specific conditions applied to the units is called a treatment. An experiment has one or more explanatory variables called factors. Sometimes one factor involves treatments applied in varying amounts or values called levels.

Example

In case it is actually the coffee bean used to make the coffee rather than the chemical composition of caffeine that affects activity, we could design an experiment with three values for the variable “type of coffee bean”: African, South American, and Mexican. A second factor “amount of caffeine” could be included at two levels: small and large. Combining Factor A (type) at three levels with Factor B (amount) at two levels would result in a total of 3 x 2 = 6 different treatments. As for which subject gets which treatment, this is determined by our specific choice of design – an arrangement for the collection of the data – which should be governed by three basic principles: control, randomization, and replication. 



Basic Principles of Statistical Design of Experiments

Example 

A group of college students believe that regular consumption of a special Asian tea could benefit the health of patients in a nearby nursing home. Each week they go the rooms of 5 or 6 patients who agree to drink the hot tea. After a few months the students see considerable improvement in the conditions of those patients who received the tea. Is this an experiment? Yes – there is a treatment imposed: the Asian tea. Is it a good experiment? No – there is no control, no randomization, and not enough replication. 

1. In a good design, we control for the effects of outside variables. To avoid confounding the effect of the treatment with other variables, (e.g. welcomed attention, overall health), a comparison should be made. For example, while some patients receive Asian tea, other should receive another hot liquid, for example coffee of cocoa. The study in the example was biased because it systematically favored the outcome of improved well-being. Such bias is typical in situations where the placebo effect can come into play: even a dummy treatment, such as a sugar pill, can lead to perceived improvement. 

2. Randomization – relying on chance to decide which subjects are studied and which get what treatment – is usually the best way to ensure that bias does not creep into the initial selection. Then all treatments are applied to similar groups of experimental units. If patients are chosen at random, then the bias present in the selection of patients who welcomed treatment would be eliminated. Unfortunately subjects cannot be forced to participate, and so non-compliant subjects must be excluded. Random assignment to the Asian tea or a control beverage is certainly feasible, and eliminates possible bias from a particular type of person preferring tea and volunteering to then take tea instead of another beverage. 

3. Replication is essential: each treatment should be repeated on a large enough number of units to allow systematic effects to be seen. Suppose we selected 6 out of several hundred patients to receive Asian tea and 6 to receive coffee. If 3 out of 6 tea-patients show improvement, as opposed to 2 out of 6 coffee patients (50% versus 33.3%), was the tea beneficial? Alternatively, if 100 receive tea, 50 of whom improve, and 100 receive coffee, 33 of whom improve, would we then be more inclined to call the difference significant, at least statistically? In future lessons we will learn how to distinguish between outcomes that are statistically different or just different due to chance or sampling. 



Summary

Here is what you learned in this lesson...

You should be able to : 

· Recognize and distinguish between various sampling schemes 

· Understand the importance of random sampling as it applies to the study of statistics 

Think & Ponder!

Example: We want to decide whether Advil or Tylenol is more effective in reducing fever.

Ponder the following, then move your cursor over the graphic to display the statistical application example.


Method 1: Ask the subjects which one they use and ask them to rate the effectiveness. Is this an observational study or scientific study? (This is an observational study since we just observe the data and have no control on which subject to use what type of treatment.)

Method 2: Randomly assign half of the subjects to take Tylenol and the other half to take Advil. Ask the subjects to rate the effectiveness. Is this an observational study or scientific study?  (This is a scientific study since we can decide which subject to use what type of treatment. Thus the self selection bias will be eliminated.)

Lesson: Probability Distributions 

Introduction

Learning objectives for this lesson 

Upon completion of this lesson, you should be able to: 

· distinguish between discrete and continuous random variables

· explain the difference between population, parameter, sample, and statistic

· determine if a given value represents a population parameter or sample statistic

· find probabilities associated with a discrete probability distribution

· compute the mean and variance of a discrete probability distribution

· find probabilities associated with a binomial distribution

· find probabilities associated with a normal probability distribution using the standard normal table

· determine the standard error for the sample proportion and sample mean

· apply the Central Limit Theorem properly to a set of continuous data

Random Variables 

A random variable is numerical characteristic of each event in a sample space, or equivalently, each individual in a population. 

Examples: 

· The number of heads in four flips of a coin (a numerical property of each different sequence of flips). 

· Heights of individuals in a large population. 

Random variables are classified into two broad types 

· A discrete random variable has a countable set of distinct possible values. 

· A continuous random variable is such that any value (to any number of decimal places) within some interval is a possible value. 

Examples of discrete random variable: 

· Number of heads in 4 flips of a coin (possible outcomes are 0, 1, 2, 3, 4). 

· Number of classes missed last week (possible outcomes are 0, 1, 2, 3, ..., up to some maximum number) 

· Amount won or lost when betting $1 on the Pennsylvania Daily number lottery 

Examples of continuous random variables:
· Heights of individuals 

· Time to finish a test 

· Hours spent exercising last week. 

Note : In practice, we don't measure accurately enough to truly see all possible values of a continuous random variable. For instance, in reality somebody may have exercised 4.2341567 hours last week but they probably would round off to 4. Nevertheless, hours of exercise last week is inherently a continuous random variable. 



Probability Distributions: Discrete Random Variables

For a discrete random variable, its probability distribution (also called the probability distribution function) is any table, graph, or formula that gives each possible value and the probability of that value. Note : The total of all probabilities across the distribution must be 1, and each individual probability must be between 0 and 1, inclusive. 

Examples: 
(1) Probability Distribution for Number of Heads in 4 Flips of a coin

	Heads 
	0 
	1 
	2 
	3 
	4 

	Probability 
	1/16 
	4/16 
	6/16 
	4/16 
	1/16 


This could be found be listing all 16 possible sequences of heads and tails for four flips, and then counting how many sequences there are for each possible number of heads. 

(2) Probability Distribution for number of tattoos each student has in a population of students 

	Tattoos 
	0 
	1 
	2 
	3 
	4 

	Probability 
	0.850 
	0.120 
	0.015 
	0.010 
	0.005 


This could be found be doing a census of a large student population.   
Cumulative Probabilities 
Often, we wish to know the probability that a variable is less than or equal to some value. This is called the cumulative probability because to find the answer, we simply add probabilities for all values qualifying as "less than or equal" to the specified value. 

Example: Suppose we want to know the probability that the number of heads in four flips is 1 or less. The qualifying values are 0 and 1, so we add probabilities for those two possibilities. 

P(number of heads = 2) = P(number of heads = 0) + P (number of heads = 1) = (1/16)+(4/16) = 5/16 

  The cumulative distribution is a listing of all possible values along with the cumulative probability for each value 

Examples: 
(1) Probability Distribution and Cumulative Distribution for Number of Heads in 4 Flips 

	Heads 
	0 
	1 
	2 
	3 
	4 

	Probability 
	1/16 
	4/16 
	6/16 
	4/16 
	1/16 

	Cumulative Probability 
	1/16 
	5/16 
	11/16 
	15/16 
	1 


Each cumulative probability was found by adding probabilities (in second row) up to the particular column of the table. As an example, for 2 heads, we add probabilities for 0, 1, and 2 heads to get 11/16. This is the probability the number of heads is two or less. 

(2) Probability Distribution and Cumulative Distribution for number of tattoos each student has in a population of students 

	Tattoos 
	0 
	1 
	2 
	3 
	4 

	Probability 
	0.850 
	0.120 
	0.015 
	0.010 
	0.005 

	Cumulative Probability 
	0.850 
	0.970 
	0.985 
	0.995 
	1 


As an example, probability a randomly selected student has 2 or fewer tattoos = =0.985 (calculated as 0.850+0.120+0.015). 



Mean, also called Expected Value, of a Discrete Variable 
The phrase expected value is a synonym for mean value in the long run (meaning for many repeats or a large sample size). For a discrete random variable, the calculation is Sum of (value× probability) where we sum over all values (after separately calculating value× probability for each value), expressed as: 

E(X) = [image: image37.png]


, meaning we take each observed X value and multiply it by its respective probability. We then add these products to reach our expected value labeled E(X). [NOTE: the letter X is a common symbol used to represent a random variable. Any letter can be used.] 

Example : A fair six-sided die is tossed. You win $2 if the result is a “1”, you win $1 if the result is a “6” but otherwise you lose $1. 

The probability distribution for X = amount won or lost is 

	X 
	+2 
	+1 
	-1 

	Probability 
	1/6 
	1/6 
	4/6 


Expected Value = (2 × [image: image38.png]


) + (1 × [image: image39.png]


) + (-1× [image: image40.png]


) = -1/6 = -$0.17. 

The interpretation is that if you play many times, the average outcome is losing 17 cents per play. 

Example : Using the probability distribution for number of tattoos given above (not the cumulative!), 

The mean number of tattoos per student is 

Expected Value = (0 ×0.85) + (1 ×0.12) + (2×0.015) + (3×0.010) + (4×0.005) = 0.20. 

Standard Deviation of a Discrete Variable 
Knowing the expected value is not the only important characteristic one may want to know about a set of discrete numbers: one may also need to know the spread, or variability, of these data. For instance, you may "expect" to win $20 when playing a particular game (which appears good!), but the spread for this might be from losing $20 to winning $60. Knowing such information can influence you decision on whether to play.

To calculate the standard deviation we first must calculate the variance. From the variance, we take the square root and this provides us the standard deviation. Your book provides the following formula for calculating the variance:

[image: image41.png]


and the standard deviation is: [image: image42.png]



In this expression we substitute our result for E(X) into u , and u is simply the symbol used to represent the mean of some population .

However, an easier formula to use and remember for calculating the standard deviation is the following: 

[image: image43.png]o =Y xip, i



and again we substitute E(X) for μ. 

The standard deviation is then found by taking the square root of the variance. Notice in the summation part of this equation that we only square each observed X value and not the respective probability.

Example : Going back to the first example used above for expectation involving the die, we would calculate the standard deviation for this discrete distribution by first calculating the variance: 
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So the standard deviation would be the square root of 1.472, or 1.213 

Binomial Random Variable 
This is a specific type of discrete random variable. A binomial random variable counts how often a particular event occurs in a fixed number or tries. For a variable to be a binomial random variable, these conditions must be met: 

· There are a fixed number of trials (a fixed sample size). 

· On each trial, the even of interest either occurs or does not. 

· The probability of occurrence (or not) is the same on each trial. 

· Trials are independent of one another. 

Examples of binomial random variables: 
· Number of correct guesses at 30 true-false questions when you randomly guess all answers 

· Number of winning lottery tickets when you buy 10 tickets of the same kind 

· Number of left-handers in a randomly selected sample of 100 unrelated people 

Notation 
n = number of trials (sample size) 

p = probability event of interest occurs on any one trial 

Example : For the guessing at true questions example above, n = 30 and p = .5 (chance of getting any one question right). 

Probabilities for binomial random variables 
The conditions for being a binomial variable lead to a somewhat complicated formula for finding the probability any specific value occurs (such as the probability you get 20 right when you guess as 20 True-False questions.) 

We'll use Minitab to find probabilities for binomial random variables. Don't worry about the “by hand” formula. However, for those of you who are curious, the by hand formula for the probability of getting a specific outcome in a binomial experiment is:
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Evaluating the Binomial Distribution

One can use the formula to find the probability or alternatively, use Minitab to find the probability. In the homework, you may use the one that you are more comfortable with unless specified otherwise.

Example Minitab: Using Minitab, find P(x) for n = 20, x =3, and [image: image47]= 0.4.

Calc > Probability Distributions > Binomial

Choose Probability since we want to find the probability x = 3. Choose input constant and type in 3 since that is the value you want to evaluate the probability at. {NOTE: The following graphic is from Minitab Version 14. If using Version 15, Probability of Success has been edited to Event Probability.
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Minitab output:
Probability Density Function

Binomial with n = 20 and p = 0.4

	x
	P(X = x)

	3.00
	0.0123


 

In the following example, we illustrate how to use the formula to compute binomial probabilities. If you don't like to use the formula, you can also just use Minitab to find the probabilities.

Example by hand:Cross-fertilizing a red and a white flower produces red flowers 25% of the time. Now we cross-fertilize five pairs of red and white flowers and produce five offspring.

Find the probability that:

a. There will be no red flowered plants in the five offspring.

X = # of red flowered plants in the five offspring. Here, the number of red flowered plants has a binomial distribution with n = 5, p = 0.25.

P (X = 0) = [image: image49.png]Sl o s
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= 1 (0.25)0 (0.75)5 = 0.237

b. Cumulative Probability There will less than two red flowered plants.

Answer:
P(X is 1 or less) = P(X = 0) + P(X = 1) =
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= 5 · (0.25)4 · (0.75)1 + (0.25)5 


=0.015 + 0.001 = 0.016

In the previous example, part a was finding the P(X = x) and part b was finding P(X <= x). This latter expression is called finding a cumulative probability because you are finding the probability that has accumulated from the minimum to some point, i.e. from 0 to 1 in this example

To use Minitab to solve a cumulative probability binomial problem, return to Calc > Probability Distributions > Binomial as shown above. Now however, select the radio button for Cumulative Probability and then enter the respective Number of Trials (i.e. 5), Event Probability (i.e. 0.25), and click the radio button for Input Constant and enter the x-value (i.e. 1).

Expected Value and Standard Deviation for Binomial random variable 
The formula given earlier for discrete random variables could be used, but the good news is that for binomial random variables a shortcut formula for expected value (the mean) and standard deviation are: 

Expected Value = np Standard Deviation = [image: image51.png]



After you use this formula a couple of times, you'll realize this formula matches your intuition. For instance, the “expected” number of correct (random) guesses at 30 True-False questions is np = (30)(.5) = 15 (half of the questions). For a fair six-sided die rolled 60 times, the expected value of the number of times a “1” is tossed is np = (60)(1/6) = 10. The standard deviation for both of these would be, for the True-False test [image: image52.png]JB0O035)1-03) =VT5=274
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Probability Distributions: Continuous Random Variable

Density Curves 

Previously we discussed discrete random variables, and now we consider the contuous type. A continuous random variable is such that all values (to any number of decimal places) within some interval are possible outcomes. A continuous random variable has an infinite number of possible values so we can't assign probabilities to each specific value. If we did, the total probability would be infinite, rather than 1, as it is supposed to be 

To describe probabilities for a continuous random variable, we use a probability density function. A probability density function is a curve such that the area under the curve within any interval of values along the horizontal gives the probability for that interval. 



Normal Random Variables 

The most commonly encountered type of continuous random variable is a normal random variable , which has a symmetric bell-shaped density function. The center point of the distribution is the mean value, denoted by μ (pronounced "mew"). The spread of the distribution is determined by the variance, denoted by σ2 (pronounced "sigma squared") or by the square root of the variance called standard deviation, denoted by σ (pronounced "sigma"). 

Example : Suppose vehicle speeds at a highway location have a normal distribution with mean μ = 65 mph and standard deviation s = 5 mph. The probability density function is shown below. Notice that the horizontal axis shows speeds and the bell is centered at the mean (65 mph). 
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Probability for an Interval = Area under the density curve in that interval 
The next figure shows the probability that the speed of a randomly selected vehicle will be between 60 and 73 mile per hour, with this probability equal to the area under the curve between 60 and 73. 
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Empirical Rule Review 
Recall that our first lesson we learned that for bell-shaped data, about 95% of the data values will be in the interval mean ± (2 × std. dev) . In our example, this is 65 ± (2 × 5), or 55 to 75. The next figure shows that the probability is about 0.95 (about 95%) that a randomly selected vehicle speed is between 55 and 75. 
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The Empirical Rule also stated that about 99.7% (nearly all) of a bell-shaped dataset will be in the interval mean ± (3 × std. dev) . This is 65 ± (3 × 5), or 50 to 80 for example. Notice that this interval roughly gives the complete range of the density curve shown above. 



Finding Probabilities for a Normal Random Variable 

Remember that the cumulative probability for a value is the probability less than or equal to that value. Minitab, Excel, and the TI-83 series of calculators will give the cumulative probability for any value of interest in a specific normal curve. 

For our example of vehicle speeds, here is Minitab output showing that the probability = 0.9542 that the speed of a randomly selected vehicle is less than or equal to 73 mph. 
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To find this probability, use Calc>Probability Distribution> Normal, specify the mean and standard deviation and enter the value of interest as "Input Constant." Here's what it looks like for our example. 
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Here is a figure that illustrates the cumulative probability we found using this procedure. 
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"Greater than" Probabilities 

Sometimes we want to know the probability that a variable has a value greater than some value. For instance, we might want to know the probability that a randomly selected vehicle speed is greater than 73 mph, written P(X > 73). 

For our example, probability speed is greater than 73 = 1 - 0.9452 = 0.0548. 

•  The general rule for a "greater than" situation is 

P (greater than a value) = 1 - P(less than or equal to the value) 

Example : Using Minitab we can find that the probability = 0.1587 that a speed is less than or equal to 60 mph. Thus the probability a speed is greater than 60 mph = 1 - 0.1587 = 0.8413.

The relevant Minitab output and a figure showing the cumulative probability for 60 mph follows: 
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"In between" Probabilities 

Suppose we want to know the probability a normal random variable is within a specified interval. For instance, suppose we want to know the probability a randomly selected speed is between 60 and 73 mph. The simplest approach is to subtract the cumulative probability for 60 mph from the cumulative probability for 73. The answer is 

Probability speed is between 60 and 73 = 0.9452 − 0.1587 = 0.7875. 

This can be written as P(60 < X < 73) = 0.7875, where X is speed. 

•  The general rule for an "in between" probability is 

P( between a and b ) = cumulative probability for value b − cumulative probability for value a 


Finding Cumulative Probabilities 

Using the Standard Normal Table in the appendix of textbook or see a copy at Standard Normal Table
Table A.1 in the textbook gives normal curve cumulative probabilities for standardized scores. 

· A standardized score (also called z-score) is [image: image62.png]value—mean x-—U
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· Row labels of Table A.1 give possible z-scores up to one decimal place. The column labels give the second decimal place of the z-score. 

The cumulative probability for a value equals the cumulative probability for that value's z-score. Here, probability speed less than or equal 73 mph = probability z-score less than or equal 1.60. How did we arrive at this z-score?

Example 
In our vehicle speed example, the standardized scores for 73 mph is 

[image: image63.png]13-65
2=




. 

We look in the ".00" column of the "1.6" row (1.6 plus .00 equals 1.60) to find that the cumulative probability for z = 1.60 is 0.9452, the same value we got earlier as the cumulative probability for speed = 73 mph. 

[image: image64.png]: 0 o @ ” o 0 % o ] ]

15| e e w4 % uS %G BB %5 55 %6




Example
For speed = 60 the z-score is 

[image: image65.png]1.00




. 

Table A.1 gives this information: 
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The cumulative probability is .1587 for z = -1.00 and this is also the cumulative probability for a speed of 60 mph. 

  

Example
Suppose pulse rates of adult females have a normal curve distribution with mean μ =75 and standard deviation s = 8. What is the probability that a randomly selected female has a pulse rate greater than 85 ? Be careful ! Notice we want a "greater than" and the interval we want is entirely above average, so we know the answer must be less than 0.5. 

If we use Table A.1, the first step is to calculate a z-score of 85. 
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Information from Table A.1 is
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Use the "05" column to find that the cumulative probability for z = 1.25 is 0.8944. 

This is not yet the answer. This is the probability the pulse is less than or equal to 85. We want a greater than probability so the answer is 

P(greater than 85) = 1 - P(less than or equal 85) = 1 − 0.8944 = 0.1056. 


Finding Percentiles 
We may wish to know the value of a variable that is a specified percentile of the values. 

· We might ask what speed is the 99.99 th percentile of speeds at the highway location in our earlier example. 

· We might want to know what pulse rate is the 25 th percentile of pulse rates. 

In Minitab, we can find percentiles using the Calc>Probability Distributions> Normal but we have to make two changes to what we did before. (1) Click on the "Inverse Cumulative Probability" radio button (rather than cumulative probability) and (2) enter the percentile ranking as a decimal fraction in the "Input Constant" box. 

· The 99.99 th percentile of speeds (when mean = 65 and standard deviation = 5) is about 83.6 mph. Output from Minitab follows. Notice that now the specified cumulative probability is given first, and then the corresponding speed. 
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· The 25 th percentile of pulse rates (when μ = 75 and s= 8) is about 69.6. Relevant Minitab output is 
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Normal Approximation to the Binomial 
Remember binomial random variables from last week's discussion? A binomial random variable can also be approximated by using normal random variable methods discussed above. This approximation can take place as long as: 

1. The population size must be at least 10 times the sample size. 

2. np = 10 and n(1 − p) = 10. [These constraints take care of population shapes that are unbalanced because p is too close to 0 or to 1.] 

The mean of a binomial random variable is easy to grasp intuitively: Say the probability of success for each observation is 0.2 and we make 10 observations. Then on the average we should have 10 * 0.2 = 2 successes. The spread of a binomial distribution is not so intuitive, so we will not justify our formula for standard deviation. 

If sample count X of successes is a binomial random variable for n fixed observations with probability of success p for each observation, then X has a mean and standard deviation as discussed in section 8.4 of: 

Mean = np and standard deviation = [image: image71.png]



And as long as the above 2 requirements are for n and p are satisfied, we can approximate X with a normal random variable having the same mean and standard deviation and use the normal calculations discussed previously in these notes to solve for probabilities for X. 

Review of Finding Probabilities
[image: image72.png]


Click on the Inspect icon for an audio/visual example for each situation described. When reviewing any of these examples keep in that they apply when:

1. The variable in question follows a normal, or bell-shaped, distribution

2. If the variable is not in standardized, then you need to standardized the value first by [image: image73.png]value—mean x-—U
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	Finding "Less Than" Probability
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	Finding "Between" Probability

	


	Finding "Either / Or" Probability




Population Parameters and Sample Statistics 

S1 - A survey is carried out at a university to estimate the proportion of undergraduates living at home during the current term. Population: undergraduates at the university Parameter: the true proportion of undergraduates that live at home Sample: the undergraduates surveyed Statistic: the proportion of the sampled students who live at home - used to estimate the true proportion 

S2 - A study is conducted to find the average hours college students spend partying on the weekend. Population: all college students Parameter: the true mean number of hours college students spend partying on the weekend Sample: the students sampled for the study Statistic: the mean hours of weekend partying calculated from the sample 

S1 is concerned about estimating a proportion p where p represents the true (typically unknown) parameter and [image: image78.png]


[pronounced "p-hat"] represents the statistic calculated from the sample 

S2 is concerned about estimating a mean u where u [pronounced "mew"] represents the true (typically unknown) parameter and [image: image79.png]


[pronounce "x-bar"] represents the statistic calculated from the sample. 

In either case the statistic is used to estimate the parameter. The statistic can vary from sample to sample, but the parameter is understood to be fixed.

The statistic, then, can take on various values depending on the result of repeated random sampling. The distribution of these possible values is known as the sampling distribution.
Overview of symbols

The following table of symbols provides some of the common notation that we will see through the remaing sections.
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The difference between "paired" samples and "independent" samples can be most easily explained by the situation where the observations are taken on the same individual (e.g. measure a person's stress level before and after an exam) where independent would consist of taking observations from two distinct groups (e.g. measure the stress levels of men and women before an exam and compare these stress levels). An exception to this a situation that involves analyzing spouses. In such cases, spousal data is often linked as paired data.

Sampling Distributions of Sample Statistics 

Two common statistics are the sample proportion, [image: image81.png]


, (read as “pi-hat”) and sample mean, [image: image82.png]


, (read as “x-bar”). Sample statistics are random variables and therefore vary from sample to sample. For instance, consider taking two random samples, each sample consisting of 5 students, from a class and calculating the mean height of the students in each sample. Would you expect both sample means to be exactly the same? As a result, sample statistics also have a distribution called the sampling distribution. These sampling distributions, similar to distributions discussed previuosly, have a mean and standard deviation. However, we refer to the standard deviation of a sampling distribution as the standard error. Thus, the standard error is simply the standard deviation of a sampling distribituion. Often times people will interchange these two terms. This is okay as long as you understand the distinction between the two: standard error refers to sampling distributions and standard deviation refes to probability distributions.

Sampling Distributions for Sample Proportion, [image: image83.png]



If numerous repetitions of samples are taken, the distribution of [image: image84.png]


is said to approximate a normal curve distribution. Alternatively, this can be assumed if BOTH n*p and n *(1 - p) are at least 10. [SPECIAL NOTE: Some textbooks use 15 instead of 10 believing that 10 is to liberal. We will use 10 for our discussions.] Using this, we can estimate the true population proportion, p, by [image: image85.png]


and the true standard deviation of p by s.e.( [image: image86.png]


) = [image: image87.png]‘\‘P(l’l’)



, where s.e.( [image: image88.png]


) is interpreted as the standard error of [image: image89.png]



Probabilities about the number X of successes in a binomial situation are the same as probabilities about corresponding proportions. 

In general, if np >= 10 and n(1- p) >= 10, the sampling distribution of [image: image90.png]


is about normal with mean of p and standard error SE([image: image91.png]


) = [image: image92.png]‘\‘P(l’l’)



. 

Example. Suppose the proportion of all college students who have used marijuana in the past 6 months is p = .40. For a class of size N = 200, representative of all college students on use of marijuana, what is the chance that the proportion of students who have used mj in the past 6 months is less than .32 (or 32%)? 

Solution. The mean of the sample proportion [image: image93.png]


is p and the standard error of [image: image94.png]


is SE([image: image95.png]


) = [image: image96.png]‘\‘P(l’l’)



. For this marijuana example, we are given that p = .4. We then determine SE([image: image97.png]


) = [image: image98.png]‘\‘P(l’l’)



= [image: image99.png]‘\‘P(l’l’)



= [image: image100.png][(ha-4



= 0.0346 

So, the sample proportion [image: image101.png]


is about normal with mean p = .40 and SE([image: image102.png]


) = 0.0346. 

The z-score for .32 is z = (.32 - .40) / 0.0346 = -2.31. Then using Standard Normal Table
Prob( [image: image103.png]


< .32) = Prob(Z <. -2.31) = 0.0104. 

Question to ponder: If you observed a sample proportion of .32 would you believe a claim that 40% of college students used mj in the past 6 months? Or would you think the proportion is less than .40? 

Sampling Distribution of the Sample Mean [image: image104.png]



The central limit theorem states that if a large enough sample is taken (typically n > 30) then the sampling distribution of [image: image105.png]


is approximately a normal distribution with a mean of μ and a standard deviation of [image: image106.png]Jn



. Since in practice we usually do not know μ or σ we estimate these by [image: image107.png]


and [image: image108.png]


respectively. In this case s is the estimate of σ and is the standard deviation of the sample. The expression [image: image109.png]


is known as the standard error of the mean, labeled s.e.( [image: image110.png]


) 
Simulation: Generate 500 samples of size heights of 4 men. Assume the distribution of male heights is normal with mean m = 70" and standard deviation s = 3.0". Then find the mean of each of 500 samples of size 4. 

Here are the first 10 sample means: 

70.4    72.0    72.3    69.9    70.5    70.0    70.5    68.1    69.2    71.8 
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Theory says that the mean of ( [image: image112.png]


) = μ = 70 which is also the Population Mean and SE( [image: image113.png]


) = [image: image114.png]5 El



= [image: image115.png]


= 1.50.
Simulation shows: Average (500 [image: image116.png]


's) = 69.957 and SE(of 500 [image: image117.png]


's) = 1.496
Change the sample size from n = 4 to n = 25 and get descriptive statistics: 
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Theory says that the mean of ( [image: image119.png]


) = μ = 70 which is also the Population Mean and SE( [image: image120.png]


) = [image: image121.png]5 El



= [image: image122.png]


= 0.60.
Simulation shows: Average (500 [image: image123.png]


's) = 69.983 and SE(of 500 [image: image124.png]


's) = 0.592
Sampling Distribution of Sample Mean [image: image125.png]


from a Non-Normal Population
Simulation: Below is a Histogram of Number of Cds Owned by PSU Students. The distribution is strongly skewed to the right. 
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Assume the Population Mean Number of CDs owned is μ = 84 and s = 96

Let's obtain 500 samples of size 4 from this population and look at the distribution of the 500 x-bars:
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Theory says that the mean of ( [image: image129.png]


) = μ = 84 which is also the Population Mean the SE( [image: image130.png]


) = 48 = [image: image131.png]



Simulation shows Average(500 [image: image132.png]


's) = 81.11 and SE(500 [image: image133.png]


's for samples of size 4) = 45.1
Change the sample size from n = 4 to n = 25 and get descriptive statistics and curve: 
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Theory says that the mean of ( [image: image136.png]


) = μ = 84 which is also the Population Mean and the SE( [image: image137.png]


) = [image: image138.png]


= 19.2 Simulation shows Average(500 [image: image139.png]


's) = 83.281 and SE(500 [image: image140.png]


's for samples of size 25) = 18.268. A histogram of the 500 [image: image141.png]


's computed from samples of size 25 is beginning to look a lot like a normal curve. 

i. The Law of Large Numbers says that as the sample size increases the sample mean will approach the population mean. 

ii. The Central Limit Theorem says that as the sample size increases the sampling distribution of [image: image142.png]


(read x-bar) approaches the normal distribution. We see this effect here for n = 25. Generally, we assume that a sample size of n = 30 is sufficient to get an approximate normal distribution for the distribution of the sample mean. 

iii. The Central Limit Theorem is important because it enables us to calculate probabilities about sample means. 

Example. Find the approximate probability that the average number of CDs owned when 100 students are asked is between 70 and 90. 

Solution. Since the sample size is greater than 30, we assume the sampling distribution of [image: image143.png]


is about normal with mean m = 84 and SE( [image: image144.png]


) = [image: image145.png]5 El



= [image: image146.png]


= 9.6. We are asked to find Prob( 70 < [image: image147.png]


< 90). The z-scores for the two values are 

for 90: z = (90 - 84)/ 9.6 = 0.625 and for 70: z = (70-84)/9.6 = -1.46. From tables of the normal distribution we get P( -1.46 < Z < 0.625) = .734 - .072 = .662. 

Suppose the sample size was 1600 instead of 100. Then the distribution of [image: image148.png]


would be about normal with mean 84 and standard deviation [image: image149.png]5 El



= [image: image150.png]96
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= 96 / 40 = 2.4. From the empirical rule we know that almost all x-bars for samples of size 1600 will be in the interval 

84 ± (3)(2.4) or in the interval 84 ± 7.2 or between 76.8 and 91.2. The Law of Large Numbers says that as we increase the sample size the probability that the sample mean approaches the population mean is 1.00!

	APPLET
Here is an applet developed by the folks at Rice University that simulates "sampling distribution". The object here is to give you a chance to explore various aspects of sampling distributions. When the applet begins, a histogram of a normal distribution is displayed at the topic of the screen. 

The distribution portrayed at the top of the screen is the population from which samples are taken. The mean of the distribution is indicated by a small blue line and the median is indicated by a small purple line. Since the mean and median are the same, the two lines overlap. The red line extends from the mean one standard deviation in each direction. Note the correspondence between the colors used on the histogram and the statistics displayed to the left of the histogram. 

The second histogram displays the sample data. This histogram is initially blank. The third and fourth histograms show the distribution of statistics computed from the sample data. The number of samples (replications) that the third and fourth histograms are based on is indicated by the label "Reps=." 

Basic Operation

The simulation is set to initially sample five numbers from the population, compute the mean of the five numbers, and plot the mean. Click the "Animated sample" button and you will see the five numbers appear in the histogram. The mean of the five numbers will be computed and the mean will be plotted in the third histogram. Do this several times to see the distribution of means begin to be formed. Once you see how this works, you can speed things up by taking 5, 1,000, or 10,000 samples at a time. 

[image: image151.png]



Notice that as you increase the sample size, regardless of the shape you create, the distribution (i.e. look at the histogram) becomes more bell-shaped. This is the theoretical meaning behind the central limit theorem: as sample size increases, then despite that the population from which the sample originated is not normal (e.g. uniform or chi-square), the sample mean will approximate a normal distribution 




Review of Sampling Distributions 

In later part of the last lesson we discussed finding the probability for a continuous random variable that followed a normal distribution. We did so by converting the observed score to a standardized z-score and then applying Standard Normal Table. For example:

IQ scores are normally distributed with mean, μ, of 110 and standard deviation, σ, equal to 25. Let the random variable X be a randomly chosen score. Find the probability of a randomly chosen score exceeding a 100. That is, find P(X > 100). To solve, 
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But what about situations when we have more than one sample, that is the sample size is greater than 1? In practice, usually just one random sample is taken from a population of quantitative or qualitative values and the statistic [image: image153.png]


the sample mean or [image: image154.png]


the sample proportion, respectively, is measured - one time only. For instance, if we wanted to estimate what proportion of PSU students agreed with the President's explanation to the rising tuition costs we would only take one random sample, of some size, and use this sample to make an estimate. We would not continue to take samples and make estimates as this would be costly and inefficient. For samples taken at random, sample mean {or sample proportion} is a random variable. To get an idea of how such a random variable behaves we consider this variable's sampling distribution which we discussed previously in this lesson.

Consider the population of possible rolls X for a single six-side die has a mean, μ, equal to 3.5 and a standard deviation, σ, equal to 1.7. [If you do not believe this recall our discussion of probabilities for discrete random variables. For the six-side die you have six possible outcomes each with the same 1/6 probability of being rolled. Applying your recent knowledge, calculate the mean and standard deviation and see what you get!] If we rolled the die twice, the sample mean, [image: image155.png]


of these two rolls can take on various values based on what numbers come up. Since these results are subject to the laws of chance they can be defined as a random variable. From the beginning of the semester we can apply what we learned to summarize distributions by its center, spread, and shape. 

1. Sometimes the mean roll of 2 dice will be less than 3.5, other times greater than 3.5. It should be just as likely to get a lower than average mean that it is to get a higher than average mean, but the sampling distribution of the sample mean should be centered at 3.5.

2. For the roll of 2 dice, the sample mean could be spread all the way from 1 to 6 - think if two "1s" or two "6s" are tossed.

3. The most likely mean roll from the two dice is 3.5 - all combinations where the sum is 7. The lower and higher the mean rolls, the less likely they are to occur. So the shape of the distribution of the sample means from two rolls would take the form of a triangle.

If we increase the sample size, i.e. the number of rolls, to say 10, then this sample mean is also a random variable.

1. Sometimes the mean roll of 10 dice will be less than 3.5 and sometimes greater than 3.5. Similar to when we rolled the dice 2 times, the sample distribution of [image: image156.png]


for 10 rolls should be centered at 3.5.

2. For 10 rolls, the distribution of the sample mean would not be as spread as that for 2 rolls. Getting a "1" or a "6" on all 10 rolls will almost never occur.

3. The most likely mean roll is still 3.5 with lower or higher mean rolls getting progressively less likely. But now there is a much better chance of the for the sample mean of the 10 rolls to be close to 3.5, and a much worse chance for this sample mean to be near 1 or 6. Therefore, the shape of the sampling distribution for 10 rolls bulges at 3.5 and tapers off at either end - ta da! The shape looks bell-shaped or normal!

This die example illustrates the general result of the central limit theorem: regardless of the population distribution (the distribution for the die is called a uniform distribution because each outcome is equally likely) the distribution of the sample mean will approach normal as sample size increases and the sample mean, [image: image157.png]


has the following characteristics:

1. The distribution of [image: image158.png]


is centered at μ
2. The spread of [image: image159.png]


can be measured by its standard deviation, σ, equal to [image: image160.png]Jn



. 

Example
Assume women's heights are normally distributed with μ = 64.5 inches and σ = 2.5 inches. Pick one women at random. According to the Empirical Rule, the probability is: 

68% that her height X is between 62 inches and 68 inches

95% that her height X is between 59.5 inches and 69.5 inches

99.7% that her height X is between 57 inches and 72 inches

Now pick a random sample of size 25 women. The sample mean height, [image: image161.png]


is normal with expected value (i.e. mean) of 64.5 inches and standard deviation, [image: image162.png]Jn



, equal to 0.5. The probability is:

68% that their sample mean height [image: image163.png]


is between 64 inches and 65 inches

95% that their sample mean height [image: image164.png]


is between 63.5 inches and 65.5 inches

99.7% that their sample mean height [image: image165.png]


is between 63 inches and 66 inches

Using Standard Normal Table for more exact probabilities instead of the Empirical Rule, what is the probability that the sample mean height of 25 women is less than 63.75 inches? 
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Proportions

Similar laws apply for proportions. The differences are:

1. For the Central Limit Theorem to apply, we require that both nρ >= 10 and n(1 - ρ) >= 10, where ρ is the true population proportion. If ρ is unknown then we can substitute the sample proportion, [image: image167.png]


.

2. The distribution of the sample proportion, [image: image168.png]


, will have a mean equal to ρ and standard deviation of [image: image169.png]‘\‘P(l’l’)



.

To find probabilities associated with some [image: image170.png]


we follow similar calculations as that for sample means:

[image: image171.png]Pp <f)=P(Z < )= P(Z <z) and use Table Al




Think & Ponder! 

Given P(A) = 0.6, P(B) = 0.5, and P(A [image: image172.png]


B) = 0.2.



Find P([image: image174.png]


). Work out your answer first, then click the graphic to compare answers. Answer: P([image: image175.png]


) = 1 - P(A) = 0.4



Find P(A [image: image177.png]
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). Answer: P(A [image: image179.png]
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) = P(A) - P(A [image: image181.png]


B) = 0.6 - 0.2 = 0.4

[image: image182.png]



Work out your answer first, then click the graphic to compare answers. 



Find P(B [image: image184.png]
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). Work out your answer first, then click the graphic to compare answers. Answer: P(B [image: image186.png]
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) = P(B) - P(A [image: image188.png]


B) = 0.5 - 0.2 = 0.3



Find P(A [image: image190.png]


B). Work out your answer first, then click the graphic to compare answers. Answer: P(A [image: image191.png]


B) = P(A) + P(B) - P(A [image: image192.png]


B) = 0.6 + 0.5 - 0.2 = 0.9

Independent Versus Mutually Exclusive

Remark: Independent is very different from mutually exclusive.

In fact, mutually exclusive events are dependent. If A and B are mutually exclusive events, there is nothing in A [image: image193.png]


B, and thus:

P(A [image: image194.png]


B) = 0 [image: image195.png]


P(A) P(B)



From an urn with 6 red balls and 4 blue balls, two balls are picked randomly without replacement. Find the probability that both balls picked are red. Work out your answer first, then click the graphic to compare answers. Answer:
P (both balls picked are red)
=P({first ball red} [image: image197]{second ball red})
=P(first ball red) P(second ball red | first ball red)
[image: image198.png]





Let A and B be the following two happy events.

A: get a job, B: buy a new car.

It is a given that P(A) = 0.9, P(B) = 0.7. What is the probability of double happiness: that you get a job and buy a new car? In other words, we want to find P(A [image: image200.png]


B). Work out your answer first, then click the graphic to compare answers. Answer: There is not yet enough information to answer the question.

First, we will ask whether A, B are independent. In this case, the simplistic approach of saying that the two events are independent is not realistic. Thus, we will think harder and try to assess either P(A | B) or P(B | A)? Thinking about it, it is not hard to assess the probability of buying a new car knowing that he/she gets a job. For example, if one thinks that P(B | A) = 0.75 (this probability is subjectively chosen and may be different for different individuals), the person happens to think that the chance to buy a new car knowing that he/she gets a job is 75%.

P(A [image: image201.png]


B) = P(A) P(B|A) = (0.9)(0.75) = 0.675

Lesson: Confidence Intervals

Introduction

Learning objectives for this lesson 

Upon completion of this lesson, you should be able to: 

· Correctly interpret the meaning of confidence intervals 

· Construct confidence intervals to estimate a population proportion 

· Construct confidence intervals for estimate a population mean 

· Calculate correct sample sizes for a study 

· Recognize whether a given situation requires a proportion or means confidence interval 

Toward Statistical Inference

Two designs for producing data are sampling and experimentation, both of which should employ randomization. As we have already learned, one important aspect of randomization is to control bias. Now we will see another positive. Because chance governs our selection (think of guessing whether a flip of a fair coin will produce a head or a tail) we can make use of probability laws – the scientific study of random behavior – to draw conclusions about an entire population from which the subjects originated. This is called statistical inference. 

We previously defined a population and a sample. Now we will consider what we use to describe their values.

Parameter: a number that describes the population. It is fixed but we rarely know it. Examples include the true proportion of all American adults who support the president, or the true mean of weight of all residents of New York City.

Statistic: a number that describes the sample. This value is known since it is produced by our sample data, but can vary from sample to sample. For example, if we calculated the mean heights of a random sample of 1000 residents of New York City this mean most likely would vary from the mean calculated from another random sample of 1000 residents of New York City.

Examples

1. A survey is carried out at a university to estimate the proportion of undergraduate students who drive to campus to attend classes. One thousand students are randomly selected and asked whether they drive or not to campus to attend classes. The population is all of the undergraduates at that university campus. The sample is the group of 1000 undergraduate students surveyed. The parameter is the true proportion of all undergraduate students at that university campus who drive to campus to attend classes. The statistic is the proportion of the 1000 sampled undergraduates who drive to campus to attend classes.

2. A study is conducted to estimate the true mean yearly income of all adult residents of the state of California. The study randomly selects 2000 adult residents of California. The population consists of all adult residents of California. The sample is the group of 2000 California adult residents in the study. The parameter is the true mean yearly income of all adult residents of California. The statistic is the mean of the 2000 sampled adult California residents.

Ultimately we will measure statistics and use them to draw conclusions about unknown parameters. This is statistical inference. 

	APPLET

A "Begin" button will appear below when the applet is finished loading. This may take a minute or two depending on the speed of your internet connection and computer. Please be patient. 

This applet simulates sampling from a population with a mean of 50 and a standard deviation of 10. For each sample, the 95% and 99% confidence intervals on the mean are computed based on the sample mean and sample standard deviation. 

The intervals for the various samples are displayed by horizontal lines as shown below. The first two lines represent samples for which the 95% confidence interval contains the population mean of 50. The 95% confidence interval is orange and the 99% confidence interval is blue. In the third line, the 95% confidence interval does not contain the population mean; it is shown in red. In the seventh and last line shown below, the 99% interval does not contain the population mean; it is shown in white. 

[image: image202.png]





Constructing confidence intervals to estimate a population proportion

NOTE: the following interval calculations for the proportion confidence interval is dependent on the following assumptions being satisfied: np ≥ 10 and n(1-p) ≥ 10. If p is unknown then use the sample proportion.

The goal is to estimate p = proportion with a particular trait or opinion in a population.

· Sample statistic = [image: image203.png]


(read "p-hat") = proportion of observed sample with the trait or opinion we’re studying. 

· Standard error of [image: image204.png]


, where n = sample size. 

· Multiplier comes from this table

	Confidence Level
	Multiplier

	.90 (90%)
	1.645 or 1.65

	.95 (95%)
	1.96, usually rounded to 2

	.98 (98%)
	2.33

	.99 (99%)
	2.58


The value of the multiplier increases as the confidence level increases. This leads to wider intervals for higher confidence levels. We are more confident of catching the population value when we use a wider interval.

Example
In the year 2001 Youth Risk Behavior survey done by the U.S. Centers for Disease Control, 747 out of n = 1168 female 12th graders said the always use a seatbelt when driving.
Goal: Estimate proportion always using seatbelt when driving in the population of all U.S. 12th grade female drivers. Check assumption: (1168)*(0.64) = 747 and (1168)*(0.36) = 421 both of which are at least 10.

Sample statistic is = [image: image205.png]


= 747 / 1168 = .64 

Standard error = [image: image206.png]014




A 95% confidence interval estimate is .64 ± 2 (.014), which is .612 to .668

With 95% confidence, we estimate that between .612 (61.2%) and .668 (66.8%) of all 12th grade female drivers always wear their seatbelt when driving.

Example Continued: For the seatbelt wearing example, a 99% confidence interval for the population proportion is

.64 ± 2.58 (.014), which is .64 ± .036, or .604 to .676.

With 99% confidence, we estimate that between .604 (60.4%) and .676 (67.6%) of all 12th grade female drivers always wear their seatbelt when driving.

Notice that the 99% confidence interval is slightly wider than the 95% confidence interval. IN the same situation, the greater the confidence level, the wider the interval.

Notice also, that the only the value of the multiplier differed in the calculations of the 95% and 98% intervals.

Using Confidence Intervals to Compare Groups

A somewhat informal method for comparing two or more populations is to compare confidence intervals for the value of a parameter. If the confidence intervals do not overlap, it is reasonable to conclude that the parameter value differs for the two populations.

Example
In the Youth Risk Behavior survey, 677 out of n = 1356 12th grade males said they always wear a seatbelt. To begin, we’ll calculate a 95% confidence interval estimate of the population proportion. Check assumption: (1356)*(0.499) = 677 and (1356)*(0.501) = 679 both of which are at least 10.

Sample statistic is [image: image207.png]


= 677 / 1356 = .499

Standard error = [image: image208.png][B=p) _ [499G1-499) _
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A 95% confidence interval estimate, calculated as Sample statistic ± multiplier × Standard Error is

. 499 ± 2 (.0137), or .472 to .526.

With 95% confidence, we estimate that between .472 (47.2%) and .526 (52.6%) of all 12th male drivers always wear their seatbelt when driving.

Comparison and Conclusion: For females, the 95% confidence interval estimate of the percent always wearing a seatbelt was found to be 61.2% to 66.8%, an obviously different interval than for males. It’s reasonable to conclude that 12th grade males and females differ with regard to frequency of wearing a seatbelt when driving.

Using Confidence Intervals to "test" how parameter value compares to a specified value

Values in a confidence interval are "acceptable" possibilities for the true population value. Values not in the confidence interval are not acceptable (reasonable) possibilities for the population value.

Example
The 95% confidence interval estimate of percent of 12th grade females who always wear a seatbelt is 61.2% to 66.8%. Any percent in this interval is an acceptable guess at the population value.

This has the consequence that it’s safe to say that a majority (more than 50%) of this population always wears their seatbelt (because all values 50% and below can be rejected as possibilities.)

If somebody claimed that 75% of all 12th grade females always used a seatbelt, we should reject that assertion. The value 75% is not within our confidence interval.

Finding sample size for estimating a population proportion

When one begins a study to estimate a population parameter they typically have an idea as how confident they want to be in their results and within what degree of accuracy. This means they get started with a set level of confidence and margin of error. We can use these pieces to determine a minimum sample size needed to produce these results by using algebra to solve for n in our margin of error: 

[image: image209.png]



where M is the margin of error.

Conservative estimate: If we have no preconceived idea of the sample proportion (e.g. previous presidential attitude surveys) then a conservative (i.e. guaranteeing the largest sample size calculation) is to use 0.5 for the sample proportion. For example, if we wanted to calculate a 95% confidence interval with a margin of error equal to 0.04, then a conservative sample size estimate would be:
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And since this is the minimum sample size and we cannot get 0.25 of a subject, we round up. This results in a sample size of 601.

Estimate when proportion value is hypothesized: If we have an idea of a proportion value, then we simply plug that value into the equation. Note that using 0.5 will always produce the largest sample size and this is why it is called a conservative estimate.

Constructing confidence intervals to estimate a population mean

Previously we considered confidence intervals for 1-proportion and our multiplier in our interval used a z-value. But what if our variable of interest is a quantitative variable (e.g. GPA, Age, Height) and we want to estimate the population mean? In such a situation proportion confidence intervals are not appropriate since our interest is in a mean amount and not a proportion. 

Therefore we apply similar techniques but now we are interested in estimating the population mean, μ, by using the sample statistic [image: image211.png]


and the multiplier is a t-value. These t-values come from a t-distribution which is similar to the standard normal distribution from which the z-values came. The similarities are that the distribution is symmetrical and centered on 0. The difference is that when using a t-table we need to consider a new feature: degrees of freedom (df). This degree of freedom will be based on the sample size, n. 

Initially we will consider confidence intervals for means of two situations: 

1. Confidence intervals for one mean 

2. Confidence intervals for a difference between two means when data is paired. 

As we will see the interval calculations are identical just some notation differs. The reason for the similarity is that when we have paired data we can simply consider the differences to represent one set of data. So what is paired data? 

Estimating a Population Mean μ 

· The sample statistic is the sample mean [image: image212.png]



· The standard error of the mean is [image: image213.png]


where s is the standard deviation of individual data values. 

· The multiplier, denoted by t*, is found using the t-table in the appendix of the book. It's a simple table. There are columns for .90, .95,.98, and .99 confidence. Use the row for df = n − 1. 

Thus the formula for a confidence interval for the mean is [image: image214.png]



For large n, say over 30, using t* = 2 gives an approximate 95% confidence interval. 

Example 1: In a class survey, students are asked if they are sleep deprived or not and also are asked how much they sleep per night. Summary statistics for the n = 22 students who said they are sleep deprived are: 

[image: image215.png]Deprived N  Mean
Yes





· Thus n = 22, [image: image216.png]


= 5.77, s = 1.572, and standard error of the mean = [image: image217.png]


= 0.335 

· A confidence interval for the mean amount of sleep per night is 5.77 ± t* (0.335) for the population that feels sleep deprived. 

· Go to the t-table in the appendix of the book and use the df = 22 – 1 = 21 row. For 95% confidence the value of t* = 2.08. 

· A 95% confidence interval for μ is 5.77 ± (2.08) (0.335), which is 5.77 ± 0.70, or 5.07 to 6.7

· Interpretation: With 95% confidence we estimate the population mean to be between 5.07 and 6.47 hours per night. 

Example 1 Continued:
· For a 99% confidence interval we would look under .99 in the df = 21 in the t-table. This gives t* = 2.83. 

· The 99% confidence interval is 5.77 ± (2.83) (0.335), which is 5.77 ± 0.95, or 4.82 to 6.72 hours per night. 

Notice that the 99% confidence interval is wider than the 95% confidence interval. In the same situation, a higher confidence level gives a wider interval. 

 Finding sample size for estimating a population mean

Calculating sample size for estimating a population mean is similar to that for estimating a population proportion: we solve for n in our margin for error.  However, since the t-distribution is not as “neat” as the standard normal distribution, the process can be iterative.  This means that we would solve, reset, solve, reset, etc. until we reached a conclusion.  Yet, we can avoid this iterative process if we employ an approximate method based on t-distribution approaching the standard normal distribution as the sample size increases.  This approximate method invokes the following formula:
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where S is a sample standard deviation possibly based on prior studies or knowledge.

Using Minitab To Calculate Confidence Intervals 
Consider again the Class Survey data set (Class_Survey.MTW) that consists of student responses to survey given last semester in a Stat200 course. If we consider this to be a random selection of students from the population of undergraduate students at the university, then we can use this data to estimate population parameters.

Estimating Population Proportion – Raw Data

1. Opening the Class Survey data set.

2. From the menu bar select Stat > Basic Statistics > 1 Proportion

3. In the text box Samples in Columns enter the variable Smoke Cigarettes 

4. Click Options and edit the level of confidence (default value is 95%)

5. Click OK

The following is the 95% confidence interval for the true proportion of students who smoke cigarettes at the university.
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Estimating Population Proportion – Summarized Data

Summarized data simply means that you have the sample size and the total number of interest. For example, the summarized data from the above output would be 17 for the students who said “Yes” to smoking and the 226 that participated in the study. To use Minitab, complete the above steps except click the Summarize Data radio button and enter 226 for the number of trials and 17 for the number of events.

Special Note: Minitab calculates intervals based on the alphabetical order of the responses. If the answers are Yes and No, then the interval will be for the Event = Yes; if Male and Female the event of interest for Minitab will be Male. This is where the summarized data feature can help. If we wanted to get the proportion for those that said No for smoking, we could find this number by using the Stat > Tables > Tally Individual Variables.

Estimating Population Mean

Keeping with the Class Survey data set (Class_Survey.MTW), say we were interested in estimating the true undergraduate GPA at the university.

1. Opening the Class Survey data set.

2. From the menu bar select Stat > Basic Statistics > 1 Sample t

3. In the text box Samples in Columns enter the variable GPA 

4. Click Options and edit the level of confidence (default value is 95%)

5. Click OK
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Summarized data options for confidence intervals for a mean operate similarly to those described above for proportions.

Lesson: Hypothesis Testing 

Learning Objectives For This Lesson

Upon completion of this lesson, you should be able to: 

· Perform tests of hypotheses of one proportion and one mean 

· Properly identify if the situation involves a proportion or mean 

· Understand the errors present in hypothesis testing 

· Realize the limits associated with significance tests 

· Understand the basic concept regarding power in tests of significance 

Hypothesis Testing 

Previously we used confidence intervals to estimate some unknown population parameter. For example, we constructed 1-proportion confidence intervals to estimate the true population proportion – this population proportion being the parameter of interest. We even went as far as comparing two intervals to see if they overlapped – if so we concluded that there was no difference between the population proportions for the two groups – or if the interval contained a specific parameter value. 

Here we will introduce hypothesis tests for one proportion and for one mean. Where in Chapter 6 we only offered one possible alternative hypothesis, starting in Chapter 11 there are 3 possible alternatives, from which you will select one depending on the question at hand. The possible hypotheses statements are:

Statistical Significance

A sample result is called statistically significant when the p-value for a test statistic is less than level of significance, which for this class we will keep at 0.05. In other words, the result is statistically significant when we reject a null hypothesis.

Five Steps in a Hypothesis Test (Note: some texts will label these steps differently, but the premise is the same)

1. Check any necessary assumptions and write null and alternative hypotheses.

2. Calculate an appropriate test statistic.

3. Determine a p-value associated with the test statistic.

4. Decide between the null and alternative hypotheses.

5. State a "real world" conclusion.

Now let’s try to tie together the concepts we discussed regarding Sampling and Probability to delve further into statistical inference with the use of hypothesis tests.

Two designs for producing data are sampling and experimentation, both of which should employ randomization. We have learned that randomization is advantageous because it controls bias. Now we will see another advantage: because chance governs our selection, we may make use of the laws of probability – the scientific study of random behavior – to draw conclusions about the entire population from which the units (e.g. students, machined parts, U.S. adults) originated. Again, this process is called statistical inference.

Previously we had defined population and sample and what we use to describe their values, but we will revisit these:

Parameter: a number that describes the population. It is fixed but rarely do we know its value. (e.g. the true proportion of PSU undergraduates that would date someone of a different race.)

Statistic: a number that describes the sample. This value is known but can vary from sample to sample, for instance from the Class Survey data we may get one proportion of those who said they would date someone of a different race, but if I gave that survey to another sample of PSU undergraduate students do you really believe that the proportion from that sample would be identical to ours?

EXAMPLES

1. A survey is carried out at a university to estimate the mean GPA of undergraduates living off campus current term. Population: all undergraduates at the university who live off campus; sample: those undergraduates surveyed; parameter: mean GPA of all undergraduates at that university living off campus; statistic: mean GPA of sampled undergraduates.

2. A balanced coin is flipped 100 times and percentage of heads is 47%. Population: all coin flips; sample: the 100 coin flips; parameter: 50% - percentage of all coin flips that would result in heads if the coin is balanced; statistic: 47%.

Ultimately we will measure statistics (e.g. sample proportions and sample means) and use them to draw conclusions about unknown parameters (e.g. population proportion and population mean). This process, using statistics to make judgments or decisions regarding population parameters is called statistical inference.

Example 2 above produced a sample proportion of 47% heads and is written:
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[read p-hat] = 47/100 = 0.47 

P-hat is called the sample proportion and remember it is a statistic (soon we will look at sample means, [image: image222.png]


.) But how can p-hat be an accurate measure of p, the population parameter, when another sample of 100 coin flips could produce 53 heads? And for that matter we only did 100 coin flips out of an uncountable possible total! 

The fact that these samples will vary in repeated random sampling taken at the same time is referred to as sampling variability. The reason sampling variability is acceptable is that if we took many samples of 100 coin flips an calculated the proportion of heads in each sample then constructed a histogram or boxplot of the sample proportions, the resulting shape would look normal (i.e. bell-shaped) with a mean of 50%.

[The reason we selected a simple coin flip as an example is that the concepts just discussed can be difficult to grasp, especially since earlier we mentioned that rarely is the population parameter value known. But most people accept that a coin will produce an equal number of heads as tails when flipped many times.] 

A statistical hypothesis test is a procedure for deciding between two possible statements about a population. The phrase significance test means the same thing as the phrase "hypothesis test."

The two competing statements about a population are called the null hypothesis and the alternative hypothesis.

· A typical null hypothesis is a statement that two variables are not related. Other examples are statements that there is no difference between two groups (or treatments) or that there is no difference from an existing standard value.

· An alternative hypothesis is a statement that there is a relationship between two variables or there is a difference between two groups or there is a difference from a previous or existing standard.

NOTATION: The notation Ho represents a null hypothesis and Ha represents an alternative hypothesis and po is read as p-not or p-zero and represents the null hypothesized value. Shortly, we will substitute μo for when discussing a test of means.

Ho: p = po
Ha: p ≠ po     or     Ha: p > po     or     Ha: p < po    [Remember, only select one Ha]

The first Ha is called a two-sided test since "not equal" implies that the true value could be either greater than or less than the test value, po. The other two Ha are referred to as one-sided tests since they are restricting the conclusion to a specific side of po.

Example 3 – This is a test of a proportion:

A Tufts University study finds that 40% of 12th grade females feel they are overweight. Is this percent lower for college age females? Let p = proportion of college age females who feel they are overweight. Competing hypothesis are:

Ho: p = .40 (or greater) That is, no difference from Tufts study finding.
Ha: p < .40 (proportion feeling they are overweight is less for college age females.

Example 4 – This is a test of a mean:

Is there a difference between the mean amount that men and women study per week? Competing hypotheses are:

Null hypothesis: There is no difference between mean weekly hours of study for men and women, writing in statistical language as μ1 = μ2
Alternative hypothesis: There is a difference between mean weekly hours of study for men and women, writing in statistical language as μ1≠ μ2
This notation is used since the study would consider two independent samples: one from Women and another from Men.

Test Statistic and p-Value

· A test statistic is a summary of a sample that is in some way sensitive to differences between the null and alternative hypothesis.

· A p-value is the probability that the test statistic would "lean" as much (or more) toward the alternative hypothesis as it does if the real truth is the null hypothesis. That is, the p-value is the probability that the sample statistic would occur under the presumption that the null hypothesis is true. 

A small p-value favors the alternative hypothesis. A small p-value means the observed data would not be very likely to occur if we believe the null hypothesis is true. So we believe in our data and disbelieve the null hypothesis. An easy (hopefully!) way to grasp this is to consider the situation where a professor states that you are just a 70% student. You doubt this statement and want to show that you are better that a 70% student. If you took a random sample of 10 of your previous exams and calculated the mean percentage of these 10 tests, which mean would be less likely to occur if in fact you were a 70% student (the null hypothesis): a sample mean of 72% or one of 90%? Obviously the 90% would be less likely and therefore would have a small probability (i.e. p-value).

Using the p-Value to Decide between the Hypotheses

· The significance level of a test is the border used for deciding between the null and alternative hypotheses.

· Decision Rule: We decide in favor of the alternative hypothesis when a p-value is less than or equal to the significance level. The most commonly used significance level is 0.05.

In general, the smaller the p-value the stronger the evidence is in favor of the alternative hypothesis.

EXAMPLE 3 CONTINUED: 

In a recent elementary statistics survey, the sample proportion (of women) saying they felt overweight was 37 /129 = .287. Note that this leans toward the alternative hypothesis that the "true" proportion is less than .40. [Recall that the Tufts University study finds that 40% of 12th grade females feel they are overweight. Is this percent lower for college age females?]

Step 1: Let p = proportion of college age females who feel they are overweight.

Ho: p = .40 (or greater) That is, no difference from Tufts study finding.
Ha: p < .40 (proportion feeling they are overweight is less for college age females.

Step 2:

If npo ≥ 10 and n(1 – po) ≥ 10 then we can use the following Z-test statistic: Since both (129)*(0.4) and (129)*(0.6) > 10 [or consider that the number of successes and failures, 37 and 92 respectively, are at least 10] we calculate the test statistic by:
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Note: In computing the Z-test statistic for a proportion we use the hypothesized value po here not the sample proportion p-hat in calculating the standard error! We do this because we "believe" the null hypothesis to be true until evidence says otherwise.
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Step 3: The p-value can be found from Standard Normal Table 

Calculating p-value: 

The method for finding the p-value is based on the alternative hypothesis:

2P(Z ≥ | z | ) for Ha : p ≠ po
P(Z ≥ z ) for Ha : p > po
P(Z ≤ z) for Ha : p < po
In our example we are using Ha : p < .40 so our p-value will be found from P(Z ≤ z) = P(Z ≤ -2.62) and from Standard Normal Table this is equal to 0.0044.

Step 4: We compare the p-value to alpha, which we will let alpha be 0.05. Since 0.0044 is less than 0.05 we will reject the null hypothesis and decide in favor of the alternative, Ha.

Step 5: We’d conclude that the percentage of college age females who felt they were overweight is less than 40%. [Note: we are assuming that our sample, since not random, is representative of all college age females.]

The p-value= .004 indicates that we should decide in favor of the alternative hypothesis. Thus we decide that less than 40% of college women think they are overweight.

The "Z-value" (-2.62) is the test statistic. It is a standardized score for the difference between the sample p and the null hypothesis value p = .40. The p-value is the probability that the z-score would lean toward the alternative hypothesis as much as it does if the true population really was p = .40.

Using Minitab
Alternatively to going through these 5 steps by hand we could have invoked Minitab. If you want to try it, open Minitab and go to Stat > Basic Stat > 1- proportion and click Summarize Data and enter 129 for number of trials and 37 for number of events. Next select the checkbox for Perform Hypothesis Test and enter the hypothesized po value. Finally, the default alternative is "not equal". To select a different alternative click Options and select the proper option from the drop down list next to Alternative, plus click the box for Test and Interval using Normal Approximation. The results of doing so are as follows:
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The p-value= .004 indicates that we should decide in favor of the alternative hypothesis. Thus we decide that less than 40% of college women think they are overweight.
The "Z-value" (-2.62) is the test statistic. It is a standardized score for the difference between the sample p and the null hypothesis value p = .40. The p-value is the probability that the z-score would lean toward the alternative hypothesis as much as it does if the true population really was p = .40.

Hypothesis Testing for a Population Mean 

Quantitative Response Variables and Means 
We usually summarize a quantitative variable by examining the mean value. We summarize categorical variables by considering the proportion (or percent) in each category. Thus we use the methods described in this handout when the response variable is quantitative. Again, examples of quantitative variables are height, weight, blood pressure, pulse rate, and so on.

Null and Alternative Hypotheses for a Mean
· For one population mean, a typical null hypothesis is H0 : population mean μ = a specified value. We'll actual give a number where it says "a specified value," and for paired data the null hypothesis would be H0 : ud = a specified value. Typically when considering differences this specified value is zero 

· The alternative hypothesis might either be one-sided ( a specific direction of inequality is given) or two-sided ( a not equal statement).

Test Statistics 

The test statistic for examining hypotheses about one population mean:
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the observed sample mean, μ0 = value specified in null hypothesis, s = standard deviation of the sample measurements and n = the number of differences. 

Notice that the top part of the statistic is the difference between the sample mean and the null hypothesis. The bottom part of the calculation is the standard error of the mean. 

It is a convention that a test using a t-statistic is called a t-test. That is, hypothesis tests using the above would be referred to as "1-sample t test". 

Finding the p-value 

Recall that a p-value is the probability that the test statistic would "lean" as much (or more) toward the alternative hypothesis as it does if the real truth is the null hypothesis. 

When testing hypotheses about a mean or mean difference, a t-distribution is used to find the p-value. This is a close cousin to the normal curve. T-Distributions are indexed by a quantity called degrees of freedom, calculated as df = n – 1 for the situation involving a test of one mean or test of mean difference. 

The p-values for the t-distribution are found in your text or a copy can be found at the following link: T-Table. To interpret the table, use the column under DF to find the correct degree of freedom. Use the top row under Absolute Value of t-Statistic to locate your calculated t-value. Most likely you will not find an exact match for your t-value so locate the range for your t-value. This means that your t-value will be either less than 1.28; between two t-statistics in the table; or greater than 3.00. Once you located the range, then find the corresponding p-value(s) associated with your range of t-statistics. This would be your p-value used to compare to alpha of 0.5.

NOTE: the t-statistics increase from left to right, but the p-values decrease! So if your range for the t-statistic is greater than 3.00 your p-value would be less than the corresponding p-value listed in the table. 
Examples of reading T-Table [recall degrees of freedom for 1-sample t are equal to n − 1, or one less than the sample size] and is read as p-value = P(T > |t|). NOTE: If this formula appears familiar it should as this closely resembles that for finding probability values using Standard Normal Table with z-values.

1. If you had sample of size 15 resulting in DF = 14 and t-value = 1.20 your t-value range would be less than 1.28 producing a p-value of p > 0.111. That is, the probability that P(T < 1.28) is greater than 0.111. 

2. If you had sample of size 15 resulting in DF = 14 and t-value = 1.95 your t-value range would be from 1.80 to 2.00 producing a p-value of 0.033 < p < 0.047. That is, the probability that P(1.80 < T < 2.00) is between 0.0333 and 0.047. 

3. If you had sample of size 15 resulting in DF = 14 and t-value =3.20 your t-value range would be greater than 3.00 producing a p-value of p < 0.005. That is, the probability that P(T > 3.00) is less than 0.005. 

NOTE: The increments for the degrees of freedom in T-Table are not always 1. This column increases by 1 up to DF = 30, then the increments change. If your DF is not found in the table just go to the nearest DF. Also, note that the last row, "Infinite", displays the same p-values as those found in Standard Normal Table. This is because as n increases the t-distribution maps the standard normal distribution.
Example 1: 

Students measure their pulse rates. Is the mean pulse rate for college age women equal to 72 (a long-held standard for average pulse rate)? 

Null hypothesis: μ = 72 
Alternative hypothesis: μ ≠72

Pulse rates for n = 35 women are available. Here are Minitab results for our hypothesis test. The Minitab process is simply go to Stat > Basic Statistics and select 1-Sample t. Select the radio button for Summarized data and enter the values of the sample size, sample mean, and sample standard deviation. Next select the checkbox for Perform Hypothesis Test and enter the hypothesized μo value. Finally, the default alternative is "not equal". To select a different alternative click Options and select the proper option from the drop down list next to Alternative. 
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INTERPRETATION: 

The p-value is p = 0.019. This is below the .05 standard, so the result is statistically significant. This means we decide in favor of the alternative hypothesis. We're deciding that the population mean is not 72.

The test statistic is 
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Because this is a two-sided alternative hypothesis, the p-value is the combined area to the right of 2.47 and the left of −2.47 in a t-distribution with 35 – 1 = 34 degrees of freedom. 

Example 2: 

In the same "survey" there were n = 57 men. Is the mean pulse rate for college age men equal to 72? 

Null hypothesis: μ = 72 
Alternative hypothesis: μ ≠72 

RESULTS: 
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INTERPRETATION: 

The p-value is p = 0.236. This is not below the .05 standard, so we do not reject the null hypothesis. Thus it is possible that the true value of the population mean is 72. The 95% confidence interval suggests the mean could be anywhere between 67.78 and 73.06. 

The test statistic is
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The p-value is the combined probability that a t-value would be less than (to the left of ) −1.20 and greater than (to the right of +1.20). 

Errors in Decision Making – Type I and Type II 

How do we determine whether to reject the null hypothesis? It depends on the level of significance α, which is the probability of the Type I error. 

What is Type I error and what is Type II error? 

When doing hypothesis testing, two types of mistakes may be committed and we call them Type I error and Type II error. 

	Decision
	Reality

	
	H0 is true
	H0 is false

	Reject H0 and conclude Ha
	Type I error 
	Correct

	Do not reject H0
	Correct
	Type II error


If we reject H0 when H0 is true, we commit a Type I error. The probability of type I error is denoted by alpha, α (as we already know this is commonly 0.05) 

If we accept H0 when H0 is false, one commits a type II error. The probability of Type II error is denoted by Beta, β: 

Our convention is to set up the hypotheses so that type I error is the more serious error.

Example 1: Mr. Orangejuice goes to trial where Mr. Orangejuice is being tried for the murder of his ex-wife.

We can put it in a hypothesis testing framework. The hypotheses being tested are: 

1. Mr. Orangejuice is guilty 

2. Mr. Orangejuice is not guilty 

Set up the null and alternative hypotheses where rejecting the null hypothesis when the null hypothesis is true results in the worst scenario:

H0 : Not Guilty
Ha : Guilty 

Here we put Mr. Orangejuice is not guilty in H0 since we consider false rejection of H0 a more serious error than failing to reject H0. That is, finding an innocent person guilty is worse than finding a guilty man innocent. 

Type I error is committed if we reject H0 when it is true. In other words, when Mr. Orangejuice is not guilty but found guilty.

α = probability( Type I error) 

Type II error is committed if we accept H0 when it is false. In other words, when Mr. Orangejuice is guilty but found not guilty.

β = probability( Type II error) 

Relation between α, β 

Note that the smaller we specify the significance level, α, the larger will be the probability, β of accepting a false null hypothesis. 

Cautions About Significance Tests

1. If a test fails to reject Ho, it does not necessarily mean that Ho is true – it just means we do not have compelling evidence to refute it. This is especially true for small sample sizes n. To grasp this, if you are familiar with the judicial system you will recall that when a judge/jury renders a decision the decision is "Not Guilty". They do not say "Innocent". This is because you are not necessarily innocent, just that you haven’t been proven guilty by the evidence, (i.e. statistics) presented!

2. Our methods depend on a normal approximation. If the underlying distribution is not normal (e.g. heavily skewed, several outliers) and our sample size is not large enough to offset these problems (think of the Central Limit Theorem from Chapter 9) then our conclusions may be inaccurate. 

Power of a Test

When the data indicate that one cannot reject the null hypothesis, does it mean that one can accept the null hypothesis? For example, when the p-value computed from the data is 0.12, one fails to reject the null hypothesis at [image: image232.png]


= 0.05. Can we say that the data support the null hypothesis?

Answer: When you perform hypothesis testing, you only set the size of Type I error and guard against it. Thus, we can only present the strength of evidence against the null hypothesis. One can sidestep the concern about Type II error if the conclusion never mentions that the null hypothesis is accepted. When the null hypothesis cannot be rejected, there are two possible cases: 1) one can accept the null hypothesis, 2) the sample size is not large enough to either accept or reject the null hypothesis. To make the distinction, one has to check [image: image233.png]
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at a likely value of the parameter is small, then one accepts the null hypothesis. If the [image: image235.png]


is large, then one cannot accept the null hypothesis.

The relationship between [image: image236.png]
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:

If the sample size is fixed, then decreasing [image: image238.png]


will increase [image: image239.png]


. If one wants both to decrease, then one has to increase the sample size.

Power = the probability of correctly rejecting a false null hypothesis = 1 - [image: image240.png]


.

Think & Ponder! 

Examples to Show How to Choose the Hypotheses
For the following examples, specify the hypotheses and whether they are a "right-tailed," "left-tailed," or "two-tailed" test.



 Is the majority of students at Penn State from Pennsylvania? (Here the value po is 0.5 since more than 0.5 constitute a majority. For other problems, different values of po will be specified.) Try to figure out your answer first, then click the graphic to compare answers.

Answer:
Ho: π = 0.5

Ha: π > 0.5 (a majority)

It is a right-tailed test.

One can also write the null hypothesis as p ≤ 0.5. For simplicity's sake, in this example and also for other similar problems it is represented by the most extreme value in the null, which is 0.5.

Note: The idea to is to check whether one can conclude Ha. If the data supports Ha, then one rejects Ho and concludes Ha. Otherwise, we say that we fail to reject Ho which is the same as fail to conclude Ha.



A consumer test agency wants to see whether the mean lifetime of a particular brand of tires is less than 42,000 miles (the tire company claims that the mean lifetime is more than or equal to 42,000 miles). Try to figure out your answer first, then click the graphic to compare answers.

Answer:
Ho: μ = 42,000 

Ha: μ < 42,000

It is a left-tailed test.



The length of a certain lumber is supposed to be 8.5 feet. A builder wants to check whether the shipment of lumber he receives has a mean length different from 8.5 feet. Try to figure out your answer first, then click the graphic to compare answers.

Answer:
Ho: μ = 8.5 

Ha: μ ≠ 8.5

It is a two-tailed test.

An e-commerce research company claims that 60% or more graduate students have bought merchandise on-line. A consumer group is suspicious of the claim and thinks that the proportion is lower than 60%. A random sample of 80 graduate students show that only 22 students have ever done so. Is there enough evidence to show that the true porportion is lower than 60%?



Set up the hypotheses for the consumer advocate, described above. Specify whether it is a left-tailed test, right-tailed test, or a two-tailed test. Proceed to think about how to draw the conclusion, then click the graphic to compare answers.

Answer:
Test on population proportion:

Ho: p = 0.6 (stands for p ≥ 0.6)

Ha: p < 0.6

It is a left-tailed test.

What is the probability that one gets an observation at least as far away from the values in the null hypothesis as the observed data?

 

Ponder the following, then move your cursor over the graphic to display the statistical application example.

If this probability is small, the sample observation contradicts or does not contradict the null hypothesis?   (Contradicts.)

Formulärets överkant

What is small?   (Less than some preset threshold value.)

Lesson: Comparing Two Groups 

Learning Objectives For This Lesson

Upon completion of this lesson, you should be able to: 

· Perform tests of hypotheses of two proportions, two means, and matched pairs of means

· Construct confidence intervals of two proportions, two means, and matched pairs of means 

· Understand the difference between two independent and dependent samples, the latter being a matched pair design. 

Comparing Two Groups

Previously we discussed testing means from one sample or paired data. But what about situations where the data is not paired, such as when comparing exam results between males and females, or the percentage of those who smoke between teenagers and adults? In such instances we will use inference to compare the responses in two groups, each from a distinct population (e.g. Males/Females, White/Non-White, and Deans List/Not Deans List). 

This is called a two-sample situation and is one of the most common settings in statistical applications. Responses in each group must be independent of those in the other, meaning that different, unrelated, unpaired individuals make up the two samples. Sample sizes, however, may vary between the two groups. 

Examine Difference Between Population Parameters 

To look at the difference between the two groups, we look at the difference between population parameters for the two populations involved. 

· For categorical data, we compare the proportions with a characteristic of interest (say, proportions successfully treated with two different treatments). 

· For quantitative data, we compare means (say, mean GPAs for males and females). 

SPECIAL NOTE: When comparing two means for independent samples, our initial thought goes to how do we calculate the standard error. The answer depends on whether we can consider the variances (and therefore the standard deviations) from each of the samples to be equal (pooled) or unequal (unpooled).This implies that prior to doing a two-sample test we will need to first find the standard deviation for each sample (Recall this can be done in Minitab by: Stat > Basic Statistics > Display Descriptive Statistics and enter the two variable names in the Variables window. RULE OF THUMB - If the larger standard deviation is no more than twice the smaller standard deviation, the we would consider the two population variances equal.

Population Parameters, Null Hypotheses, and Sample Statistics 

The following summarizes population and sample notation for comparisons, and gives the null hypothesis for each situation (proportions and means). 

	Parameter name and description
	Symbol for population parameter 
	Typical null hypothesis
	Symbol for the sample statistic

	Categorical Response Variable Difference in two population proportions 
	p1 – p2
	H0: p1 – p2 = 0
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	Quantitative Response Variable Difference in two population means
	μ1 − μ2
	H0: μ1 − μ2 = 0
	[image: image246.png]




	Quantitative Response Variable Difference between matched pairs
	μd 
	H0: μd = 0
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The null hypothesis for each situation is that the difference in population parameters = 0; that is, there is no difference. Remember that hypotheses are statements about populations! 

NOTE: The use of "0" for the difference is common practice. Technically however this difference could be any value. For example, we could say that the difference between the percentage of males that smoke to the percentage of females that smoke is equal to 4%. Now the null hypothesis would read: H0: p1 – p2 = 0.04. For our class we will restrict ourselves to using a difference of 0. 

General Ideas for Testing Hypotheses 

Step 0: Assumptions
1. The samples must be independent and random samples.

2. If two proportions, then the two groups must consist of categorical responses. If two means, each group must consist of quantitative responses. If paired, then the sample data must be paired

3. If two proportions, then then both samples must produce at least 5 successes and 5 failures. If two means or paird, then each group (two means) or the differences (paired) must come from an approximately normal population distribution. This is when the Central Limit Theorem can be applied: if the sample sizes for each group are at least 30, or if the number of paired differences is at least 30, then normality can be assumed.

Step 1: Write Hypotheses 1 
The null hypothesis is that there is no difference between the two population parameters (no difference between proportions for categorical responses, no difference between means for quantitative responses). The alternative hypothesis may be one-sided or two-sided. 

Step 2: Determine test statistic 
In each case, test statistic = (sample statistic – 0) / (std. error of the statistic) 
· For proportions, the test statistic should be labeled "z." 

· For means, the test statistic should be labeled "t"

Step 3: Determine p-value
· For proportions, a standard normal distribution is used to find the p-value 

· For means, a Student’s t distribution is used to find the p-values. Calculating degrees of freedom for a two-sample t-test depends on whether the the two population variances are considered "equal" or "unequal". This concept will be discussed later in these notes as well as the caluclations for the appropriate degrees of freedom.

Step 4: Decide between hypotheses
If the p-value is less than or equal to alpha (α) – 0.05 is the usual level of significance – decide in favor of the alternative hypothesis. Otherwise, we cannot rule out the null as a possibility. 

Step 5: State a "real world" conclusion. 
When we decide for the alternative, we conclude that the two populations have a statistically significant difference in values for the parameter. If we cannot reject the null, we have to say that it is possible there’s no difference between the two populations. 

Comparing Two Independent Means - Unpooled and Pooled 

We determine whether to apply "pooled" or "unpooled" procedures by comparing the sample standard deviations. RULE OF THUMB: If the larger sample standard deviation is MORE THAN twice the smaller sample standard deviation then perform the analysis using unpooled methods.

Example 1 (Unpooled): 

Cholesterol levels are measured for 28 heart attack patients (2 days after their attacks) and 30 other hospital patients who did not have a heart attack. The response is quantitative so we compare means. It is thought that cholesterol levels will be higher for the heart attack patients, so a one-sided alternative hypothesis is used. 

Step 1: null is H0 : μ1 − μ2 = 0 and alternative is Ha : μ1 − μ2 > 0, where groups 1 and 2 are heart attack and control groups, respectively. 
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Minitab Output that can be used for Steps 2-5 
Step 2: test statistic is given in last line of output as t = 6.15, degrees of freedom given as 37. Unpooled methods are applied since the comparison of the largest to smallest sample standard deviation is > 2 ------ 47.7 / 22.3 = 2.14

Step 3: p-value is give as 0.000. Since we are interested in a one-sided test (>), the p-value can be found by the area to the right of 6.15 in a t-distribution with df = 37. We could use T-Table to find this p-value range. 

Steps 4 and 5: The p-value is less than .05 so we decide in favor of the alternative hypothesis. Thus we decide that the mean cholesterol is higher for those who have recently had a heart attack. 

Details for the "two-sample t-test" for comparing two means (UNPOOLED) 

The test statistic is 
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For Example 1,
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The degrees of freedom are found using a complicated approximation formula. You won’t have to do that calculation "by hand", but is done by: 
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COMPLICATED!!! But Minitab will do this for us. 

Conservative approach to calculating degrees of freedom for an unpooled two sample test of means is to use the smaller of n1 – 1 or n2 – 1. 
Example 2 (Pooled): 

Hours spent studying per week are reported by students in a class survey. Students who say they usually sit in the front are compared to students who say they usually sit in the back. 

Step 1: null is H0 : μ1 − μ2 = 0 and alternative is Ha : μ1 − μ2 ≠ 0, where groups 1 and 2 are front sitters and back sitters, respectively. 
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Minitab Output that can be used for Steps 2-5 
Step 2: test statistic is given in last line of output as t = 3.75, degrees of freedom given as 191. The DF are found by n1 + n2 – 2. Pooled methods are applied since the comparison of the largest to smallest sample standard deviation is ≤ 2 ------ 10.85 / 8.41 = 1.29 Again, we would have to first calculate these sample standard deviations so we would know whether to select in Minitab the "Assume Equal Variances". 

Step 3: p-value is give as 0.000. Since we were interested in the two-sided test (not =) the p-value is the area to the right of 3.75 + area to left of -3.75 in a t-distribution with df = 191. Again we could use T-Table and double the p-value range for t = 3.75 with DF = 100 (since 100 is closest to 191 without going over.) 

Steps 4 and 5: The p-value is less than .05 so we decide in favor of the alternative hypothesis. Thus we decide that the mean time spent studying is different for the two populations. From the sample means we see that the sample mean was clearly higher for those who sit in the front. (16.4 hours per week versus 10.9 hours per week). 

Details for the "two-sample t-test" for comparing two means (POOLED) 

The test statistic is 
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where 
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For Example 2:
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therefore 
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where degrees of freedom are

DF = n1 + n2 – 2
SPECIAL NOTE: We will be calculating these values in Minitab, but I wanted you to be familiar with how Minitab calculates such statistics. 
Comparing two proportions – For proportions there is no consideration to using "pooled" or "unpooled". 

Comparing Two Independent Proportions

Example 3

In the same survey used for example 2, students were asked whether they think same sex marriage should be legal. We’ll compare the proportions saying yes for males and females. Notice that the response is categorical (yes or no). 

Step 1: null is H0 : p1 - p2 = 0 and alternative is Ha : p1 - p2 ≠ 0, where groups 1 and 2 are females and males, respectively. 

[image: image257.png]Sex X § Semple p
Female 185 251 0.737052
Male 107 199 0.537688

Difference = p (1) - p (2}
Estimate for difference: 0.199363

95% CI for difference: (0.111246, 0.287481)
Test for difference = 0 (vs not = D):

Z = 4.40 P-Value = 0.000





Minitab Output that can be used for Steps 2-5 
Step 2: test statistic is given in last line of output as z = 4.40. 

Step 3: p-value is give as 0.000. It is the area to the right of 4.40 + area to left of -4.40 in a standard normal distribution. 

Steps 4 and 5: The p-value is less than 0.05 so we decide in favor of the alternative hypothesis. Thus we decide that the proportions thinking same-sex marriage should be legal differ for males and females. From the sample proportions we females are more in favor (.737 or 73.7% for females versus .538 or 53.8% for males). 

Details for the "two-sample z-test" for comparing two proportions 

The test statistic used by Minitab is 
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For Example 3, 
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denominator 

The book uses a "pooled version" in which the two samples are combined to get a pooled proportion p. That value is used in place of both [image: image260.png]
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in the part that’s under the square root sign. This pooled method is used when the hypothesized value involves 0 (i.e. the null hypothesis is that the two proportions are equal).

Just to illustrate the book method, in example 3, the pooled p-hat = (185+107)/(251+199) = 292/450 = .649. The pooled version of z works out to be z = 4.40 (and p-value is still 0.000). 

Matched Pairs for Means

Paired Data 

Simply put, paired data involves taking two measurements on the same subjects, called repeated sampling. Think of studying the effectiveness of a diet plan. You would weigh yourself prior to starting the diet and again following some time on the diet. Depending on how much weight you lost you would determine if the diet was effective. Now do this for several people, not just yourself. What you might be interested in is estimating the true difference of the original weight and the weight lost after a certain period. If the plan were effective you would expect that the estimated confidence interval of these differences would be greater than zero. 

NOTE: one exception to this repeated sampling on the same subjects is if a pair of subjects are very closely related. For instance, studies involving spouses and twins are often treated as paired data. 
The test statistic for examining hypotheses about one population mean difference (i.e. paired data):
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the observed sample mean difference, μ0 = value specified in null hypothesis, sd = standard deviation of the differences in the sample measurements and n = sample size. For instance, if we wanted to test for a difference in mean SAT Math and mean SAT Verbal scores, we would random sample n subjects, record their SATM and SATV scores in two separate columns, then create a third column that contained the differences between these scores. Then the sample mean and sample standard deviation would be those that were calculated on this column of differences.

Notice that the top part of the statistic is the difference between the sample mean and the null hypothesis. The bottom part of the calculation is the standard error of the mean. 

It is a convention that a test using a t-statistic is called a t-test. That is, hypothesis tests using the above would be referred to as a "Paired t test". 

Example 4 – Paired Data

The average loss weekly loss of study hours due to consuming too much alcohol on the weekend is studied on 10 students before and after a certain alcohol awareness program is put into operation. Do the data provide evidence that the program was effective? 

H0 : μd = 0 versus Ha : μd > 0 
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The test statistic is
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The p-value is the probability that a t-value would be greater than (to the right of ) 4.03. From Minitab we get 0.001. If using T-Table we would look at DF = 9 and since t = 4.03 > 3.00 our p-value from the table would p < 0.007 

Interpretation: 

Since p < 0.05 would reject the null hypothesis and conclude that the mean difference in the population is greater than 0, meaning that we would claim that the alcohol awareness program is effective.

Interpreting Confidence Intervals

The formula for confidence intervals remains the same:

Sample statistic ± Multiplier × Standard error 
In each of the scenarios described in the this lesson, the sample statistic would be the difference between the two sample groups or the sample mathced pair. The multiplier would be either the z-value (proportions) or the t-value (means). Finally the standard error would be the sample standard error calculated using the formulas given above for each scenario

Interpretation Templates: You simply need to edit the level of confidence, the variable(s) of interest, the population, and the interval values.

· When a confidence interval for comparing two groups or a matched pair includes 0, it is possible there is no (0) difference. In other words we cannot say there is a difference if 0 is in the interval.

· When a confidence interval for comparing two groups or a matched pair does not include 0, we have evidence of a difference between because 0 (no difference) is not a reasonable estimate of the amount of difference. 

Examples Using Minitab 

Open Course Survey for the data and Minitab Procedures 

About the data set: Last spring, all students registered for STAT200 were asked to complete a survey. A total of 1004 students responded. If we assume that this sample represents the PSU-UP undergraduate population, then we can make inferences regarding this population based on the survey results.

Question 1: Would you date someone with a great personality even if you did not find them attractive?
Hypotheses Statements: What would be the correct hypothesis to determine if there is a difference in gender between the true percentages that would date someone with a great personality even if they did not find them attractive among PSU-UP undergraduate students?

Ho: p1 − p2 = 0 and Ha: p1 − p2 ≠ 0
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Conclusion and Decision: Since the p-value is less than 0.05 we would reject the null hypothesis and conclude that there is statistical evidence that a difference exists between the true proportion of female students who would date someone with a great personality if not attracted to them and the true proportion of males who would do so.

Confidence Interval interpretation: We are 95% confident that the true difference in gender between the percentages that would date someone with a great personality even if they did not find them attractive among PSU-UP undergraduate students undergraduate students is between 24.1% inches and 36.0%.

About the output:

· Difference is given as p(female) − p(male) indicating that the difference is calculated by taking Female minus Male. If you wanted the reverse, then in Minitab you would have to recode the Gender variable to 0 and 1 where the 1 would represent Female.

· The value of 0.300931 found in the Estimate for Difference would be the sample statistic used to build the confidence interval. That is, we would take this value and then add and subtract from it the margin of error.

· Since the confidence interval results in an interval that contains all positive values and we took Female minus Male, we would conclude Female PSU−UP undergraduates are more likely than their male counterparts to date someone with a great personality even if they did not find them attractive. 

· The Event = Yes indicates that the Yes response was the &quote;success&quote; of interest. If No was of concern, then we would have to recode these responses to 0 and 1 where 1 would represent No.

· The Z−value of 9.45 is the test statistic one would use to find the p−value. This test statistic is found by taking the sample statistic (i.e. the estimate difference) minus the hypothesize value of 0 (see that Test of Difference equals 0) and dividing by the standard error.

Question 2: What are the measurements of the span of your right and left hand?

Hypotheses Statements: What would be the correct hypothesis to determine if mean right hand spans differ than mean left hand spans among PSU-UP undergraduate students?

Ho: ud = 0 and Ha: ud ≠ 0
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Conclusion and Decision: Since the p-value of 0.068 is greater than 0.05 we would not reject the null hypothesis. We do not have enough statistical evidence to say that, on average, the true mean length of right hand spans differs from the true mean length of left hand spans for PSU−UP undergrads.

NOTE: This was a two-sided test since we used "not equal" in the alternative hypothesis (also see that minitab says "not = 0"). If the research interest was to show that on average right-hand spans were longer than left-hand spans then our new Ha would use > and we need to divide this p-value by 2. In then next example we show how to use minitab to conduct such one-sided hypothesis tests.
Confidence Interval interpretation: We are 95% confident that the true mean difference between right hand spans and left hand spans for PSU−UP undergraduate students is between −0.0035 inches and 0.0998 inches.

About the output:

· Based on the text Paired T for Rspan − Lspan the difference is found by taking the right hand spans minus the left hand spans. 

· The value of the Mean found in the row named Difference would be the sample statistic used to build the confidence interval. That is, we would take this value and then add and subtract from it the margin of error.

· the value in the Difference row under SE Mean is the Standard Error of the Mean and is calculated by taking the Standard Deviation found in that Difference row (0.798840) and dividing by the square root of the number of differences.

· Since the confidence interval results in an interval that contains zero, we would conclude that no difference exists between the means. This result should concur with our hypothesis result as long as the alpha value used for the test corresponds to the level of confidence (i.e. alpha of 0.05 corresponds to a 95% level of confidence; alpha of 0.10 would correspond to a 90% level of confidence).

· The T−value of 1.83 is the test statistic one would use to find the p−value. This test statistic is found by taking the sample statistic (i.e. the estimate difference) − the hypothesize value of 0 (see that Test of Difference equals 0) and dividing by the standard error (SE Mean of 0.026308).

Question 3: Some students who belong to Greek organizations (e.g. fraternities and sororities) believe that they do not drink anymore or less than non-Greek-organization students. However, the university administration does not agree, and wants to show that on average, the population of Greek students drink more more frequently during any given month than their non-greek counterparts. What would be the correct hypothesis to determine if the administration is correct? Assume that non-greeks are population u1 and greeks are u2.

Ho: u1 − u2 = 0 and Ha: u1 − u2 < 0
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Conclusion and Decision: Since the p-value is approximately 0.000 (we do not actually state that the p-value is 0) and is less than 0.05 we would reject the null hypothesis and conclude that there is statistical evidence that on average, the greek population drinks more days per month than the non-greeks at PSU-UP.

Confidence Interval interpretation: We are 95% confident that for PSU−UP the true mean difference between the number of days per month non−Greek−organization students drink compared to their Greek counterparts is more than 3 days.

About the output:

· Difference is given as mu(No) − mu(Yes) indicating that the difference is calculated by taking No minus Yes for those responding to whether there belonged to a Greek organization.

· The value of −3.712 found in the Estimate for Difference would be the sample statistic used to build the confidence interval. That is, we would take this value and then only add the margin of error. We only add since we are conducting a one−sided test of hypothesis and this side is for less than. The 95% upper bound provides the upper limit to our confidence interval and combining our alternative hypothesis implies that our estimated true mean difference is no greater (i.e. the true mean difference is 3.003 days or more. If this seems confusing consider if you reversed the order subtracting non−Greeks from Greeks. The results would be the same except the bound would be positive and would represent the lower bound. The interpretation then might seem more clear). 

· the value in the Difference row under SE Mean is the Standard Error of the Mean and is calculated by taking the Standard Deviation found in that Difference row (0.798840) and dividing by the square root of the number of differences.

· The T−value of −8.61 is the test statistic one would use to find the p−value. This test statistic is found by taking the sample statistic (i.e. the estimate difference) − the hypothesized value of 0 (see that Test of Difference equals 0) and dividing by the standard error. 

· The Both use Pooled StDev = 5.3574 indicates that the pooled variance assumption was used which makes sense since the ratio between the two standard deviations, 5.52 and 4.48, is not greater than two.

Think & Ponder! 

Compare the time that males and females spend watching TV. Ponder the following, then move your cursor over the graphic to display the statistical application example.

A. We randomly select 20 males and 20 females and compare the average time they spend watching TV. Is this an independent sample or paired sample?   (Independent.)

B. We randomly select 20 couples and compare the time the husbands and wives spend watching TV. Is this an independent sample or paired sample?  (Paired (dependent).)

The paired t-test will be used when handling hypothesis testing for paired data.

Lesson: One-Way Analysis of Variance (ANOVA)

Learning Objectives For This Lesson

Upon completion of this lesson, you should be able to: 

· Logic Behind an Analysis of Variance (ANOVA)

· A Statistical Test for One-Way ANOVA

· Using Minitab to Perform One-Way ANOVA

One-Way Analysis of Variance (ANOVA) 

One-way ANOVA is used to compare means from at least three groups from one variable. The null hypothesis is that all the population group means are equal versus the alternative that at least one of the population means differs from the others. From a prior stat 200 survey a random sample of 30 students was taken to compare mean GPAs for students who sit in the front, middle and back of the classrooms. What follows is the Minitab output for the one-way ANOVA for this data: [NOTE: For explanations of the shaded pieces, place your mouse over the various acronyms in the row titled "Source"] 
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Interpreting this output: 

1. A one-way analysis is used to compare the populations for one variable or factor. In this instance the one variable is Seating and there are 3 populations, also called group or factor levels being compared: front, middle and back.

2. DF stands for degrees of freedom. - The DF for the variable (e.g. Seating) is found by taking the number of group levels (called k) minus 1 (i.e. k – 1). - The DF for Error is found by taking the total sample size, N, minus k (i.e. N – k). - The DF for Total is found by N – 1. 

3. The SS stands for Sum of Squares. The first SS is a measure of the variation in the data between the groups and for the Source lists the variable name (e.g. Seating) used in the analysis. This is sometimes referred to as SSB for "Sum of Squares Between groups". The next value is the sum of squares for the error often called SSE or SSW for "Sum of Squares Within". Lastly, the value for Total is called SST (or sometimes SSTO) for "Sum of Squares Total". These values are additive, meaning SST = SSB + SSW.

4. The test statistic used for ANOVA is the F-statistic and is calculated by taking the Mean Square (MS) for the variable divided by the MS of the error (called Mean Square of the Error or MSE). The F-statistic will always be at least 0, meaning the F-statistic is always nonnegative. This F-statistic is a ratio of the variability between groups compared to the variability within the groups. If this ratio is large then the p-value is small producing a statistically significant result.(i.e. rejection of the null hypothesis) 

5. The p-value is the probability of being greater than the F-statistic or simply the area to the right of the F-statistic, with the corresponding degrees of freedom for the group (number of group levels minus 1, or here 3 − 1 = 2) and error (total sample size minus the number of group levels, or here 30 − 3 = 27). The F-distribution is skewed to the right (i.e. positively skewed) so there is no symmetrical relationship such as those found with the Z or t distributions. This p-value is used to test the null hypothesis that all the group population means are equal versus the alternative that at least one is not equal. The alternative is not "they are not all equal." 

6. The individual 95% confidence intervals provide one-sample t intervals that estimate the mean response for each group level. For example, the interval for Back provides the estimate of the population mean GPA for students who sit in the back. The * indicates the sample mean value (e.g. 3.13). You can inspect these intervals to see if the various intervals overlap. If they overlap then you can conclude that no difference in population means exists for those two groups. If two intervals do not overlap, then you can conclude that a difference in population means exists for those two groups. 

Hypotheses Statements and Assumptions for One−Way ANOVA 

The hypothesis test for analysis of variance for g populations:

Ho: μ1 = μ2 = ... = μg
Ha: not all μi (i = 1, ... g) are equal

Recall that when we compare the means of two populations for independent samples, we use a 2-sample t-test with pooled variance when the population variances can be assumed equal. For more than two populations, the test statistic is the ratio of between group sample variance and the within-group-sample variance. Under the null hypothesis, both quantities estimate the variance of the random error and thus the ratio should be close to 1. If the ratio is large, then we reject the null hypothesis.

Assumptions: To apply or perform a One−Way ANOVA test, certain assumptions (or conditions) need to exist. If any of the conditions are not satisfied, the results from the use of ANOVA techniques may be unreliable. The assumptions are:

1. Each sample is an independent random sample

2. The distribution of the response variable follows a normal distribution

3. The population variances are equal across responses for the group levels. This can be evaluated by using the following rule of thumb: if the largest sample standard deviation divided by the smallest sample standard deviation is not greater than four, then assume that the population variances are equal.

Logic Behind an Analysis of Variance (ANOVA)
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We want to see whether the tar contents (in milligrams) for three different brands of cigarettes is different. Lab Precise took 6 samples from each of the three brands and got the following measurements:

	(Sample 1)
Brand A
	(Sample 2)
Brand B
	(Sample 3)
Brand C

	10.21
	11.32
	11.60

	10.25
	11.20
	11.90

	10.24
	11.40
	11.80

	9.80
	10.50
	12.30

	9.77
	10.68
	12.20

	9.73
	10.90
	12.20
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= 10.00
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= 11.00
	[image: image273.png]


= 12.00


Lab Sloppy also took 6 samples from each of the three brands and got the following measurements:

	(Sample 1)
Brand A
	(Sample 2)
Brand B
	(Sample 3)
Brand C

	9.03
	9.56
	10.45

	10.26
	13.40
	9.64

	11.60
	10.68
	9.59

	11.40
	11.32
	13.40

	8.01
	10.68
	14.50

	9.70
	10.36
	14.42
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= 10.00
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= 11.00
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= 12.00


Data from Lab Precise:
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Data from Lab Sloppy:
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The sample means from the two labs turned out to be the same and thus the differences in the sample means from the two labs are the same. From which data set can you draw more conclusive evidence that the means from the three populations are different? We need to compare the between-sample-variation to the within-sample-variation. Since the between-sample-variation is large compared to the within-sample-variation for data from Lab Precise, we will be more inclined to conclude that the three population means are different using the data from Lab Precise. Since such analysis is based on the analysis of variances for the data set, we call this statistical method the Analysis of Variance.

Using Minitab to Perform One-Way ANOVA [image: image316.png]
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20 young pigs are assigned at random among 4 experimental groups. Each group is fed a different diet. (This design is a completely randomized design.) The data are the pig's weight in kg after being raised on these diets for 10 months. We wish to ask whether mean pig weights are the same for all 4 diets.
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	H1: not all the mean weights are equal


Data:

	Feed_1
	Feed_2
	Feed_3
	Feed_4

	60.8
	68.3
	102.6
	87.9

	57.1
	67.7
	102.2
	84.7

	65.0
	74.0
	100.5
	83.2

	58.7
	66.3
	97.5
	85.8

	61.8
	69.9
	98.9
	90.3


To get this data into Minitab you can either type the data in or after opening Minitab: 

· Copy the data including the column names.

· Click on the upper right cell in the Minitab worksheet (i.e. the shaded cell under C1).

· Select from the menu bar Edit > Paste Cells. From the pop-up select "Use spaces as delimeters"

· Click OK

Since these data are listed in different columns (i.e. each column for the four levels of Feed), then we use:

Stat > ANOVA > One−Way (Unstacked)

Specify Feed 1, Feed 2, Feed 3, Feed 4 in the Response (in separate columns) text box, then click OK.

Minitab's output:
One-way Analysis of Variance
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To the right of the one-way ANOVA table, under the column headed P, is the P-value. In the example, P = 0.000. The P-value is for testing the hypothesis in [image: image286.png]


above, the mean weights from the 4 feeds are the same vs. not all the means are the same. Because the P-value of 0.000 is less than specified significance level of 0.05, we reject H0. The data provide sufficient evidence to conclude that the mean weights of pigs from the four feeds are not all the same.

We can see below the ANOVA table, another table that provides the sample sizes, sample means, and sample standard deviations of the 4 samples. Beneath that table, the pooled StDev is given and this is an estimate for the common standard deviation of the 4 populations.

Finally, the lower right side of the Minitab output gives individual 95% confidence intervals for the population means of the 4 feeds.

Lesson: Association Between Categorical Variables 

Learning objectives for this lesson 

Upon completion of this lesson, you should be able to: 

· Know what type of situations call for a chi-square analysis

· Begin to understand and apply the concept of "statistical significance"

· Calculate relative risk and odds ratio from a two-by-two table

· Explain the difference between relative risk and odds ratio

Determining Whether Two Categorical Variables are Related 

The starting point for analyzing the relationship is to create a two-way table of counts. The rows are the categories of one variable and the columns are the categories of the second variable. We count how many observations are in each combination of row and column categories. When one variable is obviously the explanatory variable in the relationship, the convention is to use the explanatory variable to define the rows and the response variable to define the columns. This is not a hard and fast rule though. 

Example 1 : Students from a Stat 200 course we're asked how important religion is in your life (very important, fairly important, not important). A two-way table of counts for the relationship between religious importance and gender (female, male) is shown below.

	 
	Fairly important
	Not important
	Very important
	All

	Female
	56
	32
	39
	127

	Male
	43
	31
	25
	99

	All
	99
	63
	64
	226


As an example of reading the table, 32 females said religion is "not important" in their own lives compared to 31 males. Fairly even! 

Example 2: Participants in the 2002 General Social Survey, a major national survey done every other year, were asked if they own a gun and whether they favor or oppose a law requiring all guns to be registered with local authorities. A two-way table of counts for these two variables is shown below. Rows indicate whether the person owns a gun or not. 

	Owns Gun
	Favors Gun Law 
	Opposes Gun Law 
	All

	No 
	527
	72
	599

	Yes
	206
	102
	308

	All
	733
	174
	907


Percents for two-way tables 

Percents are more useful than counts for describing how two categorical variables are related. Counts are difficult to interpret, especially with unequal numbers of observations in the rows (and columns). 

Row Percents 

Example 1 Continued : The term "row percents" describes conditional percents that give the percents out of each row total that fall in the various column categories. 

Here are the row percents for gender and feelings religious importance: 

	 
	Fairly important
	Not important
	Very important
	All

	Female
	44.09
	25.20
	30.71
	100.00

	Male
	43.43
	31.31
	25.25
	100.00

	All
	43.81
	27.88
	28.32
	100.00


Notice that row percents add to 100% across each row. In this example 32 / 127 = 25.20% of the females said religion was not very important in their own lives and 31.31% (31 / 99) of the males felt similarly. Notice that although the count was about even for both genders (32 to 31), the percentage is slightly higher for males. 

Column Percents 

The term "column percents" describes conditional percents that give the percents out of each column total that fall in the various row categories. 

Example 2 Continued : Here are the column percents for gun ownership and feelings about stronger gun permit laws. 

	Owns Gun
	Favors Gun Law 
	Opposes Gun Law 

	No 
	71.90
	41.38

	Yes
	28.10
	58.62

	All
	100.00
	100.00


The column percents add to 100% down each column. Here, 28.10% of those who favor stronger permit laws own a gun, compared to 58.62% owning guns among those opposed to stronger permit laws. 

Conditional Percents as evidence of a relationship 

Definition : Two categorical variables are related in the sample if at least two rows noticeably differ in the pattern of row percents. 

Equivalent Definition : Two categorical variables are related in the sample if at least two columns noticeably differ in the pattern of columns percents. 

· In Example 1 Continued, row percents for females and males similar patterns. Feeling about religious importance and gender are NOT related. 

· In Example 2 Continued, the two columns have clearly different sets of columns percents. Gun ownership and opinion about stronger gun permit laws are related. 

Statistical Significance of Observed Relationship / Chi-Square Test 

The chi-square test for two-way tables is used as a guideline for declaring that the evidence in the sample is strong enough to allow us to generalize that the relationship holds for a larger population as well. 

· Definition: A statistically significant relationship is a relationship observed in a sample that would have been unlikely to occur if really there is no relationship in the larger population. 

· Concept : A chi-square statistic for two-way tables is sensitive to the strength of the observed relationship. The stronger the relationship, the larger the value of the chi-square test. 

· Definition : A p -value for a chi-square statistic is the probability that the chi-square value would be as large as it is (or larger) if really there were no relationship in the population. 

· IMPORTANT decision rule : An observed relationship will be called statistically significant when the p-value for a chi-square test is less than 0.05. In this case, we generalize that the relationship holds in the larger population. 

· Assumptions: The two variables must be categorical and expected counts in each cell must be at least five.

Using Minitab

We'll use Minitab to carry out the chi-square procedure so you will not have to know how to calculate the chi-square value or find the p-value by hand. 

If you want to try this on your own in Mintab just open the Class Survey data (Class_Survey.MTW) and select [Note: file will not open unless the computer has Minitab]:

· Stat > Tables > Cross Tabulation and Chi-Square. 

· Enter Gender for the rows and Religious Importance for Columns. 

· Be sure the box is checked for both Counts and Percents. 

· Click the Chi-Square be sure that the boxes for Chi-Square analysis, Expected Counts, and Each Cells Contribution are checked. 

· Then click OK and OK. 

This will produce the output results given above for Example 1 and the following Chi-Square analysis. 

Chi-square results for Example 1 (gender and feeling about religion): 

Minitab version 14 gives results for two slightly different versions of the chi-square procedure. For the gender and feelings about religious importance, results reported by Minitab are 
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All we need to do is find the p-value for the Pearson Chi-Square and interpret it. (The "Likelihood Ratio Chi-Square" statistic is another statistic calculated using a formula that differs from Pearson's. In this class we will always refer to the Pearson Chi-Square.) The value, 0.512, is above 0.05 so we declare the result to not be statistically significant. This means that we generalize that feelings about religious importance and gender are not related in a larger population such as PSU undergraduate students. This assumes that we consider our class survey to be a representative sample of all PSU undergraduate students. This means, for instance, that the students who participated in our survey are similar in make-up to the PSU undergrad population in regards to gender, race, GPA, and College.

Chi-square results for Example 2 (gun ownership and feeling about stronger permit laws): 

For example 2, Minitab results are 
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The p -value, 0.000, is below 0.05 so we declare the result to be statistically significant. This means that we can generalize that gun ownership and opinion about permit laws are related in a larger population. 

Null and Alternative Hypotheses 

The chi-square procedure is used to decide between two competing generalizations about the larger population. 

Null hypothesis [written as Ho]: The two variables are independent.
Alternative hypothesis [written as Ha]: The two variables are dependent. 

When the result is statistically significant (p-value less than 0.05) we pick the alternative hypothesis; otherwise, we pick the null. 

Example 3: In the class survey described in Example 1, students were asked whether they smoke cigarettes. The following Minitab results help to show if and how males and females differ. Counts, row percents, and chi-square results are given. 
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Pearson Chi-Square = 1.684, DF = 1, P-Value = 0.194




The percent that smoke is roughly doubled for males compared to females (10.10% versus 5.51%). The observed relationship is not statistically significant because the p-value, 0.194, is greater than 0.05. We decide in favor of the null hypothesis - smoking and gender are not related in the population of PSU undergraduate students. 

Calculating the Chi-Square Test Statistic

The chi-square test statistic for a test of independence of two categorical variables is found by:

[image: image290.png]



where O represents the observed frequency. E is the expected frequency under the null hypothesis and computed by:
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From the previous output, you can see that the Expected Count for Females who said No was 117.45 which is found by taking the row total for Females (127) times the column total for No (209) then dividing by the sample size (226). This is procedure is conducted for each cell.

The chi-square given in each cell adds up to the chi-square test statistic of 1.684 Looking at the chi-square contribution of 0.05550 for Females who said No, this value is found by taking the squared difference between the Observed Count (120) and the Expected Count (117.45) then dividing by the Expected Count. The general concept is: if the expected and observed counts are not too different, then we would conclude that the two variables are not related (i.e. dependent). However, if the observed counts were much different than what would be expected if independence existed, we would conclude that there is an association (i.e. dependence) between the two variables. 

NOTE: The * in the output are not relevant. They appear in the ALL areas because we do not calculate expected counts or chi-square values for the ALL categories. 

Comparing Risks 

We'll look at four different "risk" statistics. 

· Risk 

· Relative Risk 

· Percent Increase in Risk 

· Odds Ratio 

Risk 

The risk of a bad outcome can be expressed either as the fraction or the percent of a group that experiences the outcome. 

Example : If the risk of asthma for teens is 0.06, or 6%, it means that 6% of all teens experience asthma. 

Caution : When reading a risk statistic, be sure you understand exactly the group, and the time frame for which the risk is being defined. For instance, the statistic that the risk of heart disease for men is 0.40 (40%) obviously doesn't apply to college age men at this moment. It must have to do with a lifetime risk.

Relative Risk 

Relative risk compares the risk of a particular outcome in two different groups. The comparison is calculated as Relative Risk = [image: image292.png]Ruskmn Groupl
Risk in Group 2



. Thus relative risk gives the risk for group 1 as a multiple of the risk for group 2. 

Example: Suppose, 7% of teenage girls have asthma compared to 5% of teenage boys with asthma. Using the females as group 1, the relative risk for girls compared to boys = [image: image293.png]7%




= 1.4. The risk of asthma is 1.4 times as great for teenage females as it is for teenage males. 

Caution : Watch out for relative risk statistics where no baseline information is given about the actual risk. For instance, it doesn't mean much to say that beer drinkers have twice the risk of stomach cancer as non-drinkers unless we know the actual risks. The risk of stomach cancer might actually be very low, even for beer drinkers. For example, 2 in 1,000,000 is twice the size of 1 in a million but is would still be a very low risk.

Percent Increased (or decreased) Risk 

Percent increased risk is calculated like the percent increase in a price. Two equivalent formulas can be used: 

Percent increased risk = [image: image294.png]Risk mn Group1 - Risk in Group 2
Risk in Group 2



× 100% 

OR 
Percent increased risk = (relative risk - 1) ×100%

Example: Suppose, 7% of teenage girls have asthma compared to 5% of teenage boys with asthma. The percent increased risk for girls is [image: image295.png]


×100% = [image: image296.png]


×100% = 40% . 

The risk of asthma (7%) is a 40% increase from the risk for boys (5%). 

Alternatively, we found that the relative risk is 1.4 for these values. The percent increased risk could also have been computed as (relative risk - 1) ×100% = (1.4 - 1) ×100% = 40%.

Odds and Odds Ratios 

The odds of an event = [image: image297.png]chance event happens
chance event does not happen.



. In a sense, odds expresses risk by comparing the likelihood of a risky event happening to the likelihood it does not happen.

The odds ratio for comparing two groups = [image: image298.png]odds m groupl
oddsin group 2.



. 

The value expresses the odds in group 1 as a multiple of the odds for group 2. 

Example: Suppose, 7% of teenage girls have asthma compared to 5% of teenage boys with asthma. Odds ratio = [image: image299.png]odds for gisls _ 53 _.072:
odds for boys




The odds of asthma for girls are 1.29 the odds for boys.

Caution : Relative risk and odds ratio are often confused. Look carefully at comparisons of risks to determine if we're comparing odd or comparing risks. 

Contingency Table Simulation 

The following two-by-two table {called two-by-two because the table has two rows and two columns} will provide some insight into "seeing" how the distribution of cell counts affects the p-value, thus producing a significant result, plus give you some practice in calculating odds ratios and relative risks

Start by entering for Males the value 20 for Yes and then 40 for No. Enter these same values for Women and then click Compute. Since the distribution is identical, the odds ratio and relative risk are both one, and there is no statistically significant relationship between gender and sleep apnea (p-value = 1 > 0.05)

Now start changing the values for Women by adding to Yes and decreasing No by the same amount (say 10), and then repeat this step again. Note how the odds ratio and relative risk continue to decrease, while the Chi-square statistic and resulting p-value trend toward stronger statistical evidence (i.e. larger Chi-square and smaller p-value).

Continue to adjust and substitute numbers on your own while keeping track of how the distribution changes affect the results.

Lesson: Inference About Regression 

Introduction

Let's get started! Here is what you will learn in this lesson.

Learning objectives for this lesson 

Upon completion of this lesson, you should be able to do the following: 

· Understand the relationship between the slope of the regression line and correlation,

· Comprehend the meaning of the Coefficient of Determination, R2,
· Now how to determine which variable is a response and which is an explanatory in a regression equation,

· Understand that correlation measures the strength of a linear relationship between two variables,

· Realize how outliers can influence a regression equation, and 

· Interpret the test results of simple regression analyses. 

Examining Relationships Between Two Variables 

Previously we considered the distribution of a single quantitative variable. Now we will study the relationship between two quantiative variables. SPECIAL NOTE: For our purposes we are going to consider the case where both variables are quantitative. However, in a regression analysis we can use categorical variables (e.g. Gender, Class Standing) as a response i.e. predictor. When we consider the relationship between two variables, there are three possibilities: 

1. Both variables are categorical. We analyze an association through a comparison of conditional probabilities and graphically represent the data using contingency tables. Examples of categorical variables are gender and class standing. 

2. Both variables are quantitative. To analyze this situation we consider how one variable, called a response variable, changes in relation to changes in the other variable called an explanatory variable. Graphically we use scatterplots to display two quantitative variables. Examples are age, height, weight (i.e. things that are measured). 

3. One variable is categorical and the other is quantitative, for instance height and gender. These are best compared by using side-by-side boxplots to display any differences or similarities in the center and variability of the quantitative variable (e.g. height) across the categories (e.g. Male and Female). 

Comparing Two Quantitative Variables 

As we did when considering only one variable, we begin with a graphical display. A scatterplot is the most useful display technique for comparing two quantitative variables. We plot on the y-axis the variable we consider the response variable and on the x-axis we place the explanatory or predictor variable. 

How do we determine which variable is which? In general, the explanatory variable attempts to explain, or predict, the observed outcome. The response variable measures the outcome of a study. One may even consider exploring whether one variable causes the variation in another variable – for example, a popular research study is that taller people are more likely to receive higher salaries. In this case, Height would be the explanatory variable used to explain the variation in the response variable Salaries.

In summarizing the relationship between two quantitative variables, we need to consider: 

1. Association/Direction (i.e. positive or negative)

2. Form (i.e. linear or non-linear) 

3. Strength (weak, moderate, strong)

Example 

We will refer to the Exam Data set, (Final.MTW), that consists of random sample of 50 students who took Stat200 last semester. The data consists of their semester average on mastery quizzes and their score on the final exam. We construct a scatterplot showing the relationship between Quiz Average (explanatory or predictor variable) and Final (response variable). Thus, we are studying whether student performance on the mastery quizzes explains the variation in their final exam score. That is, can mastery quiz performance be considered a predictor of final exam score? We create this graph in Minitab by: 

1. Opening the Exam Data set. 

2. From the menu bar select Graph > Scatterplot > Simple 

3. In the text box under Y Variables enter Final and under X Variables enter Quiz Average 

4. Click OK 
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Association/Direction and Form

We can interpret from this graph that there is a positive association between Quiz Average and Final: low values of quiz average are accompanied by lower final scores and the same for higher quiz and final scores. If this relationship were reversed, high quizzes with low finals, then the graph would have displayed a negative association. That is, the points in the graph would have decreased going from right to left. 

The scatterplot can also be used to provide a description of the form. From this example we can see that the relationship is linear. That is, there does not appear to be a change in the direction in the relationship. 

Strength 

In order to measure the strength of a linear relationship between two quantitative variables we use correlation. Correlation is the measure of the strength of a linear relationship. We calculate correlation in Minitab by (using the Exam Data): 

1. From the menu bar select Stat > Basic Statistics > Correlation 

2. In the window box under Variables Final and Quiz Average 

3. Click OK (for now we will disregard the p-value in the output) 

The output gives us a Pearson Correlation of 0.609 

Correlation Properties (NOTE: the symbol for correlation is r) 

1. Correlation is unit free. If we changed the final exam scores from percents to decimals the correlation would remain the same. 

2. Correlation, r, is limited to – 1 ≤ r ≤ 1. 

3. For a positive association, r > 0; for a negative association r < 0. 

4. Correlation, r, measures the linear association between two quantitative variables. 

5. Correlation measures the strength of a linear relationship only. (See the following Scatterplot for display where the correlation is 0 but the two variables are obviously related.) 

6. The closer r is to 0 the weaker the relationship; the closer to 1 or – 1 the stronger the relationship. The sign of the correlation provides direction only. 

7. Correlation can be affected by outliers 

Equations of Straight Lines: Review
The equation of a straight line is given by y = a + bx. When x = 0, y = a, the intercept of the line; b is the slope of the line: it measures the change in y per unit change in x.
Two examples:

	Data 1
	 
	Data 2

	x
	y
	 
	x
	y

	0
	3
	 
	0
	13

	1
	5
	 
	1
	11

	2
	7
	 
	2
	9

	3
	9
	 
	3
	7

	4
	11
	 
	4
	5

	5
	13
	 
	5
	3


For the 'Data 1' the equation is y = 3 + 2x ; the intercept is 3 and the slope is 2. The line slopes upward, indicating a positive relationship between x and y.

For the 'Data 2' the equation is y = 13 - 2x ; the intercept is 13 and the slope is -2. The line slopes downward, indicating a negative relationship between x and y. 

	Plot for Data 1 
	Plot for Data 2 
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y = 3 + 2 x
	[image: image302.png]



y = 13 - 2 x 


The relationship between x and y is 'perfect' for these two examples—the points fall exactly on a straight line or the value of y is determined exactly by the value of x. Our interest will be concerned with relationships between two variables which are not perfect. The 'Correlation' between x and y is r = 1.00 for the values of x and y on the left and r = -1.00 for the values of x and y on the right.

Regression analysis is concerned with finding the 'best' fitting line for predicting the average value of a response variable y using a predictor variable x. 
 

	APPLET
Here is an applet developed by the folks at Rice University called "Regression by Eye". The object here is to give you a chance to draw what you this is the 'best fitting line". 

[image: image303.png]



Click the Begin button and draw your best regression line through the data. You may repeat this procedure several times. As you draw these lines, how do you decide which line is better? Click the Draw Regression line box and the correct regression line is plotted for you. How would you quantify how close your line is to the correct answer?


 

Least Squares Regression 

The best description of many relationships between two quantitative variables can be achieved using a straight line. In statistics, this line is referred to as a regression line. Historically, this term is associated with Sir Francis Galton who in the mid 1800’s studied the phenomenon that children of tall parents tended to “regress” toward mediocrity. 

Adjusting the algebraic line expression, the regression line is written as: 

[image: image304.png]



Here, bo is the y-intercept and b1 is the slope of the regression line. 

Some questions to consider are: 

1. Is there only one “best” line? 

2. If so, how is this line found?

3. Assuming we have properly fitted a line to the data, what does this line tell us? 

By answering the third question we should gain insight into the first two questions. 

We use the regression line to predict a value of [image: image305.png]s



for any given value of X. The “best” line would make the best predictions: the observed y-values should stray as little as possible from the line. The vertical distances from the observed values to their predicted counterparts on the line are called residuals and these residuals are referred to as the errors in predicting y. As in any prediction or estimation process you want these errors to be as small as possible. To accomplish this goal of minimum error, we select the method of least squares: that is, we minimize the sum of the squared residuals. Mathematically, the residuals and sum of squared residuals appears as follows: 

Residuals: [image: image306.png]



Sum of squared residuals: [image: image307.png]



A unique solution is provided through calculus (not shown!), assuring us that there is in fact one best line. Calculus solutions result in the following calculations for bo and b1:

[image: image308.png]
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Another way of looking at the least squares regression line is that when x takes its mean value then y should also takes its mean value. That is, the regression line should always pass through the point [image: image310.png]


. As to the other expressions in the slope equation, Sy refers to the square root of the sum of squared deviations between the observed values of y and mean of y; similarly, Sx refers to the square root of the sum of squared deviations between the observed values of x and the mean of x.

Example: Exam Data 

We can use Minitab to perform a regression on the Exam Data by:

1. From the menu bar select Stat > Regression > Regression 

2. In the window box by Response enter the variable Final 

3. In the window box by Predictors enter the variable Quiz Average 

4. Click the Storage button and select Residuals and Fits (you do not have to do this in order to calculate the line in Minitab, but we are doing this here for further explanation)

5. Click OK and OK again. 

[image: image311.png]Regression Analysis: Final versus Quiz Average
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Plus the following is the first five rows of the data in the worksheet:
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WOW! This is quite a bit of output. We will take this data apart and you will see that these results are not too complicated. Also, if you hang your mouse over various parts of the output pop-ups will appear with explanations.

The Output From the output we see: 

1. Fitted equation is “Final = 12.1 + 0.751 Quiz Average”. 

2. A value of R-square = 37.0% which is the coefficient of determination (more on that later) which if we take the square root of 0.37 we get 0.608 which is the correlation value that we found previously for this data set. 

NOTE: Remember that the square root of a value can be positive or negative (think of the square root of 2). Thus the sign of the correlation is related to the sign of the slope. 
3. The values under “T” and “P”, as well as the data under Analysis of Variance will be discussed in a future lesson. 

4. For the values under RESI1 and FITS1, the FITS are calculated by taking substituting the corresponding x-value in that row into the regression equation to attain the corresponding fitted y-value. 

For example, if we substitute the first Quiz Average of 84.44 into the regression equation we get: Final = 12.1 + 0.751*(84.44) = 75.5598 which is the first value in the FITS column. Using this value, we can compute the first residual under RESI by taking the difference between the observed y and this fitted : 90 – 75.5598 = 14.4402. Similar calculations are continued to produce the remaining fitted values and residuals. 

5. What does the slope of 0.751 tell us? The slope tells us how y changes as x changes. That is, for this example, as x, Quiz Average, increases by one percentage point we would expect, on average, that the Final percentage would increase by 0.751 percentage points, or by approximately three-quarters of a percent. 

Coefficient of Determination, R2 

The values of the response variable vary in regression problems (think of how not all people of the same height have the same weight), in which we try to predict the value of y from the explanatory variable x. The amount of variation in the response variable that can be explained (i.e. accounted for) by the explanatory variable is denoted by R2. In our Exam Data example this value is 37% meaning that 37% of the variation in the Final averages can be explained (now you know why this is also referred to as an explanatory variable) by the Quiz Averages. Since this value is in the output and is related to the correlation we mention R2 now; we will take a further look at this statistic in a future lesson. 

Residuals or Prediction Error 

As with most predictions about anything you expect there to be some error, that is you expect the prediction to not be exactly correct (e.g. when predicting the final voting percentage you would expect the prediction to be accurate but not necessarily the exact final voting percentage). Also, in regression, usually not every X variable has the same Y variable as we mentioned earlier regarding that not every person with the same height (x-variable) would have the same weight (y-variable). These errors in regression predictions are called prediction error or residuals. The residuals are calculated by taking the observed Y-value minus its corresponding predicted Y-value or [image: image313.png]


. Therefore we would have as many residuals as we do y observations. The goal in least squares regression is to select the line that minimizes these residuals: in essence we create a best fit line that has the least amount of error. 

Inference for Regression

We can use statistical inference (i.e. hypothesis testing) to draw conclusions about how the population of y-values relates to the population of x-values, based on the sample of x and y values. Our model extends beyond a simple straight-line summary as we include a parameter for the natural variation about the regression line as seen in real-life relationships. For each x the regression line will tell us on the average how a population of y-values would react. We call these y-values the mean response. Naturally we would expect some variation (i.e. not all of the same response for a given x. Think of not all people of the same height having the same weight) above and below the mean response. The equation E(Y) = Βo + Β1 describes this population relationship. For any given x-value the mean y-value should be E(Y) = Βo + Β1. [NOTE: Some texts will use the notation uy in place of E(Y). These notations are read, respectively, as "The mean of y" and "The expectation of y". Both interpretations have the same meaning.] There are some assumptions, however, that come with this analysis. /p> 

Regression Questions

1. Is there strong, i.e. statistically significant, evidence that y depends on x? In other words, is the slope significantly different from zero?

2. For a particular x-value, x = x*, what interval should contain the mean response to all such x-values?

3. For a particular x-value, x = x*, what interval should contain the individual response to a single such x-value?

Returning to our output for the final exam data, we can conduct an hypothesis test of slope of the regression line using t-test methods to test the following hypothesis:

Ho: Β1 = 0     Ha: Β1 ≠ 0

From this output we concern ourselves with the second row under Predictor as the first row, Constant is not relevant for our purposes. This second Predictor row shows our estimate for Β as 0.7513; standard error SEβ of 0.1414; a t-value of 5.31; and p-value of 0.000 or approximately 0. Since our test in Minitab is whether the true slope is zero or not zero we are conducting a two-sided hypothesis test. In general, the t test statistic is found by (β − 0)/SEβ, or in this example t = 0.7513/0.1414 = 5.31 The p-value is found by doubling the probability P(T ≥ |t|). In this example since the p- value is less than our standard alpha value of 0.05 we would reject Ho and decide that the true slope does differ significantly from zero. We would then conclude that Quiz Average is a significant predictor of scores on the Final exam.
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Prediction Inference

We now turn to questions 2 and 3 regarding estimating both a population mean response and individual response to a given x-value denoted as x*. Formulas exist and can be found in various texts, but we will use Minitab for calculations. Keep in mind that when estimating in statistics we typically are referring to the use of confidence intervals. That will be the case here as well as we will use Minitab to calculate confidence intervals for these estimates.

. 

Sticking with the exam data, what would be a 95% confidence interval for the mean Final exam score for all students with a Quiz Average of 84.44 and what would be a 95% prediction interval for the Final exam score of a particular student with an 84.44 Quiz Average? To use Minitab we follow our initial regression steps but with a few additions:

1. From the menu bar select Stat > Regression > Regression 

2. In the window box by Response enter the variable Final 

3. In the window box by Predictors enter the variable Quiz Average 

4. Click the Options button and in the text box under "Prediction intervals for new observations" enter 84.44 and verify that 95 is entered in the "Confidence Level" text box. Click OK

5. Click OK

6. Click the Storage button and select Residuals. Click OK

7. Click OK again. 

The confidence interval can be found in the output window under the heading 95% CI the interval (72.79, 78.33). This is interpreted as "We are 95% confident that the true mean Final exam score for students with an 84.44 Quiz Average is between 72.79% and 78.33%.

The prediction interval can be found in the output window under the heading 95% PI the interval (55.84, 95.28). This is interpreted as "We are 95% confident that the true Final exam score for a student with an 84.44 Quiz Average is between 55.84% and 95.28%.

You should notice that the confidence interval is narrower than the prediction interval which makes sense intuitively. Since the confidence interval is estimating an average or mean response for all students with this quiz average you should expect that to be more precise than the prediction of the exact Final score for just one student.

Checking Assumptions in Linear Regression

1. There exists a linear relationship between the y and x. This can be graphically represented by creating a scatterplot of y versus x.

2. The error terms are independent for each value of y. The regression model would not be appropriate if the final exam scores were not of different students.

3. The variance of the error is same for all values of x. That is, the points are assumed to fall in a band of similar widths on either side of the line. Again we can employ a scatterplot of the residuals versus the predictor variable. For constant variance we would expect this graph to show a random scatter of points. If the plot showed a pattern (e.g. a megaphone shape where the residuals became more varied as x increased) this would be an indicator that the constant variance assumption was being violated. (See the following Residual Plot. The plot shows a random scatter without evidence of any clear pattern.)

4. The error terms follow a normal distribution with a mean of zero and a variance σ2. This, too, can be tested using a significance test. By storing the residuals we can return to Graph > Probability Plot > Single and enter the column with the residuals into the window for "Graph variables" and click OK. The null hypothesis is that the residuals follow a normal distribution so here we are interested in a p- that is greater than 0.05 as we do not want to reject Ho. Rejecting Ho would indicate that the normality assumption has been violated, however, keep in mind that the central limit theorem can be invoked if our sample size is large. (See the following Normal Probability Plot. With a p-value of 0.931 we would not reject Ho and therefore assume that the residuals follow a normal distribution.) 

Cautions about Correlation and Regression 

Influence Outliers 

In most practical circumstances an outlier decreases the value of a correlation coefficient and weakens the regression relationship, but it’s also possible that in some circumstances an outlier may increase a correlation value and improve regression. Figure 1 below provides an example of an influential outlier. Influential outliers are points in a data set that influence the regression equation and improve correlation. Figure 1 represents data gather on a persons Age and Blood Pressure, with Age as the explanatory variable. [Note: the regression plots were attained in Minitab by Stat > Regression > Fitted Line Plot.] The top graph in Figure 1 represents the complete set of 10 data points. You can see that one point stands out in the upper right corner, point of (75, 220). The bottom graph is the regression with this point removed. The correlation between the original 10 data points is 0.694 found by taking the square root of 0.481 (the R-sq of 48.1%). But when this outlier is removed, the correlation drops to 0.032 from the square root of 0.1%. Also, notice how the regression equation originally has a slope greater than 0, but with the outlier removed the slope is practically 0, i.e. nearly a horizontal line. This example is somewhat exaggerated, but the point illustrates the effect of an outlier can play on the correlation and regression equation. Such points are referred to as influential outliers. As this example illustrates you can see the influence the outlier has on the regression equation and correlation. Typically these influential points are far removed from the remaining data points in at least the horizontal direction. As seen here, the age of 75 and the blood pressure of 220 are both beyond the scope of the remaining data. 
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Correlation and Causation 

If we conduct a study and we establish a strong correlation does this mean we also have causation? That is, if two variables are related does that imply that one variable causes the other to occur? Consider smoking cigarettes and lung cancer: does smoking cause lung cancer. Initially this was answered as yes, but this was based on a strong correlation between smoking and lung cancer. Not until scientific research verified that smoking can lead to lung cancer was causation established. If you were to review the history of cigarette warning labels, the first mandated label only mentioned that smoking was hazardous to your health. Not until 1981 did the label mention that smoking causes lung cancer. (See warning labels). To establish causation one must rule out the possibility of lurking variable(s). The best method to accomplish this is through a solid design of your experiment, preferably one that uses a control group. 

Summary

In this lesson we learned the following: 

· the relationship between the slope of the regression line and correlation,

· the meaning of the Coefficient of Determination, R2,
· how to determine which variable is a response and which is an explanatory in a regression equation,

· that correlation measures the strength of a linear relationship between two variables,

· how outliers can influence a regression equation, and 

· how to interpret the test results of simple and multiple regression analyses. 

Next, let's take a look at the homework problems for this lesson. This will give you a chance to put what you have learned to use...

Lesson: Inference About Regression 

Think & Ponder!

Ponder the following, then move your cursor over the graphic to display the answers.

If you are asked to estimate the weight of a STAT 200 student, what will you use as a point estimate? (Mean weight of the class or median of the class.)

Now, if I tell you that the height of the student is 70 inches, can you give a better estimate of the person's weight?  (The answer is yes if you have some idea about how height and weight are related.)

The paired t-test will be used when handling hypothesis testing for paired data.
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